G-FRAMES AND STABILITY OF G-FRAMES
IN HILBERT SPACES

A. Rahimi
Department of Mathematics
University of Maragheh
asgharrahimi@yahoo.com

Abstract. In 2006 Wenchang Sun introduced g-frames which are generalized frames and include ordinary frames and many recent generalizations of frames, e.g., bounded quasi-projectors and frames of subspaces. We present a version of the Paley-Wiener Theorem for g-frames which is in spirit close to results for frames, due to Ole Christensen.

1. Introduction

There are some generalizations of frames, the most recent of these generalizations is g-frame. This is an extension of frames that include all of the previous extensions of frames.

Through this paper, H and K are Hilbert spaces and $\{ H_i : i \in I \}$ is a sequence of Hilbert spaces, where I is a subset of \mathbb{Z}. The space $L(H, H_i)$ is the collection of all bounded linear operators from H to H_i.

Note that for any sequence $\{ H_i : i \in I \}$, we can assume that there exists a Hilbert space \mathcal{K} such that for all $i \in I, H_i \subseteq \mathcal{K}$ (for example $\mathcal{K} = \bigoplus_{i \in I} H_i$).

2000 Mathematics Subject Classification: Primary 41A58; Secondary 42C15.

keywords and phrases: frames, g-frames, g-Riesz bases, g-orthonormal bases.
Definition 1.1. We call a sequence \(\{ \Lambda_i \in \mathcal{L}(H, H_i) : i \in I \} \) is a generalized frame, or simply a g-frame for \(H \) with respect to \(\{ H_i : i \in I \} \), if there exist two positive constants \(A \) and \(B \) such that
\[
A\|f\|^2 \leq \sum_{i \in I} \|\Lambda_i f\|^2 \leq B\|f\|^2, \quad f \in H.
\]
We call \(A \) and \(B \) the lower and upper g-frame bounds, respectively.

We say also a g-frame for \(H \) with respect to \(K \) whenever \(H_i = K \), for each \(i \in I \).

We say \(\{ \Lambda_i \in \mathcal{L}(H, H_i) : i \in I \} \) is a g-frame sequence, if it is a g-frame for \(\text{span}\{\Lambda_i^*(H_i)\}_{i \in I} \).

Definition 1.2. Let \(\{ \Lambda_i \in \mathcal{L}(H, H_i) : i \in I \} \) be a g-frame for \(H \). Then the synthesis operator for \(\{ \Lambda_i \in \mathcal{L}(H, H_i) : i \in I \} \) is the operator
\[
T : \left(\sum_{i \in I} \bigoplus H_i \right)_{\ell_2} \rightarrow H
\]
defined by
\[
T(\{f_i\}_{i \in I}) = \sum_{i \in I} \Lambda_i^*(f_i).
\]
We call the adjoint \(T^* \) of the synthesis operator is the analysis operator.

The operator \(S = TT^* \) is called the g-frame operator.

It is easy to show that
\[
f = \sum_{i \in I} \Lambda_i^* \Lambda_i S^{-1} f,
\]
for every \(f \in H \).

2. Perturbation of g-frames

Theorem 2.1. Let \(\{ \Lambda_i \in \mathcal{L}(H, H_i) : i \in I \} \) be a g-frame for \(H \) with bounds \(A, B \) and \(\{ \Theta_i \in \mathcal{L}(H, H_i) : i \in I \} \) be a sequence of operators such that for any finite subset \(J \subseteq I \) and for each \(f \in H \),
\[
\left\| \sum_{i \in J} (\Lambda_i^* \Lambda_i f - \Theta_i^* \Theta_i f) \right\|
\leq \lambda \left\| \sum_{i \in J} \Lambda_i^* \Lambda_i f \right\| + \mu \left\| \sum_{i \in J} \Theta_i^* \Theta_i f \right\| + \gamma \left(\sum_{i \in J} \|\Lambda_i f\|^2 \right)^{\frac{1}{2}},
\]
where \(\lambda, \mu, \gamma \) are positive constants.
where $0 \leq \max\{\lambda + \frac{\gamma}{\sqrt{A}}, \mu\} < 1$. Then $\{\Theta_i \in \mathcal{L}(H, H_i) : i \in I\}$ is a g-frame for H with frame bounds
\begin{equation}
A \left(\frac{1 - (\lambda + \frac{\gamma}{\sqrt{A}})}{1 + \mu}\right) \quad \text{and} \quad B \left(\frac{1 + \lambda + \frac{\gamma}{\sqrt{B}}}{1 - \mu}\right).
\end{equation}

Corollary 2.2. Let $\{\Lambda_i \in \mathcal{L}(H, H_i) : i \in I\}$ be a g-frame for H with bounds A, B and let $\{\Theta_i \in \mathcal{L}(H, H_i) : i \in I\}$ be a family of operators. If there exists a constant $0 < R < A$ such that
\begin{equation}
\sum_{i \in I} \|\Lambda_i^* \Lambda_i f - \Theta_i^* \Theta_i f\| \leq R\|f\|
\end{equation}
for all $f \in H$, then $\{\Theta_i \in \mathcal{L}(H, H_i) : i \in I\}$ is a g-frame with g-frame bounds $A - R$ and $B + R + B$.

Theorem 2.3. Let $\{\Lambda_i \in L(H, H_i) : i \in I\}$ be a g-frame for H with bounds A, B and let $\{\Theta_i \in L(H, H_i) : i \in I\}$ be a family of operators such that for every $J \subseteq I$ with $|J| < +\infty$,
\begin{equation}
\left\|\sum_{i \in J} (\Lambda_i^* f_i - \Theta_i^* f_i)\right\| \leq \lambda \left\|\sum_{i \in J} \Lambda_i^* f_i\right\| + \mu \left\|\sum_{i \in J} \Theta_i^* f_i\right\| + \gamma \left(\sum_{i \in J} \|f_i\|^2\right)^{\frac{1}{2}},
\end{equation}
where $0 \leq \max\{\lambda + \frac{\gamma}{\sqrt{A}}, \mu\} < 1$. Then $\{\Theta_i \in L(H, H_i) : i \in I\}$ is a g-frame for H with g-frame bounds
\begin{equation}
A \left(\frac{1 - (\lambda + \frac{\gamma}{\sqrt{A}})}{1 + \mu}\right)^2 \quad \text{and} \quad B \left(\frac{1 + \lambda + \frac{\gamma}{\sqrt{B}}}{1 - \mu}\right)^2.
\end{equation}

Proposition 2.4. Let $\{\Lambda_i \in L(H, H_i) : i \in I\}$ be a g-frame for H with bounds A, B and let $\{\Theta_i \in L(H, H_i) : i \in I\}$ be a family of operators. If there exists an R with $0 < R < A$ such that
\begin{equation}
\sum_{i \in I} \|\Lambda_i f - \Theta_i f\|^2 \leq R\|f\|^2
\end{equation}
for all $f \in H$, then $\{\Theta_i \in L(H, H_i) : i \in I\}$ is a g-frame for H with bounds $(\sqrt{A} - \sqrt{R})^2$ and $(\sqrt{B} + \sqrt{R})^2$.

Theorem 2.5. Let $\{\Lambda_i \in \mathcal{L}(H, H_i) : i \in I\}$ be a g-frame for H with respect to $\{H_i : i \in I\}$, and $\{\Theta_i \in \mathcal{L}(H, H_i) : i \in I\}$ be a family of
operators. If
\[K : \left(\sum_{i \in I} \bigoplus H_i \right)_{\ell_2} \to H, \quad K \left(\{f_i\}_{i \in I} \right) = \sum_{i \in I} (\Lambda_i^* - \Theta_i^*) f_i \]
is a well-defined and compact operator, then \(\{ \Theta_i \in \mathcal{L}(H, H_i) : i \in I \} \)
is a g-frame sequence.

Corollary 2.6. Let \(\{ \Lambda_i \in \mathcal{L}(H, H_i) : i \in I \} \) be a g-frame for \(H \). Let \(J \) be a finite subset of \(I \) such that for each \(j \in J \), \(\dim H_j < \infty \). Then \(\{ \Lambda_i \in \mathcal{L}(H, H_i) : i \in I \setminus J \} \)
is a g-frame sequence.

Theorem 2.7. Let \(\{ \Lambda_i \in \mathcal{L}(H, H_i) : i \in I \} \) be a g-frame for \(H \) and let \(\{ \Theta_i \in \mathcal{L}(H, H_i) : i \in I \} \) be a family of operators. If
\[K : H \to H, \quad K f = \sum_{i \in I} (\Lambda_i^* \Lambda_i f - \Theta_i^* \Theta_i f) \]
is a well-defined and compact operator, then \(\{ \Theta_i \in \mathcal{L}(H, H_i) : i \in I \} \)
is a g-frame sequence.

References

