ON δ-SUPPLEMENTED MODULES

MOHAMMAD JAVAD NEMATOLLAHI

Department of Mathematics
Islamic Azad University, Arsanjan Branch
P. O. Box 73761-168, Arsanjan, Iran
mj.nematollahi.umz.ac.ir
(Joint work with Y. Talebi)

Abstract. In this talk some characterizations of δ-supplemented and δ-lifting modules are given and are investigated some properties of these modules.

1. Introduction

Throughout this article, all rings are associative with identity, and all modules are unitary right R-modules. A submodule L of a module M is called small in M (denoted by $L \ll M$), if for every proper submodule K of M, $L + K \neq M$. A module M is called hollow, if every proper submodule of M is small in M.

For two submodules N and K of M, N is called a supplement of K in M if N is minimal with the property $M = K + N$; equivalently $M = K + N$ and $N \cap L \ll N$. A module M is called supplemented if every submodule of M is small in M.

A submodule L of a module M is called cosmall in M (denoted by $L \ll M$), if for every proper submodule K of M, $L + K \neq M$. A module M is called coclosed in M if M has no proper cosmall submodule. A submodule K of M is called essential in M (denoted by $K \leq \text{ess} M$) if $K \cap X \neq 0$ for every proper submodule X of M. We denote by $\text{Rad}(M)$ the radical of M and $R \text{-MOD}$ the category of all R-modules. Also we write $A \leq^{m} M$ to indicate that A is a maximal submodule of M.

A submodule K of M is called essential in M (denoted by $K \leq^{\text{ess}} M$) if $K \cap X \neq 0$ for every non-zero submodule X of M. We denote by $\text{Rad}(M)$ the radical of M and $R \text{-MOD}$ the category of all R-modules. Also we write $A \leq^{m} M$ to indicate that A is a maximal submodule of M.

The singular submodule of a module M (denoted by $Z(M)$) is $Z(M) = \{ x \in M \mid Ix = 0 \text{ for some ideal } I \leq^{\text{ess}} R \}$. A module M is called singular (nonsingular) if $Z(M) = M$ ($Z(M) = 0$).

2000 Mathematics Subject Classification: 16L30, 16E50.
Keywords and phrases: supplemented modules, δ-supplemented modules, δ-lifting modules.
Let M be a module. A submodule N of M is said to be δ-small in M (notation $N \ll \delta M$) if, whenever $N + X = M$ with M/X singular, $X = M$. The concept of δ-small submodules was introduced by Zhou in [4]. A module M is called δ-hollow, if every proper submodule of M is δ-small in M.

Every small submodule of M is δ-small in M and the converse is true whenever M is singular. But as we see in the next example the converse need not be true in general.

Example 1.1. Let R be a right semisimple ring and M be a nonzero right R-module. Then M is nonsingular and semisimple. For any nonzero $N \leq M$, N is a direct summand of M and hence is not small in M; but every submodule of M (even M itself) is δ-small in M.

Let N and L be submodules of a module M. N is called a (weak) δ-supplement of L in M, if $N + L = M$ and $N \cap L \ll \delta N$. A module M is called (weakly) δ-supplemented if every submodule of M has a (weak) δ-supplement in M. M is called amply δ-supplemented if, for any submodules A and B of M with $M = A + B$, A has a δ-supplement contained in B.

2. Main Results

Lemma 2.1. Let N and L be submodules of a module M. Then the following are equivalent.

1. N is a δ-supplement of L in M;
2. $N + L = M$ and for each $K \leq N$ with $K + L = M$ and N/K singular, $K = N$.

Lemma 2.2. Let M be a module and $N \leq M$. Consider the following conditions:

1. N is a δ-supplement submodule of M;
2. N is weak δ-coclosed in M;
3. For all $x \leq M$, $x \ll \delta M$ implies $x \ll \delta N$.

Then (1) \Rightarrow (2) \Rightarrow (3) hold. If M is weakly δ-supplemented, then (3) \Rightarrow (1) holds.

Lemma 2.3. For $K \subseteq L \subseteq M$, the following are equivalent:

1. K is a δ-cosmall submodule of L in M;
2. For any $X \leq M$ with M/X singular, $L + X = M$ if and only if $K + X = M$.

Lemma 2.4. Let M be a module. Then for any $a \in M$ we have:

aR is not δ-small in M, if and only if there exists a maximal submodule C of M with M/C singular and $a \notin C$.

Definition 2.5. Let φ be the class of all singular simple modules. For a module M let $\delta(M) = \text{Rej}_M(\varphi) = \cap \{N \subseteq M | M/N \in \varphi\}$ be the reject of φ in M.

From the definition we immediately have $\delta(M/\delta(M)) = 0$, for any module M.

www.SID.ir
Proposition 2.6. Given a module \(M \), each of the following sets is equal to \(\delta(M) \).

1. \(A_1 = \sum \{ A | A \ll_\delta M \} \).
2. \(A_2 = \cap \{ B | B \leq M \text{ with } M/B \text{ singular} \} \).
3. \(A_3 = \cap \{ \ker \phi | \phi \in \text{Hom}(M, N) \text{ such that } N \text{ is singular simple} \} \).
4. \(A_4 = \cap \{ \ker \phi | \phi \in \text{Hom}(M, N) \text{ such that } N \text{ is singular semisimple} \} \).

Proposition 2.7. Let \(U \) and \(V \) be submodules of a module \(M \). Assume that \(V \) is a \(\delta \)-supplement of \(U \) in \(M \). Then

1. If \(W + V = M \) for some \(W \subseteq U \), then \(V \) is a \(\delta \)-supplement of \(W \) in \(M \).
2. If \(K \ll_\delta M \), then \(V \) is a \(\delta \)-supplement of \(U + K \) in \(M \).
3. For \(K \ll_\delta M \) we have \(K \cap V \ll_\delta V \) and so \(\delta(V) = V \cap \delta(M) \).
4. For \(L \subseteq U \), \((V + L)/L \) is a \(\delta \)-supplement of \(U/L \) in \(M/L \).
5. If \(\delta(M) \ll_\delta M \), or \(\delta(m) \subseteq U \) and if \(p : M \rightarrow M/\delta(M) \) is the canonical projection, then \(M/\delta(M) = Up \oplus Vp \).

Proposition 2.8. Let \(M \) be an amply \(\delta \)-supplemented module. Then every non \(\delta \)-small submodule \(N \) of \(M \) contains a \(\delta \)-supplement submodule \(N' \) such that \(N/N' \ll_\delta M/N' \).

Proposition 2.9. For a submodule \(U \subseteq M \), the following are equivalent.

1. There is a direct summand \(X \) of \(M \) with \(X \subseteq U \) and \(U/X \ll_\delta M/X \).
2. There is a direct summand \(X \subseteq M \) and a submodule \(Y \) of \(M \) with \(X \subseteq U \), \(U = X + Y \) and \(Y \ll_\delta M \).
3. There is a decomposition \(M = X \oplus X' \) with \(X \subseteq U \) and \(X' \cap U \ll_\delta X' \).
4. \(U \) has a \(\delta \)-supplement \(V \) in \(M \) such that \(U \cap V \) is a direct summand in \(U \).
5. There is an idempotent \(e \in \text{End}(M) \) with \(Me \subseteq U \) and \(U(1 - e) \ll_\delta M(1 - e) \).

Definition 2.10. A module \(M \) is called \(\delta \)-lifting if, for any \(A \leq M \), there exists a decomposition \(M = M_1 \oplus M_2 \) such that \(M_1 \leq A \) and \(A/M_1 \ll_\delta M/M_1 \).

For example every \(\delta \)-hollow module is \(\delta \)-lifting and it is easy to see that every indecomposable \(\delta \)-lifting module is \(\delta \)-hollow.

The next Proposition immediately follows from Proposition 2.9 and also can be found in [2, Lemma 2.3]:

Proposition 2.11. For a module \(M \) the following are equivalent.

1. \(M \) is \(\delta \)-lifting.
2. For every submodule \(N \) of \(M \) there is a decomposition \(M = M_1 \oplus M_2 \) such that \(M_1 \subseteq N \) and \(N \cap M_2 \ll_\delta M \).
3. Every submodule \(N \) of \(M \) can be written as \(N = N_1 \oplus N_2 \) with \(N_1 \) a direct summand of \(M \) and \(N_2 \ll_\delta M \).

Corollary 2.12. Every direct summand of a \(\delta \)-lifting module is \(\delta \)-lifting.

Proposition 2.13. Let \(M \) be a \(\delta \)-lifting module. Then

1. Any \(\delta \)-coclosed submodule of \(M \) is a direct summand;
(2) M is amply δ-supplemented;
(3) If $N \subseteq M$ is a fully invariant submodule of M, then M/N is a δ-lifting module.

Proposition 2.14. Let M be an amply δ-supplemented module such that every δ-supplement submodule of M is a direct summand. Then M is δ-lifting.

Proposition 2.15. Let M be a module such that every δ-supplement submodule of M is δ-coclosed in M. Then M is δ-lifting if and only if M is amply δ-supplemented and every δ-supplement submodule is a direct summand.

References