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Abstract

Purpose: In this paper, we shall investigate the numerical solution of two-dimensional Fredholm integral equations
(2D-FIEs).

Methods: In this work, we apply two-dimensional Haar wavelets, to solve linear two dimensional Fredholm integral
equations (2D-FIEs). Using 2D Haar wavelets and their properties, 2D-FIEs of the second kind reduce to a system of
algebraic equations.

Results: The numerical examples illustrate the efficiency and accuracy of the method.

Conclusions: In comparison with other bases (for example, polynomial bases), one of the advantages of this method
is, although the involved matrices have a large dimension, they contain a large percentage of zero entries, which
keeps computational effort within reasonable limits.
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Background
The integral equations provide an important tool for
modeling a numerous phenomena and processes, and
for solving boundary value problems for both ordinary
and partial differential equations. Their historical devel-
opment is closely related to the solution of boundary
value problems in potential theory. In the last decades,
there has been much interest in numerical solutions of
integral equations. The Nystrom and collocation meth-
ods are probably the two most important approaches for
the numerical solution of these integral equations [1,2].
While several numerical methods are known for one-
dimensional integral equations, fewermethods are known
for two-dimensional integral equations [3-6].
Recently, many different basic functions have been

used to estimate the solution of integral equations, such
as orthogonal functions and wavelets. Haar wavelets
are the simplest orthogonal wavelet with compact sup-
port, and they have been used in different numerical
approximation problems.
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In this work, we apply two-dimensional Haar wavelets,
constructed on D = [ 0, 1)×[ 0, 1), to solve linear two-
dimensional Fredholm integral equations (2D-FIEs) of
the form:

u(x, y) = f (x, y) +
∫ 1

0

∫ 1

0
K(x, y, s, t)

× u(s, t) dsdt, (x, y) ∈ D
(1)

where u(x, y) is an unknown function to be found and
the functions f (x, y) and K(x, y, s, t) are given continuous
functions defined onD andD2, respectively. The existence
and uniqueness results for Equation 1 can be found in the
classical theory of Fredholm integral equations.

Results and discussion
Two-dimensional Haar wavelets
We usually call the Haar wavelets containing one variable
as one-dimensional, and those containing two variables
as two-dimensional. One-dimensional Haar wavelets have
been widely used for solving different problems [6-8].
Complete details for one-dimensional Haar wavelets is
found in [9,10]. These discussions can also be extended to
the two-dimensional one.
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Definitions and properties

Definition 2.1. The orthogonal basis {hn(t)} of one-
dimensional Haar wavelets for the Hilbert space L2[ 0, 1)
consists of

hn(t) = 2
j
2H(2jt − k)

∣∣
[0,1],

n = 1, 2, . . . ,

n = 2j + k, j ≥ 0, 0 ≤ k ≤ 2j − 1,

(2)

where

h0(t) =
{
1, 0 ≤ t < 1,
0, elsewhere,

, H(t) =

⎧⎪⎨
⎪⎩
+1, 0 ≤ t < 1

2 ,
−1, 1

2 ≤ t < 1,
0, elsewhere.

(3)

The integer 2j indicates the level of the wavelet and k is
the translation parameter.

Simple calculations show that∫ 1

0
hm(x)hn(x)dx =

{
1, m = n;
0, m �= n. (4)

Also, it can be shown that any function f (x) ∈
C[ 0, 1] can be expressed as

∑
n〈f , hn〉hn, where 〈f , hn〉 =∫ 1

0 f (x)hn(x)dx [11].

Definition 2.2. Let {hn(x)}∞n=0 be the one-dimensional
Haar wavelets on [ 0, 1). We call {hm,n(x, y)}∞m,n=0 the two-
dimensional Haar wavelets on [ 0, 1)×[ 0, 1) as:

hm,n(x, y) = 2
i+j
2 H(2ix− k1)

∣∣
[0,1]H(2jy− k2)

∣∣
[0,1], (5)

where m = 2i + k1, n = 2j + k2, with i, j ≥ 0 and k1 =
0, 1, . . . , 2i − 1, k2 = 0, 1, . . . , 2j − 1.

The family {hm,n(x, y)}∞m,n=0 is orthogonal on
[ 0, 1)×[ 0, 1) and forms a basis for L2[ 0, 1)2:

Theorem 2.3. The basis {hm,n(x, y)}∞m,n=0 is orthonormal
on [ 0, 1)×[ 0, 1).
Proof. Letm �= l or n �= q∫ 1

0

∫ 1

0
hm,n(x, y)hl,q(x, y)dxdy

=
∫ 1

0
hm(x)hl(x)dx

∫ 1

0
hn(y)hq(y)dy = 0.

�
Theorem 2.4.∫ 1

0

∫ 1

0
[ hm,n(x, y)]2 dxdy = 1.

Proof.∫ 1

0

∫ 1

0
[ hm,n(x, y)]2 dxdy =

∫ 1

0
h2m(x)dx

∫ 1

0
h2n(y)dy=1.

�

The expansion of a function
A function f (x, y) defined over [ 0, 1)×[ 0, 1) may be
expanded by the two-dimensional Haar wavelets as

f (x, y) =
∞∑

m=0

∞∑
n=0

fm,nhm,n(x, y), (6)

where the wavelet coefficients, fm,n, are obtained as

fm,n = 〈hm(x), 〈f (x, y), hn(y)〉〉. (7)

If the infinite series in Equation 6 is truncated up to their
k terms, then it can be written as

f (x, y) 	
k−1∑
m=0

k−1∑
n=0

fm,nhm,n(x, y)

= FTH(x, y) = HT(x, y)F,

(8)

where k = 2α+1, and α is a nonnegative integer. Here,
F and H(x, y) are the Haar wavelet coefficients and Haar
wavelet functions vectors, respectively, and defined as:

F = [
f0,0, f0,1, . . . , f0,(k−1), . . . , f(k−1),0,

f(k−1),1 . . . , f(k−1),(k−1)
]T ,

(9)

H(x, y) = [
h0,0, h0,1, . . . , h0,(k−1), . . . , h(k−1),0,

h(k−1),1 . . . , h(k−1),(k−1)
]T

(x, y)
(10)

Similarly, a function of four variables, k(x, y, s, t), on
([ 0, 1)×[ 0, 1)×[ 0, 1)×[ 0, 1)) may be approximated with
respect to Haar wavelets such as:

k(x, y, s, t) 	 HT(x, y)KH(s, t) (11)

where H(x, y) and H(s, t) are two-dimensional Haar
wavelets vectors of dimension k2, and K is the (k2) × (k2)
two-dimensional Haar coefficient matrix.

Solution of 2D-FIEs of the second kind
Now, consider the second kind Fredholm integral
equation of the form in Equation 1. Our goal is to reduce
this equation to a linear system of algebraic equations by
the method presented in this paper.
In order to approximate the solution of integral equation

(Equation 1), we approximate functions u(x, y), f (x, y) and
k(x, y, s, t) with respect to 2D-Haar wavelets by the way
mentioned in ‘Two-dimensional Haar wavelets’ section as

u(x, y) = HT(x, y)U,
f (x, y) = HT(x, y)F,

K(x, y, s, t) = HT(x, y)KH(s, t), (12)
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where H(x, y) is as defined in Equation 10, the vectors
U, F and matrix K are Haar wavelets coefficients of u(x, y),
f (x, y) and K(x, y, s, t), respectively.
By substituting the approximations (Equation 12) into

Equation 1, we obtain

HT(x, y)U −
∫ 1

0

∫ 1

0
HT(x, y)KH(s, t)HT(s, t)Udsdt

= HT(x, y)F, (13)

which gives

HT(x, y)U − HT(x, y)K
(∫ 1

0

∫ 1

0
H(s, t)HT(s, t)dsdt

)
× U = HT(x, y)F, (14)

However, the orthonormality property of the sequence
{hm,n} implies that∫ 1

0

∫ 1

0
H(s, t)HT(s, t)dsdt = Ik2×k2 . (15)

By substituting Equation 15 shown in Equation 14, we
get the Equation below:

HT(x, y)U − HT(x, y)KU = HT(x, y)F (16)

By considering the inner product of the both sides of
Equation 16 with H(x, y) and using the orthonormality
property of the sequence {hm,n}, we obtain

(I − K)U = F (17)

which is a linear system of algebraic equations that can be
easily solved by direct or iterative methods.

Numerical examples
In this section, we applied the method presented in
this paper for solving integral equation (Equation 1) and
solved some examples. The computations associated with
the examples were performed in a personal computer
using Mathematica 7.

Example 1.Consider the following two-dimensional Fred-
holm integral equation of the second kind [12]

u(x, y) = f (x, y) +
∫ 1

0

∫ 1

0
(s. sin(t) + 1)u(s, t) dsdt,

0 ≤ x, y < 1

where

f (x, y) = x. cos(y) − 1
6
sin(1)(3 + sin(1))

and the exact solution is u(x, y) = x. cos(y). Table 1
shows the absolute values of error for k = 4, 8, 16, 32
using the present method in selected grid points. Better

Table 1 Absolute values of error for Example 1

(x, y) = ( 1
2l ,

1
2l ) k = 4 k = 8 k = 16 k = 32

l = 1 5.1× 10−2 2.3 × 10−2 1.1 × 10−2 8.6× 10−3

l = 2 6.5× 10−2 3.2 × 10−2 1.6 × 10−2 1.2× 10−2

l = 3 2.4× 10−3 1.6 × 10−2 8.0 × 10−3 8.9× 10−3

l = 4 1.0× 10−2 9.5 × 10−3 4.1 × 10−2 2.0× 10−2

l = 5 4.7× 10−2 2.3 × 10−3 2.1 × 10−4 6.0× 10−3

l = 6 6.3× 10−2 3.2 × 10−2 1.4 × 10−2 4.3× 10−5

Table 2 Numerical results for Example 2

(x, y) = ( 1
2l ,

1
2l ) k = 4 k = 8 k = 16 k = 32

l = 1 9.1× 10−2 6.3 × 10−2 3.1 × 10−2 3.6× 10−4

l = 2 6.5× 10−2 4.2 × 10−2 2.6 × 10−2 2.0× 10−3

l = 3 3.4× 10−2 1.6 × 10−2 8.0 × 10−3 3.2× 10−3

l = 4 1.0× 10−2 3.5 × 10−3 5.1 × 10−2 4.0× 10−3

l = 5 5.8× 10−2 1.5 × 10−2 2.1 × 10−3 5.0× 10−3

l = 6 3.6× 10−2 1.2 × 10−2 6.4 × 10−3 5.3× 10−5

approximation is expected by choosing the optimal value
k = 32.

Example 2. As the second example, consider the following
linear two-dimensional integral equation

u(x, y) = f (x, y) +
∫ 1

0

∫ 1

0

x
1 + y

× (1 + s + t)u(s, t) dsdt, 0 ≤ x, y < 1

where

f (x, y) = 1
(1 + x + y)

− x
1 + y

and the exact solution u(x, y) = 1
(1+x+y) . Numerical

results are shown in Table 2. Better approximation is
expected by choosing the optimal value k = 32.

Conclusion
Finding exact solutions for two-dimensional integral
equations is often difficult, so approximating these solu-
tions is very important. In this work, a computational
method has been presented for numerical solution of
2D-FIEs based on Haar wavelet series. In compari-
son with other bases (for example, polynomial bases),
one of the advantages of this method is, although the
involved matrices have a large dimension, they contain
a large percentage of zero entries, which keeps compu-
tational effort within reasonable limits. We can modify
this method for the numerical solution of linear and
nonlinear two-dimensional Volterra and Fredholm inte-
gral equations in the future.
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Methods
We can modify this method for the numerical solution
of linear and nonlinear two- Dimensional Volterra and
Fredholm integral equations in the future.
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