Iranian Journal of Science & Technology, Transaction A, Vol. 34, No. A4 Printed in the Islamic Republic of Iran, 2010 © Shiraz University

SUBORBITAL GRAPHS FOR A SPECIAL SUBGROUP OF THE NORMALIZER OF $\Gamma_{0}(m)^{*}$

S. KADER¹, B. O. GULER^{2**} AND A. H. DEGER³

¹Department of Mathematics, Nigde University, Nigde, Turkey Email: skader@nigde.edu.tr ²Department of Mathematics, Rize University, Rize, Turkey Email: bahadir.guler@rize.edu.tr

³Department of Mathematics, Karadeniz Technical University, Trabzon, Turkey Email: ahikmetd@ktu.edu.tr

Abstract – In this paper, we find the number of sides of circuits in suborbital graph for the normalizer of $\Gamma_0(m)$ in PSL(2, \mathbb{R}), where *m* will be of the form $2p^2$, *p* is a prime and $p \equiv 1 \pmod{4}$. In addition, we give a number theoretical result which says that the prime divisors *p* of $2u^2 \pm 2u + 1$ are of the form $p \equiv 1 \pmod{4}$.

Keywords – Normalizer, imprimitive action, suborbital graph, circuits

1. INTRODUCTION

Let PSL(2, \mathbb{R}) denote the group of all linear fractional $T: z \rightarrow \frac{az + b}{z}$ $cz + d$ $\rightarrow \frac{az+}{}$ \pm , where *a, b, c, d* are real and $ad - bc = 1$. The modular group Γ is the subgroup of PSL(2, R) such that a, b, c and d are integers. For any natural number *m*, $\Gamma_0(m)$ is the subgroup of Γ with $m | c$. The elements of PSL(2,R) are represented as

$$
\pm \begin{pmatrix} a & b \\ c & d \end{pmatrix}, a, b, c, d \in \mathbb{R} \text{ and } ad - bc = 1.
$$

We will omit the symbol \pm and identify each matrix with its negative.

 $\Gamma_1(m)$ will denote the normalizer of $\Gamma_0(m)$ in PSL(2, R). The elements of $\Gamma_1(m)$ are of the form by [1]

$$
\begin{pmatrix} ae & b/h \ cm/h & de \end{pmatrix}
$$

where all letters are integers, $e \frac{m}{h^2}$ and *h* is the largest divisor of 24 for which $h^2 | m$ with the understanding that the determinant is $e > 0$, and that $r || s$ means that $r | s$ and $\left(r, \frac{s}{r} \right) = 1$ $\left(r,\frac{s}{r}\right) = 1$.

Here, *m* will be $2p^2$, where *p* is a prime such that $p \equiv 1 \pmod{4}$. All circuits in suborbital graph for the normalizer of $\Gamma_0(m)$ in PSL(2, R) where *m* is a square-free positive integer was studied in [2, 3].

 \overline{a}

Received by the editor February 21, 2009 and in final revised form December 18, 2010

Corresponding author

B. O. Guler / et al

Our main idea is that we investigate a case in which *m* is not square-free. Similar studies were done for the modular group and some Hecke groups [4-6]. In this case, *h* will be 1 and *e* is 1, 2, p^2 or 2 p^2 .

2. THE ACTION OF $\Gamma_1(2p^2)$ **ON** $\widehat{\mathbb{Q}}$

Any element of \overline{Q} can be given as a reduced fraction $\frac{x}{x}$ *y* , with $x, y \in \mathbb{Z}$ and $(x, y) = 1$. ∞ is represented as $1 -1$ 0 0 $=\frac{-1}{a}$. The action of $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ $\begin{pmatrix} a & b \ c & d \end{pmatrix}$ $\begin{array}{c}\n x \\
 \text{on } \mathfrak{D}\n \end{array}$ *y* is *a b* $\begin{pmatrix} a & b \ c & d \end{pmatrix}$ $\frac{x}{a} \rightarrow \frac{ax + by}{b}$ *y* $cx + dy$ $\rightarrow \frac{ax + by}{cx + dy}$.

Therefore, the action of a matrix on $\frac{x}{x}$ *y* and on $\frac{-x}{x}$ *y* \overline{a} Therefore, the action of a matrix on $\frac{x}{y}$ and on $\frac{x}{-y}$ is identical. If the determinant of the matrix $\begin{bmatrix} a & b \end{bmatrix}$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is 1 and $(x, y) = 1$, then $(ax + by, cx + dy) = 1$. A necessary and sufficient condition for $\Gamma_1(m)$ to act transitively on $\hat{\mathbb{Q}}$ is given in [7].

Lemma 2.1. Let *m* be any integer and $m = 2^{\alpha_1} \cdot 3^{\alpha_2} \cdot \cdot 3^{\alpha_3} \cdot \cdot \cdot 3^{\alpha_r}$, the prime power decomposition of *m*. Then $\Gamma_1(m)$ is transitive on $\widehat{\mathbb{Q}}$ if and only if $\alpha_1 \leq 7$, $\alpha_2 \leq 3$ and $\alpha_i \leq 1$ for $i = 3,..., r$.

Corollary 2.2. The action of the normalizer $\Gamma_1(2p^2)$ is not transitive on $\widehat{\mathbb{Q}}$.

Since the action is not transitive on $\widehat{\mathbb{Q}}$ we now find a maximal subset of $\widehat{\mathbb{Q}}$ on which the normalizer acts transitively. First we start with

Lemma 2.3. The orbits of the action of
$$
\Gamma_0(2p^2)
$$
 on \mathbb{Q} are $\begin{pmatrix} 1 \\ 1 \end{pmatrix}; \begin{pmatrix} 1 \\ 2 \end{pmatrix}; \begin{pmatrix} 1 \\ p \end{pmatrix}, \begin{pmatrix} 2 \\ p \end{pmatrix}, \dots, \begin{pmatrix} p-1 \\ p \end{pmatrix};$
\n $\begin{pmatrix} 1 \\ 2p \end{pmatrix}, \begin{pmatrix} 3 \\ 2p \end{pmatrix}, \dots, \begin{pmatrix} p-2 \\ 2p \end{pmatrix}, \begin{pmatrix} p+2 \\ 2p \end{pmatrix}, \begin{pmatrix} p+4 \\ 2p \end{pmatrix}, \dots, \begin{pmatrix} 2p-1 \\ 2p \end{pmatrix}; \begin{pmatrix} 1 \\ p^2 \end{pmatrix}; \begin{pmatrix} 1 \\ 2p^2 \end{pmatrix}, \text{ where}$
\n $\begin{pmatrix} x \\ y \end{pmatrix} := \left\{ \begin{pmatrix} \frac{k}{2} \in \mathbb{Q} \middle| (2p^2, l) = y, x \equiv k \frac{l}{y} \mod (y, \frac{2p^2}{y}) \right\}.$

Proof: It is well known that if *^k s* $\in \mathbb{Q}$ is given, then there exists some $T \in \Gamma_0(2p^2)$ such that 1 1 *k k T* $\begin{pmatrix} k \\ s \end{pmatrix} = \begin{pmatrix} k_1 \\ s_1 \end{pmatrix}$ with $s_1 | 2p^2$. And furthermore, for $d | 2p^2$, $\begin{pmatrix} a_1 \\ d \end{pmatrix} = \begin{pmatrix} a_2 \\ d \end{pmatrix}$ if and only if 2 $a_1 \equiv a_2 \mod d$, $\frac{2p}{q}$ $\stackrel{s}{=} a_2 \mod \left(d, \frac{2p^2}{d} \right)$. So the result follows.

Lemma 2.4. The orbits of the action of $\Gamma_1(2p^2)$ are as follows. Let $l \in \{1, 2, ..., p-1\}$. Then (a) If *l* is odd then

$$
\binom{l}{p} \cup \binom{p-l}{p} \cup \binom{l}{2p} \cup \binom{2p-l}{2p}
$$

(b) If *l* is even then

$$
\binom{l}{p}\cup\binom{p-l}{p}\cup\binom{p+l}{2p}\cup\binom{2p-l+1}{2p}
$$

Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A4 Autumn 2010 **Autumn 2010**

<www.SID.ir>

Suborbital graphs for a special subgroup of the normalizer of $\Gamma_{0}(m)$

(c)
$$
\begin{pmatrix} 1 \\ 1 \end{pmatrix} \cup \begin{pmatrix} 1 \\ 2 \end{pmatrix} \cup \begin{pmatrix} 1 \\ p^2 \end{pmatrix} \cup \begin{pmatrix} 1 \\ 2p^2 \end{pmatrix}
$$

Proof: We prove only (a). The rest are similar.

Let
$$
T = \begin{pmatrix} ae & b \ 2p^2c & de \end{pmatrix}
$$
 be an arbitrary element in $\Gamma_1(2p^2)$. Then *e* must be 1, 2, p^2 or $2p^2$.
\nCase 1. Let $e = 1$. Then $T \in \Gamma_0(2p^2)$. Therefore *T* fixes $\begin{pmatrix} l \\ p \end{pmatrix}$.
\nCase 2. Let $e = 2$. Then $\begin{pmatrix} 2a & b \\ 2p^2c & 2d \end{pmatrix} \begin{pmatrix} l \\ p \end{pmatrix} = \begin{pmatrix} 2al + bp \\ 2p^2cl + 2dp \end{pmatrix}$.
\nSince $\begin{pmatrix} 2a & b \\ p^2c & d \end{pmatrix} \begin{pmatrix} l \\ p \end{pmatrix} = \begin{pmatrix} 2al + bp \\ p^2cl + dp \end{pmatrix}$ and $2ad - p^2bc = 1$, we conclude that $(2al + bp, 2p^2cl + 2dp) = 1$.

Therefore,

$$
\begin{pmatrix} 2al + bp \\ 2p(pcl + d) \end{pmatrix} = \begin{pmatrix} x \\ 2p \end{pmatrix}, \text{ where } x \equiv (2al + bp)(pcl + d) \mod p.
$$

This shows that
$$
\begin{pmatrix} \ell \\ p \end{pmatrix}
$$
 and $\begin{pmatrix} \ell \\ 2p \end{pmatrix}$ must be in a single orbit of $\Gamma_1(2p^2)$.
\nCase 3. Let $e = p^2$. Then $T = \begin{pmatrix} ap^2 & b \\ 2p^2c & dp^2 \end{pmatrix}$, $adp^4 - 2p^2bc = p^2$.
\n
$$
T \begin{pmatrix} l \\ p \end{pmatrix} = \begin{pmatrix} ap^2l + bp \\ 2p^2cl + dp^3 \end{pmatrix} = \begin{pmatrix} apl+b \\ 2pcl + dp^2 \end{pmatrix}
$$

and as in Case 2, $(apl + b$, $2 pcl + dp²$) = 1. Therefore,

$$
T\binom{l}{p} = \binom{x}{p}, \text{ where } x \equiv (ap \cdot l + b)(2cl + dp) \mod p \text{ or } x \equiv 2bcl \pmod{p}.
$$

Since $2bc \equiv -1 \pmod{p}$, $x \equiv p - l \pmod{p}$. Therefore *l* $\binom{l}{p}$ and $\binom{p-l}{p}$ Since $2bc \equiv -1 \pmod{p}$, $x \equiv p - l \pmod{p}$. Therefore $\begin{pmatrix} l \\ p \end{pmatrix}$ and $\begin{pmatrix} p - l \\ p \end{pmatrix}$ must be in a single orbit of $\Gamma_1(2p^2)$.

Case 4. Let $e = 2p^2$. Then we easily find that *T* sends *l* ${l \choose p}$ to 2 2 $p - l$ $\binom{2p-1}{2p}$. So we consequently have the orbit 2 $2p$ ^{\mid} \mid 2 $l \nvert (p-l) (l) (2p-l)$ $\binom{l}{p}$ *v* $\binom{p-l}{p}$ *v* $\binom{l}{2p}$ *v* $\binom{2p-l}{2p}$ $\binom{p}{p}$ $\cup \binom{r}{p}$ $\cup \binom{2p}{p}$ $\binom{r}{2p}$. $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Corollary 2.6. The action of $\Gamma_1(2p^2)$ on $\mathbb{Q}(2p^2) = \begin{bmatrix} 1 & |v| & 1 \\ 1 & 1 & |v| \\ 2 & 2 & |v| \end{bmatrix}$ $(2 p^2) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \cup \begin{pmatrix} 1 \\ 2 \end{pmatrix} \cup \begin{pmatrix} 1 \\ p^2 \end{pmatrix} \cup \begin{pmatrix} 1 \\ 2p \end{pmatrix}$ $=\left(\begin{matrix}1\\1\end{matrix}\right)\cup\left(\begin{matrix}1\\2\end{matrix}\right)\cup\left(\begin{matrix}1\\p^2\end{matrix}\right)\cup\left(\begin{matrix}1\\2p^2\end{matrix}\right)$ is transitive.

Lemma 2.7. The stabilizer of a point in $\mathbb{Q}(2p^2)$ is an infinite cyclic group.

Proof: Since the action is transitive, stabilizers of any two points are conjugate. Therefore, we can only look at the stabilizer of ∞ in $\Gamma_1(2p^2)$.

$$
T\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} ae & b \\ 2p^2c & de \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} ae \\ 2p^2c \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix},
$$

Autumn 2010 Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A4 <www.SID.ir>

307

B. O. Guler / et al

then $c = 0$. In this case $e = 1$ and since $ad = 1$, $T = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ 0 1 $T = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$. This shows that stabilizer $(\Gamma_1(2p^2))_{\infty}$ of ∞ is 1 1 $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

We know from [7] (see also [8]) that the orders of the elliptic elements of $\Gamma_1(2p^2)$ may be 2, 3, 4, or

6. Therefore, we give the following:

Lemma 2.8. Let *p* be a prime and $p \equiv 1 \pmod{4}$. Then the normalizer $\Gamma_1(2p^2)$ contains an elliptic element *E* of order 4 and that *E* is of the form $\begin{bmatrix} 2 & 2 \end{bmatrix}$ 2 $2p^2c$ 2(1-a) *a b* $\begin{pmatrix} 2a & b \\ 2p^2c & 2(1-a) \end{pmatrix}$, det *E* = 2.

Let (G, X) be transitive permutation group, and suppose that *R* is an equivalence relation on *X*. *R* is said to be *G*-invariant if $(x, y) \in R$ implies $(g(x), g(y)) \in R$ for all $g \in G$. The equivalence classes of a G-invariant relation are called *block*s. We give the following from [9].

Lemma 2.9. Suppose that (G, X) is a transitive permutation group, and *H* is a subgroup of *G* such that, for some $x \in X$, $G_x \subset H$. Then $R = \{(g(x), gh(x)) : g \in G, h \in H\}$ is an equivalence relation.

Lemma 2.10. Let (G, X) be a transitive permutation group, and \approx the *G*-invariant equivalence relation defined in Lemma 2.9; then $g_1(\alpha) = g_2(\alpha)$ if and only if $g_1 \in g_2H$. Furthermore, the number of blocks is $|G:H|$.

To apply the ideas, we take $(\Gamma_1(2p^2),\mathbb{Q}(2p^2)), (\Gamma_0(2p^2),\mathbb{Z}_2^2)$ 2 $(2 p^2), \begin{bmatrix} 2a & b \\ 2 p^2c & 2(1-a) \end{bmatrix}$ *a b p* $\Gamma_0(2p^2)$, $\begin{pmatrix} 2a & b \\ 2p^2c & 2(1-a) \end{pmatrix}$ and the stabilizer $(\Gamma_1(2p^2))_{\infty}$ of ∞ in $\Gamma_1(2p^2)$ instead of (G, X) , *H* and G_x . In this case the number of blocks is 2 and these blocks are

$$
[\infty] := \begin{pmatrix} 1 \\ p^2 \end{pmatrix} \cup \begin{pmatrix} 1 \\ 2p^2 \end{pmatrix} \text{ and } [0] := \begin{pmatrix} 1 \\ 1 \end{pmatrix} \cup \begin{pmatrix} 1 \\ 2 \end{pmatrix}.
$$

3. SUBORBITAL GRAPHS OF $\Gamma_1(2p^2)$ **ON** $\widehat{\mathbb{Q}}(2p^2)$

Let (G, X) be a transitive permutation group. Then *G* acts on $X \times X$ by

$$
g(\alpha,\beta) = (g(\alpha),g(\beta)), \ (g \in G; \ \alpha,\beta \in X).
$$

The orbits of this action are called suborbitals of the normalizer *G*. The orbit containing (α, β) is denoted by $O(\alpha, \beta)$. From $O(\alpha, \beta)$ we can form a suborbital graph $G(\alpha, \beta)$: its vertices are the elements of *X*, and there is a directed edge from γ to δ if $(\gamma, \delta) \in O(\alpha, \beta)$. A directed edge from γ to δ is denoted by $\gamma \to \delta$. If $(\gamma, \delta) \in O(\alpha, \beta)$, then we will say that there exists an edge $\gamma \to \delta$ in $G(\alpha,\beta)$.

If $\alpha = \beta$, the corresponding suborbital graph $G(\alpha, \alpha)$, called the trivial suborbital graph, is selfpaired: it consists of a loop based at each vertex $x \in X$. We will mainly be interested in the remaining non-trivial suborbital graphs. These ideas were first introduced by Sims [10].

Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A4 Autumn 2010 **Autumn 2010** We now investigate the suborbital graphs for the action of $\Gamma_1(2p^2)$ on $\mathbb{Q}(2p^2)$. Since the action of $\Gamma_1(2p^2)$ on $\mathbb{Q}(2p^2)$ is transitive, $\Gamma_1(2p^2)$ permutes the blocks transitively; so the subgraphs are all isomorphic. Hence, it is sufficient to study with only one block. On the other hand, it is clear that each

Suborbital graphs for a special subgroup of the normalizer of $\Gamma_0(m)$

non-trivial suborbital graph contains a pair $(\infty, u/p^2)$ for some $u/p^2 \in \mathbb{Q}(2p^2)$. Therefore, we work on the following case: We denote by $F(\infty, u/p^2)$ the subgraph of $G(\infty, u/p^2)$ such that its vertices are in the block $[\infty]$.

Theorem 3.1. Let r/s and x/y be in the block $[\infty]$. Then there is an edge $r/s \rightarrow x/y$ in $F(\infty, u/p^2)$ if and only if (i) If $p^2 | s$ but $2p^2 | s$, then $x = \pm 2ur \pmod{p^2}$, $y = \pm 2us \pmod{2p^2}$, $ry - sx = \pm p^2$ (ii) If $2p^2 | s$, then $x \equiv \pm ur \pmod{p^2}$, $y \equiv \pm us \pmod{p^2}$, $ry - sx = \pm p^2$.

Proof: Assume first that $r/s \rightarrow x/y$ is an edge in $F(\infty, u/p^2)$ and that $p^2 | s$ but $2p^2 | s$. Therefore, there exists some *T* in the normalizer $\Gamma_1(2p^2)$ such that *T* sends the pair $(\infty, u/p^2)$ to the pair $(r/s, x/y)$, that is $T(\infty) = r/s$ and $T(u/p^2) = x/y$. Since $2p^2 \nmid s, T$ must be of the form 2 2 $2p^2c$ 2 *a b* $\begin{pmatrix} 2a & b \\ 2p^2c & 2d \end{pmatrix}$. $T(\infty) = \frac{2a}{2p^2c} = \begin{pmatrix} (-1)^i \\ (-1)^i \end{pmatrix}$ *i* $T(\infty) = \frac{2a}{2a} = \left(\frac{(-1)^i r}{n^i}\right)$ ∞) = $\frac{2a}{2p^2c}$ = $\left(\frac{(-1)^i r}{(-1)^i s} \right)$ gives that $r = (-1)^i a$ and $s = (-1)^i p^2 c$, for $i = 0,1$. (u/p^2) 2 2 $2a$ $2d \ln^2$ $\sqrt{2}$ $2a + 2d^2$ $2a \quad b \mid u \mid (2au + bp^2) \mid (-1)$ $2 p^2 c \quad 2d \int p^2 \int (2 p^2 c u + 2 d p^2) \quad (-1)$ *j* $T(u/p^2) = \begin{pmatrix} 2a & b \ 2p^2c & 2d \end{pmatrix} \begin{pmatrix} u \\ p^2 \end{pmatrix} = \begin{pmatrix} 2au + bp^2 \\ 2p^2cu + 2dp^2 \end{pmatrix} = \begin{pmatrix} (-1)^jx \\ (-1)^jy \end{pmatrix}$ for $j = 0,1$.

Since the matrix $\begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix}$ 2*a b* $\begin{pmatrix} 2a & b \\ p^2c & d \end{pmatrix}$ has determinant 1 and $(u, p^2) = 1$, then $(2au + bp^2, p^2cu + dp^2) = 1$. And therefore, $(2au + bp^2, 2p^2cu + 2dp^2) = 1$. So

$$
x = (-1)^{j} (2au + bp^{2}), y = (-1)^{j} (2p^{2}cu + 2dp^{2}).
$$

That is, $x \equiv (-1)^{i+j} 2au \pmod{p^2}$, $y \equiv (-1)^{i+j} 2su \pmod{2p^2}$. Finally, since

$$
\begin{pmatrix} 2a & b \ 2p^2c & 2d \end{pmatrix} \begin{pmatrix} 1 & u \ 0 & p^2 \end{pmatrix} = \begin{pmatrix} (-1)^i 2r & (-1)^j x \ (-1)^i 2s & (-1)^j y \end{pmatrix}, \text{ for } i, j = 0, 1,
$$

we get $ry - sx = \pm p^2$. This proves (i).

Secondly, let $r/s \to x/y$ be an edge in $F(\infty, u/p^2)$ and $2p^2 | s$. In this case *T* must be of the form $2 p^2$ *a b* $\begin{pmatrix} a & b \\ 2p^2c & d \end{pmatrix}$, det *T*=1. Therefore, since $T(\infty) = \begin{pmatrix} a \\ 2p^2c \end{pmatrix} = \begin{pmatrix} (-1)^i \\ (-1)^i \end{pmatrix}$ *i* $a \bigcap (-1)^i r$ *T* ∞) = $\begin{pmatrix} a \\ 2p^2c \end{pmatrix}$ = $\begin{pmatrix} (-1)^i r \\ (-1)^i s \end{pmatrix}$ we get $a = r$ and $s = 2p^2$ $s = 2p^2c$, by taking *i* to be 0. Likewise, since

$$
\begin{pmatrix} a & b \ 2p^2c & d \end{pmatrix} \begin{pmatrix} u \\ p^2 \end{pmatrix} = \begin{pmatrix} au + bp^2 \\ 2p^2cu + dp^2 \end{pmatrix} = \begin{pmatrix} (-1)^j x \\ (-1)^j y \end{pmatrix},
$$

we have $x \equiv ur \pmod{p^2}$ and $y \equiv us \pmod{p^2}$ and that $ry - sx = p^2$. In the case where $i = 0$ and $j = 1$, the minus sign holds.

In the opposite direction we do calculations only for (i) and the plus sign. The other are likewise done. So suppose $x \equiv 2ur \pmod{p^2}$, $y \equiv 2us \pmod{2p^2}$, $ry - sx = p^2$, $p^2 | s$ and $2p^2 | s$. Therefore there exists *b*, *d* in \mathbb{Z} such that $x = 2ur + p^2b$ and $y = 2us + 2p^2d$. Since $ry - sx = p^2$, we

B. O. Guler / et al

get $2rd - bs = 1$, or $4rd - bs = 2$. Hence the element $T = \begin{pmatrix} 2 & 1 \\ 2 & 3 \end{pmatrix}$ $2s$ 2 *r b T* $=\begin{pmatrix} 2r & b \\ 2s & 2d \end{pmatrix}$ is not only in the normalizer $\Gamma_1(2p^2)$, but also *H*. It is obvious that $T(\infty) = \binom{r}{s}$ and $T\binom{u}{p^2} = \binom{x}{y}$ *T* $\begin{pmatrix} u \\ p^2 \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}.$

Theorem 3.2. If we present edges of $F(\infty, u/p^2)$ as hyperbolic geodesics in the upper half-plane \mathbb{H} , no edges of the subgraph $F(\infty, u/p^2)$ of $\Gamma_1(2p^2)$ cross in H.

Proof: Without loss of generality, since the action on $\mathbb{Q}(2p^2)$ is transitive, suppose that $\infty \to u/p^2$, $x_1/y_1p^2 \to x_2/y_2p^2$ and $x_1/y_1p^2 < u/p^2 < x_2/y_2p^2$, where all letters are positive integers. Since $x_1/y_1 p^2 \to x_2/y_2 p^2$ and $x_1/y_1 p^2 < u/p^2 < x_2/y_2 p^2$, then $x_1 y_2 - x_2 y_1 = -1$ and $x_1/y_1 < u < x_2/y_2$, respectively. Therefore

$$
(x_1/y_1) - (x_2/y_2) < u - (x_2/y_2) < 0.
$$

Then $(x_1y_2 - x_2y_1)/y_1y_2 < (uy_2 - x_2)/y_2 < 0$. So $-1/y_2 < uy_2 - x_2 < 0$, a contradiction [11].

4. THE NUMBER OF SIDES OF CIRCUITS

Let (G, X) be a transitive permutation group and $G(\alpha, \beta)$ be a suborbital graph. By a directed circuit in $G(\alpha, \beta)$, we mean a sequence $v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_m \rightarrow v_1$, where $m \ge 3$; an anti-directed circuit will denote a configuration like the above with at least one arrow (not all) reversed. If $m = 2,3$ or 4 then the circuit, directed or not, is called a self-paired, a triangle or a rectangle, respectively.

Theorem 4.1. $F(\infty, u/p^2)$ has a self-paired edge if and only if $2u^2 \equiv -1 \pmod{p^2}$.

Proof: Without loss of generality, from transitivity, we can suppose that the self-paired edge be 2 $1 \quad u \quad 1$ 0 p^2 0 *u p* $\rightarrow \frac{u}{2} \rightarrow \frac{1}{2}$. Applying Theorem 3.1, the proof then follows.

Theorem 4.2. $F(\infty, u/p^2)$ contains no triangles.

Proof: Suppose contrary $F(\infty, u/p^2)$ contains a triangle. From transitivity and Theorem 3.1 the form of such a triangle $\frac{1}{0}$ \rightarrow $\frac{u}{x^2}$ \rightarrow $\frac{x}{2x^2}$ $1 \quad u \quad x \quad 1$ $0 \left(p^2 \right)^2 2p^2 \left(0 \right)$ *u x* $\rightarrow \frac{u}{p^2}$ $\rightarrow \frac{x}{2p^2}$ $\rightarrow \frac{1}{0}$. But, to be $\frac{x}{2p^2}$ $\rightarrow \frac{1}{0}$ $2p^2$ 0 *x p* $\rightarrow \frac{1}{2}$ gives a contradiction to Theorem 3.1(ii).

Theorem 4.3. The normalizer $\Gamma_1(2p^2)$ does not contain period 3.

Proof: Suppose the converse that $\Gamma_1(2p^2)$ does have a period 3. Then it has an elliptic element *T* of order 3. *T* must be of the form $\begin{pmatrix} 1 \\ 2p^2 \end{pmatrix}$ *a b* $\begin{pmatrix} a & b \\ 2p^2c & d \end{pmatrix}$, det $T = 1$ and $a + d = \pm 1$. Take $a + d = 1$. Then $a+d=1 \pmod{2p^2}$, and since $a+d=1$, then $a(1-a)=1 \pmod{2p^2}$, or $a^2 - a + 1 = 0 \pmod{2p^2}$, which is a contradiction.

Theorem 4.4. The subgraph $F(\infty, u/p^2)$ contains a rectangle if and only if $2u^2 \pm 2u + 1 \equiv 0 \pmod{p^2}$.

Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A4 Autumn 2010 **Autumn 2010**

Proof: Assume first that $F(\infty, u/p^2)$ has a rectangle $\frac{\kappa_0}{l} \to \frac{m_0}{l} \to \frac{\kappa_0}{l} \to \frac{\kappa_0}{l}$ $0 \rightarrow u_0$ $\qquad v_0$ $\qquad v_0$ $\frac{k_0}{\cdot}$ \rightarrow $\frac{m_0}{\cdot}$ \rightarrow $\frac{s}{\cdot}$ \rightarrow $\frac{x_0}{\cdot}$ \rightarrow $\frac{k_0}{\cdot}$ $\frac{\partial u_0}{\partial t_0}$ $\rightarrow \frac{m_0}{n_0}$ $\rightarrow \frac{r}{t}$ $\rightarrow \frac{n_0}{y_0}$ $\rightarrow \frac{n_0}{l_0}$. It can be easily shown that *H* permutes the vertices and edges of $F(\infty, u/p^2)$ transitively. Therefore we suppose that the above rectangle is transformed under *H* to the rectangle $\frac{1}{0} \rightarrow \frac{m}{2}$ $1 \qquad m \qquad x \qquad k \qquad 1$ $m \times k$ $\rightarrow \frac{m}{2} \rightarrow \frac{\pi}{2} \rightarrow \frac{\pi}{2} \rightarrow \frac{1}{2}$.

 $0 \t p^2$ y l 0 p^2 , y l Furthermore, without loss of generality, suppose $\frac{m}{n^2} < \frac{x^2}{x} < \frac{k}{l}$ p^2 y l $\lt \frac{x}{x}$. From the first edge and Theorem 3.1 we get $m \equiv u \pmod{p^2}$. The second edge gives $x \equiv -2u m \pmod{p^2}$ and $2ym - x = -1$; and that from the third edge we have $k = -ux \pmod{p^2}$ and $x - 2ky = -1$. If we combine these we obtain

$$
2u^{2} + 2ym + 1 \equiv 0 \left(\bmod p^{2} \right) \text{ or } 2u^{2} + 2uy + 1 \equiv 0 \left(\bmod p^{2} \right).
$$

Since $x = 2ym + 1 = 2ky - 1$, then $y(m - k) = -1$. This gives that $y=1$. Therefore $2u^2 + 2u + 1 \equiv 0 \pmod{p^2}$.

If $\frac{m}{2}$ $m x^k$ $\frac{m}{p^2} > \frac{\lambda}{y} > \frac{\lambda}{l}$ holds then we conclude that $2u^2 - 2u + 1 \equiv 0 \pmod{p^2}$, and furthermore, if $2u^2 - 2u + 1 \equiv 0 \pmod{p^2}$ then we get the rectangle

$$
\frac{1}{0} \to \frac{u}{p^2} \to \frac{2u-1}{2p^2} \to \frac{u-1}{p^2} \to \frac{1}{0}.
$$

Secondly suppose that $2u^2 \pm 2u + 1 \equiv 0 \mod p^2$. Then, using Theorem 3.1, we see that 2 22 1 $u = 2u \pm 1$ $u \pm 1$ 1 0 p^2 $2p^2$ p^2 0 *u* $2u \pm 1$ *u* p^2 2 p^2 p $\rightarrow \frac{u}{2}$ $\rightarrow \frac{2u \pm 1}{2}$ $\rightarrow \frac{u \pm 1}{2}$ $\rightarrow \frac{1}{2}$ is a rectangle. As an example, $\infty \rightarrow 3/25 \rightarrow 7/50 \rightarrow 4/25 \rightarrow \infty$ is a rectangle in $G(\infty, 3/25)$.

Corollary 4.5. For some *u* in \mathbb{Z} , $F(\infty, u/p^2)$ contains a rectangle if and only if the group *H* has a period 4.

Proof: Firstly suppose $F(\infty, u/p^2)$ contains a rectangle. Then, Theorem 4.4 shows that $2u^2 \pm 2u + 1 \equiv 0 \pmod{p^2}$. So we have the elliptic element 2 2 2 $2u \frac{2u^2 \pm 2u + 1}{2}$ $2p^2$ 2u ± 2 $u \frac{2u^2 \pm 2u}{2}$ *p* p^2 2u $\left(-2u \frac{2u^2 \pm 2u + 1}{u^2}\right)$ $\left(-2p^2\right)$ $2u\pm2$) of order 4 in *H*. Since the index of *H* is 2 in $\Gamma_1(2p^2)$, the elements of this form must be in *H*.

Conversely, suppose that *H* has a period for order 4, so *H* contains an elliptic element of order 4. Let this element be $\int_{2\pi^2}$ 2 $2p^2 -2a \pm 2$ *a b* $\begin{pmatrix} 2a & b \\ 2p^2 & -2a \pm 2 \end{pmatrix}$, det = 2. From this we get $p^2 | (2u^2 \pm 2u + 1)$. Therefore $F(\infty, u/p^2)$ contains a rectangle.

We predict from the above lemmas that the elliptic elements of $\Gamma_1(2p^2)$ correspond to the circuit in $F(\infty, u/p^2)$. To support this idea we have

Theorem 4.6. The set $H \setminus \Gamma_0(2p^2)$ has a period for order 2 if and only if there exists some $u \in \mathbb{Z}$, $(u, p) = 1$ such that $F(\infty, u/p^2)$ has a self-paired edge.

B. O. Guler / et al

Proof: First suppose that the set has such an elliptic element *T*. Then *T* must be of the form $\begin{pmatrix} 2a \\ 2a^2 \end{pmatrix}$ $2p^2$ -2 *a b* $\begin{pmatrix} 2a & -b \\ 2p^2 & -2a \end{pmatrix}$ det *T* = 2. Therefore we have $2a^2 + 1 \equiv 0 \pmod{p^2}$. So, Theorem 3.1 shows that $\frac{1}{0} \rightarrow \frac{a}{p^2} \rightarrow \frac{1}{0}$ $0 \t p^2 \t 0$ *a p* $\rightarrow \frac{u}{2} \rightarrow \frac{1}{2}$ is a selfpaired edge in $F(\infty, u/p^2)$.

Secondly, let $F(\infty, u/p^2)$ have a self-paired edge. Without loss of generality, from transitivity, we can suppose that the self-paired edge be $\frac{1}{0} \rightarrow \frac{u}{x^2}$ $1 \quad u \quad 1$ 0 p^2 0 *u p* $\rightarrow \frac{u}{2} \rightarrow \frac{1}{3}$. So we have, by Theorem 3.1, $2u^2 \equiv -1$ (mod p^2). This showes that there exists some $b \in \mathbb{Z}$ such that 2 $b = \frac{-(2u^2+1)}{n^2}$ *p* $=\frac{-(2u^2+1)}{2}$. Therefore 2 2 $2p^2$ -2 *a b* $\begin{pmatrix} 2a & -b \\ 2p^2 & -2a \end{pmatrix}$ is an elliptic element of order 2 in the set $H \setminus \Gamma_0(2p^2)$ $H \setminus \Gamma_0 (2 p^2)$.

Notice that $H \setminus \Gamma_0(2\cdot 5^2)$ has no period for order 2, and therefore $F\big(\infty, u/25\big)$ does not have a selfpaired edge.

Finally, as a finishing point, we give a number theoretical result as follows:

Theorem 4.7. The prime divisors *p* of $2u^2 + 2u + 1$, for any $u \in \mathbb{Z}$, are of the form $p \equiv 1 \pmod{4}$.

Proof: Let *u* be any integer and *p* a prime divisor of $2u^2 + 2u + 1$. Then, without any difficulty, it can be easily seen that the normalizer $\Gamma_1(2p)$, like $\Gamma_1(2p^2)$, has the elliptic element $\begin{pmatrix} -2u & \frac{2u^2+2u+1}{p} \end{pmatrix}$ $-2p$ $2u+2$ $u \quad \frac{2u^2+2u}{2u}$ *p p u* $\left(-2u \frac{2u^2+2u+1}{u}\right)$ $\begin{pmatrix} -2p & 2u+2 \end{pmatrix}$ of order 4. From Lemma 2.8 we get that $p \equiv 1 \pmod{4}$.

REFERENCES

- 1. Conway, J. H. & Norton, S. P. (1977). Montorous Moonshine. *Bull. London Math. Soc.11*, 308-339.
- 2. Akbas, M. & Baskan, T. (1996). Suborbital graphs for the normalizer of $\Gamma_0(N)$. *Tr. J. of Mathematics* 20, 379-387.
- *3.* Keskin, R. (2006). Suborbital graphs for the normalizer $\Gamma_0(m)$. *European J. Combin.* 27 (2), 193-206.
- 4. Akbas, M. (2001). On suborbital graphs for the modular group. *Bull. London Math. Soc. 33*(6), 647-652.
- *5.* Jones, G. A., Singerman, D. & Wicks, K. (1991). The Modular Group and Generalized Farey Graphs. *London Math. Soc. Lecture Note Series*, *160,* 316-338.
- 6. Keskin, R. (2001). On suborbital graphs for some Hecke groups. *Discrete Math. 234*(1-3), 53-64.
- 7. Akbas, M. & Singerman, D. (1992). The Signature of the normalizer of $\Gamma_0(N)$. *London Math. Soc. Lecture Note Series 165,* 77-86.
- 8. Machlaclan, C. (1981). Groups of units of zero ternary quadratic forms. *Proceeding of the Royal Society of Edinburg, 88 A*, 141-157.
- 9. Bigg, N. L. & White, A. T. (1979). Permutation groups and combinatorial structures. *London Mathematical Society Lecture Note Series 33, CUP*.
- 10. Sims, C. C. (1967). Graphs and Finite Permutation Groups. *Math. Z*., *95*, 76-86.
- 11. Rose, H. E. (1988). *A Course in Number Theory*. Oxford University Press.