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Abstract: Leishmania is a protozoan parasite belonging to the family Trypanosomatidae, which 
is found among 88 different countries. The parasite lives as an amastigote in vertebrate macro-
phages and as a promastigote in the digestive tract of sand fly. It can be cultured in the laboratory 
using appropriate culture media. Although the sexual cycle of Leishmania has not been observed 
during the promastigote and amastigote stages, it has been reported by some researchers. 
Leishmania has eukaryotic cell organization. Cell culture is convenient and cost effective, and 
because posttranslational modifications are common processes in the cultured cells, the cells are 
used as hosts for preparing eukaryotic recombinant proteins for research. Several transcripts of 
rDNA in the Leishmania genome are suitable regions for conducting gene transfer. Old World 
Leishmania spp. has 36 chromosomes, while New World Leishmania spp. has 34 or 35 chromo-
somes. The genomic organization and parasitic characteristics have been investigated. Leishmania 
spp. has a unique genomic organization among eukaryotes; the genes do not have introns, and the 
chromosomes are smaller with larger numbers of genes confined to a smaller space within the 
nucleus. Leishmania spp. genes are organized on one or both DNA strands and are transcribed as 
polycistronic (prokaryotic-like) transcripts from undefined promoters. Regulation of gene expres-
sion in the members of Trypanosomatidae differs from that in other eukaryotes. The trans-splic-
ing phenomenon is a necessary step for mRNA processing in lower eukaryotes and is observed in 
Leishmania spp. Another particular feature of RNA editing in Leishmania spp. is that mitochon-
drial genes encoding respiratory enzymes are edited and transcribed. This review will discuss the 
chromosomal and mitochondrial (kinetoplast) genomes of Leishmania spp. as well as the 
phenomenon of RNA editing in the kinetoplast genome. 
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Introduction 
 

eishmania spp. lives in the 
gastrointestinal tract of the sand fly 
vector, and can be cultured using 

appropriate laboratory culture media as pro-
mastigotes. They can also exist in the verte-
brate host macrophages in the amastigote 
form (1-3). While asexual reproduction is 
known to occur in this species (4), their sex-
ual forms have not yet been discovered (5). 
Clonal reproduction is believed to occur 
among the protozoan parasites of the family 
Trypanosomatidae (6), considering that nu-
clear fusion occurs in some forms of this 
parasite that may give rise to sexual 
reproduction (7, 8). Researchers have been 
unable to confirm sexual reproduction and 
identify sexual gametes of these microorgan-
isms by using classical methods (9). It 
should be noted that the exchange of genetic 
material in Trypanosomatidae has been 
proven (10-12). 
Leishmania is used as an intracellular 
molecular model for research in microbiol-
ogy, immunology, and biochemistry (1, 2, 
13-20). This article will discuss the genomic 
organization of this parasite. 
 
Genomic organization of Leishmania 
The haploid genome of Leishmania spp. has 
32,816,678 bp organized into 36 chromo-
somes (21), with a total of 911 RNA genes 
and 39 pseudo-genes (21, 22). A total of 
8272 genes are known to encode proteins. 
Producer protein genes are encoded as long 
polycistronic genes lacking transcription fac-
tors in L. major, Trypanosoma brucei, and T. 
cruzi (Tritryp) (Fig. 1). The Old World 
Leishmania spp. has 36 chromosomes, while 
the New World Leishmania spp. has 34 or 
35 chromosomes. L. mexicana has linkage 
groups of chromosomes 8 and 29 as well as 
of chromosomes 30 and 36, and L. brazilien-
sis has a linkage group of chromosomes 20 

and 34 (23). The general pattern of nucleo-
tide sequences of genes in 30 Leishmania 
spp. is conserved (24-26).  
 

 
 
Fig. 1: Organization of chromosomes of 
Leishmania genes: clusters of genes on chromo-
somes 1, 2, 3, 4, and 35 are shown as thick lines. 
The direction of mRNA transcription is indicated. 
Vertical lines indicate the right side of the 
chromosome 1 repeated sub-telomeric sequence. 
The arrows indicate chromosome 2 splice leader 
categories. The arrows between the individual 
genes in chromosome 3 genes indicate tRNA. 
The space on chromosome 35 indicates an area 
of undetermined sequence (Source Ref. 30). 
 
Chromosome 1 of L. major is the smallest 
Leishmania spp. chromosome, and contains 
79 protein-encoding genes. Its genes have 
been organized into 2 converted polycis-
tronic clusters, and mRNA transcription is 
directed to the telomeres (27-30). 
Leishmania spp. chromosome 3 has about 79 
genes, and is organized as 2 convergent 
polycistronic transcripts. These transcripts 
encode 2 protein clusters and tRNA genes 
are located between them. They remain at 
the end of a gene that is transcribed in con-
trast to the previous clusters (28, 29, 31).  
Leishmania spp. proteins are expressed dur-
ing translation or after completion of replica-
tion (32). The mechanism involves regula-
tion of transcription of the eukaryotic RNA 
polymerase II. This mechanism differs from 
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the other mechanisms, although they have a 
chromatin remodeling process (21). 
In contrast to other members of Trypanoso-
matidae, the Leishmania genome does not 
have a sub-telomeric region (species-specific 
genes) and a transposable element. There 
have been no reports of RNAi in this organ-
ism (22).  
The Leishmania spp. genome is organized in 
the nucleus, which contains chromosomal 
and episomal DNA, and in the kinetoplasts, 
which comprise independently replicating 
DNA molecules. Furthermore, virus-like 
particles are contained in the cytoplasm. The 
kinetoplasts have been separated and studied 
by ultracentrifugation, whereas the chromo-
somes have been studied by pulsed-field gel 
electrophoresis (PFGE). There are questions 
regarding the changes occurring in karyo-
type species, sexual reproduction in 
Leishmania spp., and the number of copies 
of each gene in each chromosome (33).  
The electrophoretic patterns of Leishmania 
spp. chromosomes investigated by PFGE 
indicate haploid, diploid, and polyploid ar-
rangements. Isolation by hybridization that 
parts of chromosomes can be common, but 
the genes Hsp70, Hsp80, adenylate cyclase, 
glyceraldehyde phosphate dehydrogenase, 
beta tubulin, phosphofructokinase, pho-
sphoenolpyruvate carboxymethyl pyruvate 
kinase, pyruvate kinase, and ubiquitin are 
conserved. The chromosomes range from 
400 to 900 kbp in size and contain mini-ex-
ons (5′-spliced leader genes). Chromosomal 
changes that occurred during the evolution 
of Leishmania spp. have been confirmed, 
and the molecular karyotypes in the promas-
tigote and amastigote forms have been found 
to be identical. Three molecular karyotypes 
have been identified in Leishmania spp.: (1) 
The L. major karyotype is completely con-
served, even in different geographical re-
gions, (2) The members of the L. braziliensis 
panamensis group have more than one 
karyotype, and (3) L. mexicana amazonensis 

has highly diverse molecular karyotypes, 
even among those isolated from the same 
clinical samples. The mechanism of chromo-
somal polymorphism in Leishmania spp. 
does not include removal or translocation. 
Among the genes amplified in Leishmania 
spp. are genes that confer resistance against 
sodium arsenate and methotrexate drugs. 
This phenomenon of increasing the number 
of copies of genes involved in metabolic 
phenomena and environmental response ap-
pears to be important. Regions of genes that 
are involved in drug resistance are increased 
by 2–20 folds in copy number. Two genomic 
regions, namely, H-DNA and R-DNA 
(encoding dihydrofolate reductase and 
thymidylate synthase), are chromosomal de-
rivatives, which are surrounded by inverted 
repeats. The inverted repeats are involved in 
the supercoiling of amplified gene products 
(33). 
Methotrexate and arsenate drugs induce gene 
amplification in Leishmania spp. Meth-
otrexate induces amplification of the R-DNA 
and H-DNA genomic regions. In a meth-
otrexate-resistant L. tarentolae mutant, the H 
region is amplified as linear or circular DNA. 
The dihydrofolate reductase, thymidylate 
synthase, and ltdh genes in the H region are 
resistant to drugs (34, 35). Gene amplifica-
tion in the amphotericin B-resistant L. 
tarentolae occurs in the circular form in 
different chromosomes (36). Drug resistance 
to sodium stibogluconate (pentostam) in L. 
tarentolae is due to the amplification of a 
gene described by Haimeur and Ouellett, 
which encodes a 770-amino acid-long pro-
tein (37).  
Gene expression control among the members 
of the parasitic Trypanosomatidae family 
involves unusual antigenic shifts, involving 
DNA rearrangements, generation of polycis-
tronic transcripts from multi-copy genes, and 
post-transcriptional modification by trans-
splicing and RNA editing (38). 
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Gene transcription in Leishmania spp. 
The genetic information of most organisms 
has been discovered in cDNA sequences 
known as expressed sequence tags (EST) 
(39). It should be noted that most Leishma-
nia genes have no introns (40), and that 
chromosomal DNA is used as the template 
for cloning by PCR (41-45). 
Gene transcription to produce proteins in eu-
karyotes involves RNA polymerase II and 
transcription by RNA polymerase I to pro-
duce ribosomal RNA. In kinetoplastids, gene 
transcription involves RNA polymerase I 
and a trans-splicing mechanism (46). 
Discontinuous mRNA synthesis is a process 
occurring in the kinetoplastids. In this proc-
ess, a 35-nucleotide sequence is placed at the 
5′-end of all mRNAs. This sequence is en-
coded by a gene duplication cluster, 1.35 kb 
in length, which is known as a mini-exon or 
a trans-splice. Mini-exon mRNA was first 
identified as being related to the trypano-
some variable surface glycoprotein (47).  
Martınez-Calvillo et al. analyzed the se-
quence of Leishmania chromosome 1, which 
is the smallest of all the chromosomes. A 
total of 39 genes were transcribed from a 
strand of DNA and 50 other genes in a 
polycistronic transcript (48). Martınez-Cal-
villo et al. also analyzed Leishmania 
chromosome 27 and indicated that the 
organization of transcription of Leishmania 
genes is a complex process. It was deter-
mined that chromosome 27 of Leishmania 
spp. is transcribed by RNA polymerase II 
(49). This is contrary to the findings of Ploeg 
and Lee (46). 
Non-coding RNAs, about 300–600 nucleo-
tides long, are known to be expressed only in 
the amastigotes; these RNAs are transcribed 
by RNA polymerase II. Both sense and an-
tisense transcripts are processed by trans-
splicing and polyadenylation, but the an-
tisense transcripts are transcribed 10 folds 
lesser than the sense transcripts. It is possi-
ble that these antisense transcripts play a role 

in RNA stability. It should be noted that 
these molecules are not transcribed in 
promastigotes, and that RNA stability in pro-
mastigotes is less than in amastigotes (50). 
 
Trans-splicing of the Leishmania mRNA 
transcript 
There is a 35-nucleotide-long sequence 
known as a spliced leader (SL) or 5′-mini 
exon at the 5′ end of Leishmania mRNA 
transcripts. The SL sequence is at the 5′-end 
of a preliminary transcript about 85 nucleo-
tides in length that contains a 5′-exon-intron 
connection adjacent to the 3′-spliced leader 
(Fig. 2 and 3). 
 

 
 
Fig. 2: Comparison of cis- and trans-splicing: In 
cis-splicing, pair bases U1 small nuclear ribonu-
cleoprotein (snRNP) are in the 5′ SL [?] and U2 
snRNPs are in the break point, while intron 
breaks two exons are connected. In trans-splic-
ing, a 5′-splice site on the mRNA for binding to 
U1 snRNP is absent. Instead, a 5′-splice site pro-
duced by the donor SL snRNP interacts with U2 
in the 3′-splice site. The splice leader connects to 
the next exon. 
(http://www.wormbook.org/chapters/www_trans
splicingoperons/transsplicingoperons.pdf) 
 
The sequence of the SL connects the 3′-end 
of the genes encoding proteins. Previous re-
ports have indicated the possibility of such 
intermediaries in mRNA processing. There 
is a 50-nucleotide-long interval at the 3′-end 
of SL, which is known as the SL intron se-
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quence (SLIS). The SLIS and SL are con-
nected to the 5′-end of RNA. Density 
centrifugation analyses have shown that SL 
mRNA is in the 60S rRNA, but SLIS is in 

the 40S rRNA. It is likely that the observed 
nucleoprotein particles are the same spli-
ceosomes that can be observed in other 
microorganisms (51, 52). 

 
 

 
 
Fig. 3: Cis-splicing and trans-splicing: There are 4 exons in the initial transcript, which contains both ex-
ons and introns. In the cis-splicing phenomenon, the mRNA contains 4 exons and 3 introns. The 3 introns 
are removed, and the exons are connected. In trans-trans-splicing, a pre-trans-splicing molecule attaches 

exon X to intron 3. The 5'-splice donor is attached to the 3'-splice acceptor (Source Ref. 52). 
 
Since the discovery of trans-splicing in 
Leishmania spp., it has also been observed in 
other microorganisms (53). Trans-splicing is 
an essential stage of eukaryotic precursor 
mRNA and is not observed in mammals, in-

sects, yeast, and plants (54). This phenome-
non is observed in rotifera (55), dinoflagel-
lates (56), nematodes, and protozoan para-
sites (57-60) as shown in Fig. 4.  

 
Table 1: Comparison of the characteristics of the genomes of 3 species of Leishmania (22) 

 
                   Leishmania spp. 
Characteristics 

L. major L. infantum L. braziliensis 

Chromosome 36 34 35 
Contigs 36 562 1041 
G + C percent 89.7 59.3 57.76 
Size ( No nucleotide; bp) 32,816,678 32,134,935 32,005,207 
Coding genes 8298 8154 8153 
Pseudo genes 97 41 161 
G + C content (%) in coding 
region 

52.5 52.45 60.38 
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Fig. 4: Trans-splicing in metazoan parasites: A) Transcription occurs via a polycistronic transcript and trans-
splicing. The initial transcript contains mRNAs with 5′-trans-splicing and polyadenylation. Each box repre-

sents 1 gene with an exon and an intron. The bent arrows indicate the promoter and the transcription start site. 
B) The phenomenon of transcription and trans-splicing in metazoan genes (worms). The solid squares indi-
cate genes with an intron between them. 1) Promoter and possible transcription start site. 2) The position of 

transcription initiation. 3) mRNA molecules with SL (Source Ref. 60). 
 
 
The organization and regulation of gene ex-
pression in trypanosomatid parasites differs 
from that of other cells. Collected informa-
tion has led to advances in effective disease 
control (61). 
The genes in the parasites of family 
Trypanosomatidae are organized as long 
polycistronic transcripts (more than 100–300 
kb) on the same DNA strand. The genes en-
coding proteins are transcribed from un-
known promoters, and precursor polycis-
tronic RNA is produced. Monocistronic 
mRNA is produced by trans-splicing and 
polyadenylation of RNA. The trans-splicing 
mechanism includes a mini-exon containing 
39 nucleotides, which is not translated. This 
mini-exon is connected to the 5′-end of the 
mRNA molecule. There are some similari-
ties between cis-splicing and trans-splicing 

mechanisms. The AG is at the 3′ of the 
splice acceptor site downstream of a 
polypyrimidine tract. Polyadenylation in 
Leishmania spp. requires trans-splicing and 
differs from that of other eukaryotes. There 
are no introduced polyadenylation signals in 
kinetoplastidae undefined and instead 
choose to place poly A site depends on posi-
tions upstream acceptor site (61.) Gopta et al. 
analyzed chromosomes 1 and 3 of L. major 
and predicted the positions of trans-splicing 
with 92% accuracy. Computer analyses were 
performed to identify elements involved in 
trans-splicing. The following components 
are present: (1) nucleotide A, (2) a 
polypyrimidine rich stretch of T and C, vary-
ing in size from 5 to 100 nucleotides with 
purine bases occasionally located between 
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the T and C, (3) a variable spacer, and (4) a 
3′-acceptor site consisting of AG (62). 
 
Synthesis of nucleic acids in Leishmania 
spp. 
Leishmania spp. generates pyrimidine nu-
cleic acids via de novo biosynthesis, but ob-
tains purine nucleic acids via a salvage proc-
ess (63-66).  
Cunningham and Beverley have studied the 
amastigote stage of pathogenic species of 
Leishmania. This study indicated that sal-
vage activities in the amastigote stage would 

limit the effectiveness of chemotherapy in 
patients infected with Leishmania spp. Sal-
vage activities do not involve RNA tran-
scripts and likely occur via posttranscrip-
tional modifications (67).  
 
Structure of the kinetoplast 
The kinetoplast or mitochondrion is the en-
ergy-producing organelle of Leishmania spp. 
(68, 69). If DNA replication is inhibited in 
the kinetoplast by ethidium bromide, energy 
production will reduced in the parasite (70). 

 
 

 
 

Fig. 5: Structure of the kinetoplast disk and the proteins involved in its replication 
SSE1, Structure -specific endonuclease 1; UMSBP, Universal minicircle sequence-binding protein 

(http://www.pnas.org/content/101/13/4333/F2.expansion.html) 
 
 
The extra-chromosomal DNA is located in 
the kinetoplast organelle in an arrangement 
similar to that in the mitochondria of the eu-
karyotes. The kinetoplast has a particular 
DNA topology, which is not found in other 

eukaryotic cells (Fig. 5), and is composed of 
large circular molecules up to about 50,000 
nucleotides that are known as maxicircles. 
They are not present in large numbers. These 
circular molecules carry the genes encoding 
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the enzymes and coenzymes involved in the 
Krebs cycle (71-74). 
Other DNA molecules that are present in lar-
ger numbers but have fewer nucleotides 
(600–2,500 bp) are known as minicircles. 
Chritidia fasciculate has 25 maxicircles 
(each containing 37,000 nucleotides) and 
5,000 minicircles (each containing 2,500 nu-
cleotides) (72-74), some of which have been 
identified as free-form molecules (73). A 
minicircle DNA sequence 
“GGGGTTGGTGTAA” is conserved among 
all members of the family Kinetoplastidae 
(75), and some believe that this sequence is 
the origin of replication of the minicircle 
(76). Other parts of the minicircle sequence 
vary among the minicircles. One region 
known as the variable region is used for 
parasite genotyping. Large and small circles 
can exist inside each other so that each loop 
intercalates with 2 other minicircle loops and 
eventually “maxicircles and minicircles” be-
come intertwined with each other (inter-

locked or catenated) and a heavy molecule 
(about 400S) is formed during the extraction 
of parasite DNA that is distinct from the 
chromosomal DNA sediment. When minicir-
cles replicate, some are released (Fig. 6) as 
opened loops. When replication is completed, 
a replicated minicircle will become con-
nected to the kinetoplast (75, 77, 78). The 
blank section of the kinetoplast is restored 
by DNA topoisomerase II (79). 
The origin of replication of the kinetoplast is 
recognized by a protein known as UMSBP 
(universal minicircle sequence-binding pro-
tein). This protein is responsible for initiat-
ing replication (80). This reaction is regu-
lated in vivo by an oxidation-reduction reac-
tion (80, 81). The inhibition of UMSBP halts 
the growth of the parasite (82). A zinc ion 
(Zn) is involved in this process, and is essen-
tial for connecting UMSBP to DNA (83). It 
should be noted that replication of the mem-
bers of Kinetoplastidae occurs via different 
mechanisms (84). 

 
 

 
Fig. 6: In vivo replication of a kinetoplast shown as a disk section with catenated minicircles surrounded 
by DNA polymerase beta and DNA topoisomerase II. Primase is located at the top and bottom. During 
replication, the minicircles are released and connected to the network after replication is complete. Two 

newly synthesized minicircles are shown in bold  
(http://www.jbc.org/content/272/33/20787.full.pdf+html) 

The functions of minicircles were not clari-
fied until recently, and the genes of some of 

the enzymes involved in Krebs cycle were 
not observed. The discovery of the RNA 
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editing phenomenon was an exciting new 
finding (85-87). It was found that the para-
sites have copies of RNA molecules, which 
are altered because of posttranscriptional 
modification. This is accompanied by dele-
tion or insertion of a number of nucleotide 
residues (mostly uracil). RNA editing emits 
signals by guide RNA-derived transcripts of 

minicircles (88, 89) or maxicircles (90) (Fig. 
7). A gRNA-binding complex is involved in 
the processing of a gRNA, which includes 
polyadenylation and stabilization of the ed-
ited mRNA transcript (89). The kinetoplast 
of L. tarentolae has a 9S rRNA (91-94) and 
a 12S rRNA (92-95), but does not have 
supercoiled circles (96). 

 
 

 
 

Fig. 7: RNA editing of cytochrome oxidase B of Leishmania tarantula 
(http://dna.kdna.ucla.edu/trypanosome/index.html) 

 
The RNA editing phenomenon produces 
deletions, replacements, and insertions in 
mRNA transcripts (86, 87, 97). An edited 
transcript mRNA has important effects, and 
sometimes half of the nucleotides are altered 
(Fig. 8). It should be noted that although the 
changes may be small, its effect is important. 
For example, replacement of a C nucleotide 
by U in the human apolipoprotein B tran-
script (Fig. 9) leads to conversion of a gluta-
mine codon to a stop codon. This edited 
transcript produces a truncated protein (85). 
The TGA codon (stop codon) of the 
Leishmania spp. maxicircle encodes trypto-
phan (98). When the parasite glycosomal 

cycle is reduced, the mitochondrial (kineto-
plast) volume is increased, and vice versa 
(99). The characteristics of kinetoplast DNA 
has led to its choice as a target for drug ther-
apy (99, 100).  
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Fig. 8: Model RNA editing in the kinetoplast: 
addition of U (left), removal of U (center) or for-
mation of a chimera (right) in an mRNA tran-
script are performed by TUTase 
(http://dna.kdna.ucla.edu/trypanosome/images/k
ablea.JPG) 
 
 

 
 
Fig. 9: RNA editing in human apolipoprotein B 
 
Discussion 
 
Leishmania is a protozoan parasite with 
some similarities and differences as com-

pared to other eukaryotic cells. It shares 
some characteristics with prokaryotic cells, 
such as polycistronic transcription (31, 38). 
Researchers have been attracted to its unique 
characteristics. In recent years, Leishmania 
spp. has been used as a host for production 
of recombinant proteins. An appropriate host 
is an important factor in production of 
recombinant proteins (drugs). Prokaryotes 
such as Escherichia coli need simple and 
inexpensive culture media and have a short 
proliferation time. This provides high yields 
in the production of recombinant proteins. 
However, prokaryotes do not generate post-
translational modifications such as gly-
cosylation, phosphorylation, and car-boxyla-
tion. Some eukaryotic proteins are non-
functional after translation in E. coli, and 
some of them become aggregated as inclu-
sion bodies in the host cell cytoplasm. These 
proteins cannot fold appropriately if they are 
expressed in a prokaryotic host.  
Replication of yeasts such as Pichia pastoris, 
Saccharomyces cerevisiae, and Schizosac-
charomyces pombe also requires significant 
culture time, and posttranslational modifica-
tions are not perfect processes. Other types 
of eukaryotic cell cultures tend to be expen-
sive and require specialized culture condi-
tions and laboratory equipment. Because 
Leishmania spp. is maintained easily in 
NNN culture medium at low cost and can 
multiply quickly, it is preferred over other 
species. Eukaryotic Leishmania spp. can per-
form posttranslational modifications (21). 
This makes Leishmania spp. a suitable host 
for production of recombinant protein drugs 
(101-104). Efforts undertaken thus far have 
allowed the production of some therapeutic 
proteins (105-108). However, more research 
is needed before it can be used extensively 
as a host for the production of recombinant 
proteins. Researchers in biochemistry, 
pharmacology, and immunology, who are 
engaged in new drug development as well as 
production and testing vaccines, need 
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appropriate cell models. Leishmania spp. is 
expected to be an appropriate candidate 
(109,110). Anti-folates are used to treat ma-
laria, bacterial infections, and cancer. 
Leishmania spp. is an appropriate model for 
testing such enzyme inhibitors to investigate 
the progression of anti-parasitic and anti-
cancer drugs (111, 112). Posttranslational 
modifications play important roles in various 
cellular processes. Small ubiquitin-like 
modifier protein (SUMO) is a fusion protein 
that can be added as a reversible tag to N ter-
minal recombinant proteins (eukaryotes and 
prokaryotes) to provide stability and solubil-
ity to proteins (113, 114). SUMO is pro-
duced by Leishmania spp. and can be used 
as a stable and soluble factor for the produc-
tion of recombinant proteins in Leishmania 
promastigote (115). One disadvantage is that 
non-coding RNAs act as mRNA stability 
factors are not transcribed in the Leishmania 
promastigote. Because mRNA is not stable 
in promastigotes (50), this form of Leishma-
nia spp. is not appropriate for use as a host 
in the preparation of recombinant proteins. 
 
Glossary 
Biosynthesis de novo: The de novo purine 
biosynthetic pathway produces purines 
which represent the building blocks for 
DNA and RNA synthesis 
Cistron: A segment DNA equivalent to gene 
for function (protein or enzymes) 
Diploid; An organism with sexual cycle is 
diploid and has one chromosome set from 
each of its parents 
Haploid: The haploid means usual number 
of chromosomes set in somatic cells of 
common organisms. Organisms that have 
not sexual cycle are haploid 
Inversion: Chromosome break of the two 
areas separated pieces is back by reversal 
from chromosome breakage  
Inverted repeats: Is a sequence of 
nucleotides that is the reversed complement 
of another sequence further downstream 

Poly cistronic: There are some cistrons on 
one mRNA 
Polyploidy: Increase in chromosome set 
number  
Pseudo-genes: Are copy of original gene 
sequence, but lacked the necessary 
sequences for function. These genes from 
genetically similar to functional genes, but 
they have containing multiple mutations 
snRNP: Small nuclear ribonucleoproteins, 
are RNA-protein complexes, they will 
combined with unmodified pre-mRNA and 
various other proteins to spliceosome 
formation. 
Sub telomeric: Sub telomeric is a region 
near the end of chromosomes composed of 
polymorphic repetitive DNA. Damage to 
this area in humans lead to mental 
retardation 
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