
Iranian Journal of Science & Technology, Transaction A, Vol. 34, No. A4  
Printed in the Islamic Republic of Iran, 2010 
© Shiraz University 

 
 
 
 

SUBORBITAL GRAPHS FOR A SPECIAL SUBGROUP  
OF THE NORMALIZER OF  m

*

 
 
 

S. KADER1, B. O. GULER2** AND A. H. DEGER3 
 

1Department of Mathematics, Nigde University, Nigde, Turkey 
Email: skader@nigde.edu.tr  

2Department of Mathematics, Rize University, Rize, Turkey 
Email: bahadir.guler@rize.edu.tr 

3Department of Mathematics, Karadeniz Technical University, Trabzon, Turkey 
Email: ahikmetd@ktu.edu.tr  

 
Abstract – In this paper, we find the number of sides of circuits in suborbital graph for the normalizer of 

0 ( ) m in PSL(2,Թ), where m will be of the form 22p , p is a prime and  1 mod 4p  . In addition, we 
give a number theoretical result which says that the prime divisors p of 22 2 1u u  are of the form 

 1 mod 4p  . 
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1. INTRODUCTION 

 

Let PSL(2,Թ) denote the group of all linear fractional :
az b

T z
cz d





, where a, b, c, d are real and 

–  1ad bc  . The modular group Γ is the subgroup of PSL(2,Թ) such that a, b, c and d are integers. For 

any natural number m, 0 ( ) m is the subgroup of Γ with |m c . The elements of PSL(2,Թ) are represented 

as  
 

a b

c d

 
 
 

, a,b,c,d א Թ  and –  1.ad bc  

 
We will omit the symbol  and identify each matrix with its negative. 

1( ) m will denote the normalizer of 0 ( ) m in PSL(2,Թ). The elements of 1( ) m are of the form 
by [1] 
 

ae b h

cm h de

 
 
   

 

where all letters are integers, 2||  me
h

and h is the largest divisor of 24 for which 2 |  h m with the 

understanding that the determinant is e > 0, and that ||r s  means that |r s  and , 1
s

r
r

   
 

. 

Here, m will be 22p , where p is a prime such that  1 mod 4p  . All circuits in suborbital graph 

for the normalizer of 0 ( ) m in PSL(2,Թ) where m is a square-free positive integer was studied in [2, 3]. 
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Our main idea is that we investigate a case in which m is not square-free. Similar studies were done for the 

modular group and some Hecke groups [4-6]. In this case, h will be 1 and e is 1, 2, 2p or 2 2p .  

 

2. THE ACTION OF 2(2 )p  ON Է෡   
 

Any element of Է෡  can be given as a reduced fraction
x

y
, with ݔ, ݕ א Ժ and ( , ) 1x y  .   is represented as 

1 1

0 0


 . The action of 

a b

c d

 
 
 

on 
x

y
 is 

 
a b

c d

 
 
 

:
x ax by

y cx dy





. 

 

Therefore, the action of a matrix on 
x

y
 and on 

x

y




 is identical. If the determinant of the matrix 
a b

c d

 
 
 

 is 1 and ( , ) 1x y  , then ( , ) 1ax by cx dy   . A necessary and sufficient condition for 1( ) m  

to act transitively on Է෡  is given in [7]. 

 
Lemma 2.1. Let m be any integer and 31 2

32 .3 . ... r
rm p p   , the prime power decomposition of m. Then 

1( ) m is transitive on Է෡  if and only if 1 7  , 2 3   and 1i   for 3,...,i r . 
 
Corollary 2.2. The action of the normalizer 2

1(2 )p is not transitive on Է෡ . 
Since the action is not transitive on Է෡  we now find a maximal subset of Է෡  on which the normalizer 

acts transitively. First we start with 
 

Lemma 2.3. The orbits of the action of 2
0 (2 )p on Է෡  are 

1

1

 
 
 

;
1

2

 
 
 

;
1

p

 
 
 

,
2

p

 
 
 

,...,
1p

p

 
 
 

; 

1

2 p

 
 
 

,
3

2 p

 
 
 

,...,
2

2

p

p

 
 
 

,
2

2

p

p

 
 
 

,
4

2

p

p

 
 
 

,...,
2 1

2

p

p

 
 
 

; 2

1

p

 
 
 

; 2

1

2 p

 
 
 

, where  

ቀ
ݔ
ቁݕ ؔ ቄ௞

௟
א Է෡ቚ ሺ2݌ଶ, ݈ሻ ൌ ,ݕ ݔ ؠ ݇

௟

௬
݀݋݉ ቀݕ,

ଶ௣మ

௬
ቁቅ. 

 

Proof: It is well known that if 
k

s
Է෡  is given, then there exists some 2

0 (2 )T p such that 

1

1

kk
T

ss

  
   

   
 with 2

1 | 2s p . And furthermore, for 2| 2d p , 1 2a a

d d

   
   

   
 if and only if 

2

1 2

2
mod ,

p
a a d

d

 
  

 
. So the result follows. 

 
Lemma 2.4. The orbits of the action of 2

1(2 )p  are as follows. Let l  1,2,..., 1p  . Then  
(a) If l is odd then 
 

2

2 2

l p l l p l

p p p p

        
         

         
 

(b) If l is even then 
 

2 1

2 2

l p l p l p l

p p p p

          
         

       
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(c)                                                    
 

2 2

1 1 1 1

1 2 2p p

       
         

       
 

 
Proof: We prove only (a). The rest are similar. 

Let 
22

ae b
T

p c de

 
  
 

 be an arbitrary element in 2
1(2 )p . Then e must be 21,2, p or 22p . 

Case 1. Let e = 1. Then 2
0 (2 )T p . Therefore T fixes 

l

p

 
 
 

. 

Case 2. Let e = 2. Then 
2 2

2 2

2 2 2 2

a b l al bp

p c d p p cl dp

    
        

. 

Since 
2 2

2 2a b l al bp

p c d p p cl dp

    
        

 and 22 1ad p bc  , we conclude that 2(2 ,2 2 )al bp p cl dp  =1. 

Therefore,  
 

2

2 ( ) 2

al bp x

p pcl d p

   
      

, where (2 )( ) modx al bp pcl d p   . 

 

This shows that 
p

 
 
 


 and 

2 p

 
 
 


 must be in a single orbit of 2

1(2 )p . 

Case 3. Let 2e p . Then 
2

4 2 2

2 2
, 2 .

2

ap b
T adp p bc p

p c dp

 
   
    

2

22 3 22

l apl bap l bp
T

p pcl dpp cl dp

    
           

 
and as in Case 2, 2( , 2 ) 1apl b pcl dp   . Therefore, 
 

l
T

p

 
 
 

=
x

p

 
 
 

, where ( )(2 ) modx apl b cl dp p   or  2 modx bcl p . 

 
Since    2 1 mod , modbc p x p l p    . Therefore 

l

p

 
 
 

 and 
p l

p

 
 
 

 must be in a single 
orbit of 2

1(2 )p . 

Case 4. Let 22e p . Then we easily find that T sends 
l

p

 
 
 

 to 
2

2

p l

p

 
 
 

. So we consequently have 

the orbit 
2

2 2

l p l l p l

p p p p

        
         

       
. 

 
Corollary 2.6. The action of 2

1(2 )p  on Է෡ 2
2 2

1 1 1 1
(2 )

1 2 2
p

p p

       
          
       

 is transitive.  
 
Lemma 2.7. The stabilizer of a point in Է෡ 2(2 )p  is an infinite cyclic group. 
 
Proof: Since the action is transitive, stabilizers of any two points are conjugate. Therefore, we can only 
look at the stabilizer of ∞ in 2

1(2 )p . 
 

2 2

1 1 1

0 2 0 2 0

ae b ae
T

p c de p c

        
          

        
, 
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then 0c  . In this case 1e   and since 1ad  , 
1

0 1

b
T

 
  
 

. This shows that stabilizer  2
1(2 )p


  of 

∞ is 
1 1

0 1

 
 
 

. 

We know from [7] (see also [8]) that the orders of the elliptic elements of 2
1(2 )p  may be 2, 3, 4, or 

6. Therefore, we give the following: 

 

Lemma 2.8. Let p be a prime and  1 mod 4p  . Then the normalizer 2
1(2 )p contains an elliptic 

element E of order 4 and that E is of the form 
2

2

2 2(1 )

a b

p c a

 
  

, det E = 2.  

Let ( , )G X  be transitive permutation group, and suppose that R is an equivalence relation on X. R is 

said to be G-invariant if  ,x y R  implies     ,g x g y R  for all .g G The equivalence classes of 

a G-invariant relation are called blocks. We give the following from [9].  

 
Lemma 2.9. Suppose that ( , )G X  is a transitive permutation group, and H is a subgroup of G such that, 
for some   ,   xx X G H  . Then       ,  : ,  R g x gh x g G h H   is an equivalence relation. 
 
Lemma 2.10. Let ( , )G X  be a transitive permutation group, and  the G-invariant equivalence relation 
defined in Lemma 2.9; then    1 2g g  if and only if 1 2 .g g H Furthermore, the number of blocks 
is :G H . 

To apply the ideas, we take ቀ 2
1(2 )p , Է෡ሺ2݌ଶሻቁ, 2

0 2

2
(2 ),

2 2(1 )

a b
p

p c a

 
   

 and the stabilizer 

 2
1(2 )p


  of ∞ in 2

1(2 )p  instead of ( , )G X , H and xG . In this case the number of blocks is 2 and 

these blocks are  
 

2 2

1 1
[ ] :

2p p

   
     

   
 and 

1 1
[0] :

1 2

   
    
   

. 

 

3. SUBORBITAL GRAPHS OF 2(2 )p ON Է෡ 2(2 )p  
 

Let ( , )G X  be a transitive permutation group. Then G acts on X X  by  
 

        , , , ; ,  g g g g G X        . 
 

The orbits of this action are called suborbitals of the normalizer G. The orbit containing  ,  is 
denoted by  ,O   . From  ,O    we can form a suborbital graph  ,G   : its vertices are the 
elements of X, and there is a directed edge from   to   if    , ,O    . A directed edge from   to 
  is denoted by   . If    , ,O    , then we will say that there exists an edge    in 

 ,G   . 
If   , the corresponding suborbital graph  ,G   , called the trivial suborbital graph, is self-

paired: it consists of a loop based at each vertex x X . We will mainly be interested in the remaining 
non-trivial suborbital graphs. These ideas were first introduced by Sims [10]. 

We now investigate the suborbital graphs for the action of 2
1(2 )p  on Է෡ 2(2 )p . Since the action of 

2
1(2 )p  on Է෡ 2(2 )p  is transitive, 2

1(2 )p  permutes the blocks transitively; so the subgraphs are all 
isomorphic. Hence, it is sufficient to study with only one block. On the other hand, it is clear that each 
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non-trivial suborbital graph contains a pair  2,u p  for some 2u p Է෡ 2(2 )p . Therefore, we work on 
the following case: We denote by  2,F u p  the subgraph of  2,G u p  such that its vertices are in 
the block [ ] .  
 
Theorem 3.1. Let r s  and x y  be in the block [ ] . Then there is an edge r s x y  in  2,F u p  
if and only if  
(i) If 2 |p s but 22 p s , then    2 2 22 mod , 2 mod 2 ,x ur p y us p ry sx p        
(ii) If 22 |p s , then    2 2 2mod , mod ,x ur p y us p ry sx p       . 
 

Proof: Assume first that r s x y  is an edge in  2,F u p  and that 2 |p s  but 22 p s . Therefore, 

there exists some T in the normalizer 2
1(2 )p  such that T sends the pair  2,u p  to the pair 

 ,r s x y , that is ( ) /T r s   and  2T u p x y . Since 22 p s , T must be of the form 

2

2

2 2

a b

p c d

 
 
 

. 
2

( 1)2
( )

2 ( 1)

i

i

ra
T

p c s

 
    

 
 gives that ( 1)ir a   and 2( 1)is p c  , for i = 0,1. 

 

 
2

2
2 2 2 2

2 2 ( 1)

2 2 2 2 ( 1)

j

j

a b u au bp x
T u p

p c d p p cu dp y

      
               

 for j = 0,1. 

 

Since the matrix 
2

2a b

p c d

 
 
 

 has determinant 1 and 2( , ) 1u p  , then 2 2 2(2 , ) 1au bp p cu dp   . 

And therefore, 2 2 2(2 , 2 2 ) 1au bp p cu dp   . So  
 

2 2 2( 1) (2 ), ( 1) (2 2 )j jx au bp y p cu dp      . 
 

That is,    2 2( 1) 2 mod , ( 1) 2 mod 2i j i jx au p y su p     . Finally, since  
 

2

2

2 2

a b

p c d

 
 
 

2

1 ( 1) 2 ( 1)

0 ( 1) 2 ( 1)

i j

i j

u r x

p s y

   
        

, for i,j =0,1, 

 
we get 2ry sx p   . This proves (i). 

Secondly, let r s x y  be an edge in  2,F u p  and 2 2 |p s . In this case T must be of the form 

22

a b

p c d

 
 
 

, det T=1. Therefore, since 2

( 1)
( )

2 ( 1)

i

i

a r
T

p c s

  
         

 we get a r and 22s p c , by 

taking i to be 0. Likewise, since 
 

22

a b

p c d

 
 
 

2

u

p

 
 
 

=
2

2 2

( 1)

2 ( 1)

j

j

au bp x

p cu dp y

    
   

    
, 

 
we have  2modx ur p  and  2mody us p and that 2ry sx p  . In the case where i = 0 and j = 1, the 
minus sign holds. 

In the opposite direction we do calculations only for (i) and the plus sign. The other are likewise 

done. So suppose    2 2 22 mod , 2 mod 2 ,   x ur p y us p ry sx p , 2 |p s  and 22 p s . 

Therefore there exists b, d in Ժ such that 22x ur p b   and 22 2 y us p d . Since 2ry sx p  , we 
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get 2 1rd bs  , or 4 2rd bs  . Hence the element 
2

:
2 2

r b
T

s d

 
  
 

 is not only in the normalizer 

2
1(2 )p , but also H.  It is obvious that ( )

r
T

s

 
   

 
 and 

2

u x
T

p y

   
   

   
.  

 

Theorem 3.2. If we present edges of  2,F u p  as hyperbolic geodesics in the upper half-plane  , no 

edges of the subgraph  2,F u p  of 2
1(2 )p  cross in . 

 
Proof: Without loss of generality, since the action on Է෡ 2(2 )p is transitive, suppose that 

2 2 2
1 1 2 2,u p x y p x y p   and 2 2 2

1 1 2 2x y p u p x y p  , where all letters are positive 
integers. Since 2 2

1 1 2 2x y p x y p  and 2 2 2
1 1 2 2x y p u p x y p  , then 1 2 2 1 1x y x y    and 

1 1 2 2x y u x y  , respectively. Therefore  
 

     1 1 2 2 2 2 0x y x y u x y    . 

 
Then    1 2 2 1 1 2 2 2 2 0x y x y y y uy x y    . So 2 2 21 0y uy x    , a contradiction [11]. 
 

4. THE NUMBER OF SIDES OF CIRCUITS 
 

Let ( , )G X  be a transitive permutation group and  ,G    be a suborbital graph. By a directed circuit in 

 ,G   , we mean a sequence 1 2 1... mv v v v    , where 3m  ; an anti-directed circuit will 
denote a configuration like the above with at least one arrow (not all) reversed. If 2,3 or 4m   then the 
circuit, directed or not, is called a self-paired, a triangle or a rectangle, respectively. 
 
Theorem 4.1.  2,F u p  has a self-paired edge if and only if  2 22 1 modu p  . 
 

Proof: Without loss of generality, from transitivity, we can suppose that the self-paired edge be 

2

1 1

0 0

u

p
  . Applying Theorem 3.1, the proof then follows. 

 
Theorem 4.2.  2,F u p  contains no triangles. 
 

Proof: Suppose contrary  2,F u p  contains a triangle. From transitivity and Theorem 3.1 the form of 

such a triangle 
2 2

1 1

0 2 0

u x

p p
   . But, to be 

2

1

2 0

x

p
  gives a contradiction to Theorem 3.1(ii). 

 
Theorem 4.3. The normalizer 2

1(2 )p  does not contain period 3.  
 

Proof: Suppose the converse that  2
1(2 )p  does have a period 3. Then it has an elliptic element T of 

order 3. T must be of the form 
22

a b

p c d

 
 
 

, det 1T  and 1a d   . Take 1a d  . Then 

 21 mod 2a d p  , and since 1a d  , then    21 1 mod 2a a p  , or  

 2 21 0 mod 2a a p   , which is a contradiction. 
 
Theorem 4.4. The subgraph  2,F u p  contains a rectangle if and only if  

 2 22 2 1 0 modu u p   . 
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Proof: Assume first that  2, /F u p  has a rectangle 0 0 0 0

0 0 0 0

   
k m x ks

l n t y l
. It can be easily 

shown that H permutes the vertices and edges of  2,F u p  transitively. Therefore we suppose that the 

above rectangle is transformed under H to the rectangle 
2

1 1

0 0

m x k

p y l
    . 

Furthermore, without loss of generality, suppose 
2

m x k

p y l
  . From the first edge and Theorem 3.1 

we get  2modm u p . The second edge gives  22 modx um p   and 2 1ym x   ; and that from 

the third edge we have  2modk ux p   and 2 1x ky   . If we combine these we obtain  
 

 2 22 2 1 0 modu ym p    or  2 22 2 1 0 modu uy p   . 
 

Since 2 1 2 1x ym ky    , then ( ) 1y m k   . This gives that y=1. Therefore 

 2 22 2 1 0 modu u p   . 

If 
2

m x k

p y l
   holds then we conclude that  2 22 2 1 0 modu u p   , and furthermore, if 

 2 22 2 1 0 modu u p    then we get the rectangle 
 

2 2 2

1 2 1 1 1

0 2 0

u u u

p p p

 
    . 

 

Secondly suppose that 2 22 2 1 0 modu u p   . Then, using Theorem 3.1, we see that 

2 2 2

1 2 1 1 1

0 2 0

u u u

p p p

 
     is a rectangle. 

As an example, 3 25 7 50 4 25     is a rectangle in  ,3 25G  . 

 
Corollary 4.5. For some u in Ժ,  2,F u p  contains a rectangle if and only if the group H has a period 
4. 
 

Proof: Firstly suppose  2,F u p contains a rectangle. Then, Theorem 4.4 shows that 

 2 22 2 1 0 modu u p   . So we have the elliptic element 

2

2

2

2 2 1
2

2 2 2

u u
u

p

p u

  
 

 
   

 of order 4 in H. 

Since the index of H is 2 in 2
1(2 )p , the elements of this form must be in H. 

Conversely, suppose that H has a period for order 4, so H contains an elliptic element of order 4. Let 

this element be 
2

2

2 2 2

a b

p a

 
   

, det = 2. From this we get 2 2| (2 2 1)p u u  . Therefore  2,F u p  

contains a rectangle. 

We predict from the above lemmas that the elliptic elements of 2
1(2 )p  correspond to the circuit in 

 2,F u p . To support this idea we have 
 
Theorem 4.6. The set 2

0 (2 )H p  has a period for order 2 if and only if there exists some ݑ א Ժ,
( , ) 1u p   such that   2,F u p  has a self-paired edge. 
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Proof: First suppose that the set has such an elliptic element T. Then T must be of the form 
2

2

2 2

a b

p a

 
  

, 

det T = 2. Therefore we have  2 22 1 0 moda p  . So, Theorem 3.1 shows that 
2

1 1

0 0

a

p
   is a self-

paired edge in  2,F u p . 

Secondly, let  2,F u p  have a self-paired edge. Without loss of generality, from transitivity, we 

can suppose that the self-paired edge be 
2

1 1

0 0

u

p
  . So we have, by Theorem 3.1, 

 2 22 1 modu p  . This showes that there exists some ܾ א Ժ such that 
2

2

(2 1)u
b

p

 
 . Therefore 

2

2

2 2

a b

p a

 
  

 is an elliptic element of order 2 in the set 2
0 (2 )H p . 

Notice that 2
0 (2 5 )H    has no period for order 2, and therefore  , 25F u  does not have a self-

paired edge. 

Finally, as a finishing point, we give a number theoretical result as follows: 
 
Theorem 4.7. The prime divisors p of 22 2 1u u  , for any ݑ א Ժ, are of the form  1 mod 4p  . 
 

Proof: Let u be any integer and p a prime divisor of 22 2 1u u  . Then, without any difficulty, it can be 

easily seen that the normalizer 1(2 )p , like 2
1(2 )p , has the elliptic element 

22 2 1
2

2 2 2

u u
u

p

p u

  
 

 
   

 of 

order 4. From Lemma 2.8 we get that  1 mod 4p  . 
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