Iranian Journal of Science & Technology, Transaction A, Vol. 34, No. A4 Printed in the Islamic Republic of Iran, 2010 © Shiraz University

SUBORBITAL GRAPHS FOR A SPECIAL SUBGROUP OF THE NORMALIZER OF $\Gamma_0(m)^*$

S. KADER¹, B. O. GULER^{2**} AND A. H. DEGER³

¹Department of Mathematics, Nigde University, Nigde, Turkey
Email: skader@nigde.edu.tr

²Department of Mathematics, Rize University, Rize, Turkey
Email: bahadir.guler@rize.edu.tr

³Department of Mathematics, Karadeniz Technical University, Trabzon, Turkey
Email: ahikmetd@ktu.edu.tr

Abstract – In this paper, we find the number of sides of circuits in suborbital graph for the normalizer of $\Gamma_0(m)$ in PSL(2, \mathbb{R}), where m will be of the form $2p^2$, p is a prime and $p \equiv 1 \pmod{4}$. In addition, we give a number theoretical result which says that the prime divisors p of $2u^2 \pm 2u + 1$ are of the form $p \equiv 1 \pmod{4}$.

Keywords - Normalizer, imprimitive action, suborbital graph, circuits

1. INTRODUCTION

Let $PSL(2,\mathbb{R})$ denote the group of all linear fractional $T: z \to \frac{az+b}{cz+d}$, where a, b, c, d are real and ad-bc=1. The modular group Γ is the subgroup of $PSL(2,\mathbb{R})$ such that a, b, c and d are integers. For any natural number m, $\Gamma_0(m)$ is the subgroup of Γ with $m \mid c$. The elements of $PSL(2,\mathbb{R})$ are represented as

$$\pm \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, $a,b,c,d \in \mathbb{R}$ and $ad -bc = 1$.

We will omit the symbol \pm and identify each matrix with its negative.

 $\Gamma_1(m)$ will denote the normalizer of $\Gamma_0(m)$ in PSL(2, \mathbb{R}). The elements of $\Gamma_1(m)$ are of the form by [1]

$$\begin{pmatrix} ae & b/h \\ cm/h & de \end{pmatrix}$$

where all letters are integers, $e \parallel \frac{m}{h^2}$ and h is the largest divisor of 24 for which $h^2 \mid m$ with the understanding that the determinant is e > 0, and that $r \mid s$ means that $r \mid s$ and $\left(r, \frac{s}{r}\right) = 1$.

Here, m will be $2p^2$, where p is a prime such that $p \equiv 1 \pmod{4}$. All circuits in suborbital graph for the normalizer of $\Gamma_0(m)$ in PSL(2, \mathbb{R}) where m is a square-free positive integer was studied in [2, 3].

^{*}Received by the editor February 21, 2009 and in final revised form December 18, 2010

^{**}Corresponding author

Our main idea is that we investigate a case in which m is not square-free. Similar studies were done for the modular group and some Hecke groups [4-6]. In this case, h will be 1 and e is 1, 2, p^2 or 2 p^2 .

2. THE ACTION OF $\Gamma_1(2p^2)$ ON $\widehat{\mathbb{Q}}$

Any element of $\widehat{\mathbb{Q}}$ can be given as a reduced fraction $\frac{x}{y}$, with $x,y \in \mathbb{Z}$ and (x,y) = 1. ∞ is represented as $\frac{1}{0} = \frac{-1}{0}$. The action of $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ on $\frac{x}{y}$ is

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} : \frac{x}{y} \to \frac{ax + by}{cx + dy}.$$

Therefore, the action of a matrix on $\frac{x}{y}$ and on $\frac{-x}{-y}$ is identical. If the determinant of the matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is 1 and (x, y) = 1, then (ax + by, cx + dy) = 1. A necessary and sufficient condition for $\Gamma_1(m)$ to act transitively on \mathbb{Q} is given in [7].

Lemma 2.1. Let m be any integer and $m = 2^{\alpha_1} . 3^{\alpha_2} . p_3^{\alpha_3} ... p_r^{\alpha_r}$, the prime power decomposition of m. Then $\Gamma_1(m)$ is transitive on $\widehat{\mathbb{Q}}$ if and only if $\alpha_1 \le 7$, $\alpha_2 \le 3$ and $\alpha_i \le 1$ for i = 3, ..., r.

Corollary 2.2. The action of the normalizer $\Gamma_1(2p^2)$ is not transitive on $\widehat{\mathbb{Q}}$

Since the action is not transitive on $\widehat{\mathbb{Q}}$ we now find a maximal subset of $\widehat{\mathbb{Q}}$ on which the normalizer acts transitively. First we start with

Lemma 2.3. The orbits of the action of
$$\Gamma_0(2p^2)$$
 on $\widehat{\mathbb{Q}}$ are $\binom{1}{1}$; $\binom{1}{2}$; $\binom{1}{p}$, $\binom{2}{p}$,..., $\binom{p-1}{p}$; $\binom{1}{2p}$, $\binom{3}{2p}$,..., $\binom{p-2}{2p}$, $\binom{p+2}{2p}$, $\binom{p+4}{2p}$,..., $\binom{2p-1}{2p}$; $\binom{1}{p^2}$; $\binom{1}{2p^2}$, where $\binom{x}{y} \coloneqq \left\{\frac{k}{l} \in \widehat{\mathbb{Q}} \middle| (2p^2, l) = y, x \equiv k \frac{l}{y} \mod \left(y, \frac{2p^2}{y}\right)\right\}$.

Proof: It is well known that if $\frac{k}{s} \in \mathbb{Q}$ is given, then there exists some $T \in \Gamma_0(2p^2)$ such that $T \binom{k}{s} = \binom{k_1}{s_1}$ with $s_1 \mid 2p^2$. And furthermore, for $d \mid 2p^2$, $\binom{a_1}{d} = \binom{a_2}{d}$ if and only if $a_1 \equiv a_2 \mod \left(d, \frac{2p^2}{d}\right)$. So the result follows.

Lemma 2.4. The orbits of the action of $\Gamma_1(2p^2)$ are as follows. Let $l \in \{1, 2, ..., p-1\}$. Then (a) If l is odd then

$$\binom{l}{p} \cup \binom{p-l}{p} \cup \binom{l}{2p} \cup \binom{2p-l}{2p}$$

(b) If *l* is even then

$$\binom{l}{p} \cup \binom{p-l}{p} \cup \binom{p+l}{2p} \cup \binom{2p-l+1}{2p}$$

Proof: We prove only (a). The rest are simil

Let $T = \begin{pmatrix} ae & b \\ 2p^2c & de \end{pmatrix}$ be an arbitrary element in $\Gamma_1(2p^2)$. Then e must be $1, 2, p^2$ or $2p^2$.

Case 1. Let e = 1. Then $T \in \Gamma_0(2p^2)$. Therefore T fixes $\binom{l}{n}$.

Case 2. Let e = 2. Then $\begin{pmatrix} 2a & b \\ 2p^2c & 2d \end{pmatrix} \begin{pmatrix} l \\ p \end{pmatrix} = \begin{pmatrix} 2al + bp \\ 2p^2cl + 2dp \end{pmatrix}$.

Since $\begin{pmatrix} 2a & b \\ n^2c & d \end{pmatrix} \begin{pmatrix} l \\ p \end{pmatrix} = \begin{pmatrix} 2al+bp \\ p^2cl+dp \end{pmatrix}$ and $2ad-p^2bc=1$, we conclude that $(2al+bp,2p^2cl+2dp)=1$.

Therefore,

This shows that $\binom{\ell}{p}$ and $\binom{\ell}{2p}$ must be in a single orbit of $\Gamma_1(2p^2)$. Case 3. Let $e=p^2$. Then $T=\begin{pmatrix} ap^2 & b \\ 2p^2c & dp^2 \end{pmatrix}$, $adp^4-2p^2bc=p^2$.

$$T\binom{l}{p} = \binom{ap^2l + bp}{2p^2cl + dp^3} = \binom{apl + b}{2pcl + dp^2}$$

and as in Case 2, $(apl+b, 2pcl+dp^2) = 1$. Therefore,

$$T \binom{l}{p} = \binom{x}{p}$$
, where $x \equiv (apl + b)(2cl + dp) \mod p$ or $x \equiv 2bcl \pmod p$.

Since $2bc \equiv -1 \pmod{p}$, $x \equiv p - l \pmod{p}$. Therefore $\binom{l}{p}$ and $\binom{p-l}{p}$ must be in a single orbit of $\Gamma_1(2p^2)$.

Case 4. Let $e = 2p^2$. Then we easily find that T sends $\binom{l}{p}$ to $\binom{2p-l}{2p}$. So we consequently have the orbit $\binom{l}{p} \cup \binom{p-l}{p} \cup \binom{l}{2p} \cup \binom{2p-l}{2p}$.

Corollary 2.6. The action of $\Gamma_1(2p^2)$ on $\widehat{\mathbb{Q}}(2p^2) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \cup \begin{pmatrix} 1 \\ 2 \end{pmatrix} \cup \begin{pmatrix} 1 \\ n^2 \end{pmatrix} \cup \begin{pmatrix} 1 \\ 2n^2 \end{pmatrix}$ is transitive.

Lemma 2.7. The stabilizer of a point in $\widehat{\mathbb{Q}}(2p^2)$ is an infinite cyclic group.

Proof: Since the action is transitive, stabilizers of any two points are conjugate. Therefore, we can only look at the stabilizer of ∞ in $\Gamma_1(2p^2)$.

$$T\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} ae & b \\ 2p^2c & de \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} ae \\ 2p^2c \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix},$$

then c=0. In this case e=1 and since ad=1, $T=\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$. This shows that stabilizer $\left(\Gamma_1(2p^2)\right)_{\infty}$ of ∞ is $\left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right)$.

We know from [7] (see also [8]) that the orders of the elliptic elements of $\Gamma_1(2p^2)$ may be 2, 3, 4, or 6. Therefore, we give the following:

Lemma 2.8. Let p be a prime and $p \equiv 1 \pmod{4}$. Then the normalizer $\Gamma_1(2p^2)$ contains an elliptic element E of order 4 and that E is of the form $\begin{pmatrix} 2a & b \\ 2p^2c & 2(1-a) \end{pmatrix}$, det E=2. Let (G,X) be transitive permutation group, and suppose that R is an equivalence relation on X. R is

Let (G, X) be transitive permutation group, and suppose that R is an equivalence relation on X. R is said to be G-invariant if $(x, y) \in R$ implies $(g(x), g(y)) \in R$ for all $g \in G$. The equivalence classes of a G-invariant relation are called *blocks*. We give the following from [9].

Lemma 2.9. Suppose that (G,X) is a transitive permutation group, and H is a subgroup of G such that, for some $x \in X$, $G_x \subset H$. Then $R = \left\{ \left(g\left(x\right), gh\left(x\right) \right) : g \in G, h \in H \right\}$ is an equivalence relation.

Lemma 2.10. Let (G, X) be a transitive permutation group, and \approx the *G*-invariant equivalence relation defined in Lemma 2.9; then $g_1(\alpha) = g_2(\alpha)$ if and only if $g_1 \in g_2H$. Furthermore, the number of blocks is |G:H|.

To apply the ideas, we take $\left(\Gamma_1(2p^2), \mathbb{Q}(2p^2)\right)$, $\left\langle\Gamma_0(2p^2), \begin{pmatrix}2a & b\\ 2p^2c & 2(1-a)\end{pmatrix}\right\rangle$ and the stabilizer $\left(\Gamma_1(2p^2)\right)_{\infty}$ of ∞ in $\Gamma_1(2p^2)$ instead of (G,X), H and G_x . In this case the number of blocks is 2 and these blocks are

$$[\infty] := \begin{pmatrix} 1 \\ p^2 \end{pmatrix} \cup \begin{pmatrix} 1 \\ 2p^2 \end{pmatrix}$$
 and $[0] := \begin{pmatrix} 1 \\ 1 \end{pmatrix} \cup \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

3. SUBORBITAL GRAPHS OF $\Gamma_1(2p^2)$ ON $\widehat{\mathbb{Q}}(2p^2)$

Let (G, X) be a transitive permutation group. Then G acts on $X \times X$ by

$$g(\alpha,\beta) = (g(\alpha),g(\beta)), (g \in G; \alpha,\beta \in X).$$

The orbits of this action are called suborbitals of the normalizer G. The orbit containing (α, β) is denoted by $O(\alpha, \beta)$. From $O(\alpha, \beta)$ we can form a suborbital graph $G(\alpha, \beta)$: its vertices are the elements of X, and there is a directed edge from γ to δ if $(\gamma, \delta) \in O(\alpha, \beta)$. A directed edge from γ to δ is denoted by $\gamma \to \delta$. If $(\gamma, \delta) \in O(\alpha, \beta)$, then we will say that there exists an edge $\gamma \to \delta$ in $G(\alpha, \beta)$.

If $\alpha = \beta$, the corresponding suborbital graph $G(\alpha, \alpha)$, called the trivial suborbital graph, is self-paired: it consists of a loop based at each vertex $x \in X$. We will mainly be interested in the remaining non-trivial suborbital graphs. These ideas were first introduced by Sims [10].

We now investigate the suborbital graphs for the action of $\Gamma_1(2p^2)$ on $\widehat{\mathbb{Q}}(2p^2)$. Since the action of $\Gamma_1(2p^2)$ on $\widehat{\mathbb{Q}}(2p^2)$ is transitive, $\Gamma_1(2p^2)$ permutes the blocks transitively; so the subgraphs are all isomorphic. Hence, it is sufficient to study with only one block. On the other hand, it is clear that each *Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A4*Autumn 2010

www.SID.ir

non-trivial suborbital graph contains a pair $(\infty, u/p^2)$ for some $u/p^2 \in \mathbb{Q}(2p^2)$. Therefore, we work on the following case: We denote by $F(\infty, u/p^2)$ the subgraph of $G(\infty, u/p^2)$ such that its vertices are in the block $[\infty]$.

Theorem 3.1. Let r/s and x/y be in the block $[\infty]$. Then there is an edge $r/s \to x/y$ in $F(\infty, u/p^2)$ if and only if

(i) If
$$p^2 \mid s$$
 but $2p^2 \nmid s$, then $x \equiv \pm 2ur \pmod{p^2}$, $y \equiv \pm 2us \pmod{2p^2}$, $ry - sx = \pm p^2$
(ii) If $2p^2 \mid s$, then $x \equiv \pm ur \pmod{p^2}$, $y \equiv \pm us \pmod{p^2}$, $ry - sx = \pm p^2$.

Proof: Assume first that $r/s \to x/y$ is an edge in $F\left(\infty, u/p^2\right)$ and that $p^2 \mid s$ but $2p^2 \nmid s$. Therefore, there exists some T in the normalizer $\Gamma_1(2p^2)$ such that T sends the pair $\left(\infty, u/p^2\right)$ to the pair $\left(r/s, x/y\right)$, that is $T(\infty) = r/s$ and $T\left(u/p^2\right) = x/y$. Since $2p^2 \nmid s$, T must be of the form $\left(2a \quad b \atop 2p^2c \quad 2d\right)$. $T(\infty) = \frac{2a}{2p^2c} = \begin{pmatrix} (-1)^i r \\ (-1)^i s \end{pmatrix}$ gives that $r = (-1)^i a$ and $s = (-1)^i p^2c$, for i = 0, 1. $T\left(u/p^2\right) = \begin{pmatrix} 2a \quad b \\ 2p^2c \quad 2d \end{pmatrix} \begin{pmatrix} u \\ p^2 \end{pmatrix} = \begin{pmatrix} 2au + bp^2 \\ 2p^2cu + 2dp^2 \end{pmatrix} = \begin{pmatrix} (-1)^j x \\ (-1)^j y \end{pmatrix}$ for j = 0, 1.

Since the matrix $\begin{pmatrix} 2a & b \\ p^2c & d \end{pmatrix}$ has determinant 1 and $(u, p^2) = 1$, then $(2au + bp^2, p^2cu + dp^2) = 1$. And therefore, $(2au + bp^2, 2p^2cu + 2dp^2) = 1$. So

$$x = (-1)^{j}(2au + bp^{2}), y = (-1)^{j}(2p^{2}cu + 2dp^{2}).$$

That is, $x \equiv (-1)^{i+j} 2au \pmod{p^2}$, $y \equiv (-1)^{i+j} 2su \pmod{2p^2}$. Finally, since

$$\begin{pmatrix} 2a & b \\ 2p^2c & 2d \end{pmatrix} \begin{pmatrix} 1 & u \\ 0 & p^2 \end{pmatrix} = \begin{pmatrix} (-1)^i 2r & (-1)^j x \\ (-1)^i 2s & (-1)^j y \end{pmatrix}, \text{ for } i,j = 0,1,$$

we get $ry - sx = \pm p^2$. This proves (i).

Secondly, let $r/s \to x/y$ be an edge in $F\left(\infty, u/p^2\right)$ and $2p^2 \mid s$. In this case T must be of the form $\begin{pmatrix} a & b \\ 2p^2c & d \end{pmatrix}$, det T=1. Therefore, since $T(\infty) = \begin{pmatrix} a \\ 2p^2c \end{pmatrix} = \begin{pmatrix} (-1)^i r \\ (-1)^i s \end{pmatrix}$ we get a=r and $s=2p^2c$, by taking i to be 0. Likewise, since

$$\begin{pmatrix} a & b \\ 2p^2c & d \end{pmatrix} \begin{pmatrix} u \\ p^2 \end{pmatrix} = \begin{pmatrix} au + bp^2 \\ 2p^2cu + dp^2 \end{pmatrix} = \begin{pmatrix} (-1)^j x \\ (-1)^j y \end{pmatrix},$$

we have $x \equiv ur \pmod{p^2}$ and $y \equiv us \pmod{p^2}$ and that $ry - sx = p^2$. In the case where i = 0 and j = 1, the minus sign holds.

In the opposite direction we do calculations only for (i) and the plus sign. The other are likewise

done. So suppose
$$x \equiv 2ur \pmod{p^2}$$
, $y \equiv 2us \pmod{2p^2}$, $ry - sx = p^2$, $p^2 \mid s$ and $2p^2 \nmid s$.

Therefore there exists b, d in \mathbb{Z} such that $x = 2ur + p^2b$ and $y = 2us + 2p^2d$. Since $ry - sx = p^2$, we

get 2rd - bs = 1, or 4rd - bs = 2. Hence the element $T := \begin{pmatrix} 2r & b \\ 2s & 2d \end{pmatrix}$ is not only in the normalizer $\Gamma_1(2p^2)$, but also H. It is obvious that $T(\infty) = \begin{pmatrix} r \\ s \end{pmatrix}$ and $T\begin{pmatrix} u \\ p^2 \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$.

Theorem 3.2. If we present edges of $F\left(\infty,u/p^2\right)$ as hyperbolic geodesics in the upper half-plane $\mathbb H$, no edges of the subgraph $F\left(\infty,u/p^2\right)$ of $\Gamma_1(2p^2)$ cross in $\mathbb H$.

Proof: Without loss of generality, since the action on $\widehat{\mathbb{Q}}(2p^2)$ is transitive, suppose that $\infty \to u/p^2$, $x_1/y_1p^2 \to x_2/y_2p^2$ and $x_1/y_1p^2 < u/p^2 < x_2/y_2p^2$, where all letters are positive integers. Since $x_1/y_1p^2 \to x_2/y_2p^2$ and $x_1/y_1p^2 < u/p^2 < x_2/y_2p^2$, then $x_1y_2 - x_2y_1 = -1$ and $x_1/y_1 < u < x_2/y_2$, respectively. Therefore

$$(x_1/y_1)-(x_2/y_2)< u-(x_2/y_2)<0$$

Then $(x_1y_2 - x_2y_1)/y_1y_2 < (uy_2 - x_2)/y_2 < 0$. So $-1/y_2 < uy_2 - x_2 < 0$, a contradiction [11].

4. THE NUMBER OF SIDES OF CIRCUITS

Let (G, X) be a transitive permutation group and $G(\alpha, \beta)$ be a suborbital graph. By a directed circuit in $G(\alpha, \beta)$, we mean a sequence $v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_m \rightarrow v_1$, where $m \ge 3$; an anti-directed circuit will denote a configuration like the above with at least one arrow (not all) reversed. If m = 2,3 or 4 then the circuit, directed or not, is called a self-paired, a triangle or a rectangle, respectively.

Theorem 4.1. $F(\infty, u/p^2)$ has a self-paired edge if and only if $2u^2 \equiv -1 \pmod{p^2}$.

Proof: Without loss of generality, from transitivity, we can suppose that the self-paired edge be $\frac{1}{0} \rightarrow \frac{u}{p^2} \rightarrow \frac{1}{0}$. Applying Theorem 3.1, the proof then follows.

Theorem 4.2. $F(\infty, u/p^2)$ contains no triangles.

Proof: Suppose contrary $F\left(\infty, u/p^2\right)$ contains a triangle. From transitivity and Theorem 3.1 the form of such a triangle $\frac{1}{0} \to \frac{u}{p^2} \to \frac{x}{2p^2} \to \frac{1}{0}$. But, to be $\frac{x}{2p^2} \to \frac{1}{0}$ gives a contradiction to Theorem 3.1(ii).

Theorem 4.3. The normalizer $\Gamma_1(2p^2)$ does not contain period 3.

Proof: Suppose the converse that $\Gamma_1(2p^2)$ does have a period 3. Then it has an elliptic element T of order 3. T must be of the form $\begin{pmatrix} a & b \\ 2p^2c & d \end{pmatrix}$, $\det T = 1$ and $a+d=\pm 1$. Take a+d=1. Then $a+d=1\pmod{2p^2}$, and since a+d=1, then $a(1-a)=1\pmod{2p^2}$, or $a^2-a+1=0\pmod{2p^2}$, which is a contradiction.

Theorem 4.4. The subgraph $F(\infty, u/p^2)$ contains a rectangle if and only if $2u^2 \pm 2u + 1 \equiv 0 \pmod{p^2}$.

Proof: Assume first that $F(\infty, u/p^2)$ has a rectangle $\frac{k_0}{l_0} \to \frac{m_0}{n_0} \to \frac{s}{t} \to \frac{x_0}{y_0} \to \frac{k_0}{l_0}$. It can be easily shown that H permutes the vertices and edges of $F(\infty, u/p^2)$ transitively. Therefore we suppose that the above rectangle is transformed under H to the rectangle $\frac{1}{0} \to \frac{m}{p^2} \to \frac{x}{y} \to \frac{k}{l} \to \frac{1}{0}$.

above rectangle is transformed under H to the rectangle $\frac{1}{0} \rightarrow \frac{m}{p^2} \rightarrow \frac{x}{y} \rightarrow \frac{k}{l} \rightarrow \frac{1}{0}$. Furthermore, without loss of generality, suppose $\frac{m}{p^2} < \frac{x}{y} < \frac{k}{l}$. From the first edge and Theorem 3.1 we get $m \equiv u \pmod{p^2}$. The second edge gives $x \equiv -2um \pmod{p^2}$ and 2ym - x = -1; and that from the third edge we have $k \equiv -ux \pmod{p^2}$ and x - 2ky = -1. If we combine these we obtain

$$2u^2 + 2ym + 1 \equiv 0 \pmod{p^2}$$
 or $2u^2 + 2uy + 1 \equiv 0 \pmod{p^2}$.

Since x = 2ym + 1 = 2ky - 1, then y(m-k) = -1. This gives that y=1. Therefore $2u^2 + 2u + 1 \equiv 0 \pmod{p^2}$.

If $\frac{m}{p^2} > \frac{x}{y} > \frac{k}{l}$ holds then we conclude that $2u^2 - 2u + 1 \equiv 0 \pmod{p^2}$, and furthermore, if $2u^2 - 2u + 1 \equiv 0 \pmod{p^2}$ then we get the rectangle

$$\frac{1}{0} \rightarrow \frac{u}{p^2} \rightarrow \frac{2u-1}{2p^2} \rightarrow \frac{u-1}{p^2} \rightarrow \frac{1}{0}.$$

Secondly suppose that $2u^2 \pm 2u + 1 \equiv 0 \mod p^2$. Then, using Theorem 3.1, we see that $\frac{1}{0} \to \frac{u}{p^2} \to \frac{2u \pm 1}{2p^2} \to \frac{u \pm 1}{p^2} \to \frac{1}{0}$ is a rectangle. As an example, $\infty \to 3/25 \to 7/50 \to 4/25 \to \infty$ is a rectangle in $G(\infty, 3/25)$.

Corollary 4.5. For some u in \mathbb{Z} , $F(\infty, u/p^2)$ contains a rectangle if and only if the group H has a period 4.

Proof: Firstly suppose $F\left(\infty,u/p^2\right)$ contains a rectangle. Then, Theorem 4.4 shows that $2u^2 \pm 2u + 1 \equiv 0 \pmod{p^2}$. So we have the elliptic element $\begin{pmatrix} -2u & \frac{2u^2 \pm 2u + 1}{p^2} \\ -2p^2 & 2u \pm 2 \end{pmatrix}$ of order 4 in H. Since the index of H is 2 in $\Gamma_1(2p^2)$, the elements of this form must be in H.

Conversely, suppose that H has a period for order 4, so H contains an elliptic element of order 4. Let this element be $\begin{pmatrix} 2a & b \\ 2p^2 & -2a\pm 2 \end{pmatrix}$, det = 2. From this we get $p^2 \mid (2u^2\pm 2u+1)$. Therefore $F\left(\infty,u/p^2\right)$ contains a rectangle.

We predict from the above lemmas that the elliptic elements of $\Gamma_1(2p^2)$ correspond to the circuit in $F(\infty, u/p^2)$. To support this idea we have

Theorem 4.6. The set $H \setminus \Gamma_0(2p^2)$ has a period for order 2 if and only if there exists some $u \in \mathbb{Z}$, (u, p) = 1 such that $F(\infty, u/p^2)$ has a self-paired edge.

Proof: First suppose that the set has such an elliptic element T. Then T must be of the form $\begin{pmatrix} 2a & -b \\ 2p^2 & -2a \end{pmatrix}$, det T = 2. Therefore we have $2a^2 + 1 \equiv 0 \pmod{p^2}$. So, Theorem 3.1 shows that $\frac{1}{0} \to \frac{a}{p^2} \to \frac{1}{0}$ is a self-paired edge in $F(\infty, u/p^2)$.

Secondly, let $F\left(\infty,u/p^2\right)$ have a self-paired edge. Without loss of generality, from transitivity, we can suppose that the self-paired edge be $\frac{1}{0} \to \frac{u}{p^2} \to \frac{1}{0}$. So we have, by Theorem 3.1, $2u^2 \equiv -1 \pmod{p^2}$. This showes that there exists some $b \in \mathbb{Z}$ such that $b = \frac{-(2u^2+1)}{p^2}$. Therefore $\begin{pmatrix} 2a & -b \\ 2p^2 & -2a \end{pmatrix}$ is an elliptic element of order 2 in the set $H \setminus \Gamma_0(2p^2)$.

Notice that $H \setminus \Gamma_0(2 \cdot 5^2)$ has no period for order 2, and therefore $F(\infty, u/25)$ does not have a self-paired edge.

Finally, as a finishing point, we give a number theoretical result as follows:

Theorem 4.7. The prime divisors p of $2u^2 + 2u + 1$, for any $u \in \mathbb{Z}$, are of the form $p \equiv 1 \pmod{4}$.

Proof: Let u be any integer and p a prime divisor of $2u^2 + 2u + 1$. Then, without any difficulty, it can be easily seen that the normalizer $\Gamma_1(2p)$, like $\Gamma_1(2p^2)$, has the elliptic element $\begin{pmatrix} -2u & \frac{2u^2 + 2u + 1}{p} \\ -2p & 2u + 2 \end{pmatrix}$ of order 4. From Lemma 2.8 we get that $p \equiv 1 \pmod{4}$.

REFERENCES

- 1. Conway, J. H. & Norton, S. P. (1977). Montorous Moonshine. Bull. London Math. Soc. 11, 308-339.
- 2. Akbas, M. & Baskan, T. (1996). Suborbital graphs for the normalizer of $\Gamma_0(N)$. Tr. J. of Mathematics 20, 379-387.
- 3. Keskin, R. (2006). Suborbital graphs for the normalizer $\Gamma_0(m)$. European J. Combin. 27 (2), 193-206.
- 4. Akbas, M. (2001). On suborbital graphs for the modular group. Bull. London Math. Soc. 33(6), 647-652.
- Jones, G. A., Singerman, D. & Wicks, K. (1991). The Modular Group and Generalized Farey Graphs. *London Math. Soc. Lecture Note Series*, 160, 316-338.
- 6. Keskin, R. (2001). On suborbital graphs for some Hecke groups. Discrete Math. 234(1-3), 53-64.
- 7. Akbas, M. & Singerman, D. (1992). The Signature of the normalizer of $\Gamma_0(N)$. London Math. Soc. Lecture Note Series 165, 77-86.
- 8. Machlaclan, C. (1981). Groups of units of zero ternary quadratic forms. *Proceeding of the Royal Society of Edinburg*, 88 A, 141-157.
- 9. Bigg, N. L. & White, A. T. (1979). Permutation groups and combinatorial structures. *London Mathematical Society Lecture Note Series 33, CUP*.
- 10. Sims, C. C. (1967). Graphs and Finite Permutation Groups. Math. Z., 95, 76-86.
- 11. Rose, H. E. (1988). A Course in Number Theory. Oxford University Press.