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Abstract – The aim of this paper is to prove some inequalities for p-valent meromorphic functions in the 
punctured unit disk Δ* and find important corollaries. 
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1. INTRODUCTION 

 
Let Σp denote the class of functions f(z) of the form 
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which are analytic meromorphic multivalent in the punctured unit disk 
 

Δ*  .1||0:  zz  
 
We say that f(z) is p-valently starlike of order γ(0 ≤ γ<p) if and only if for z Δ* 
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Also, f(z) is p-valently convex of order γ (0 ≤ γ < p) if and only if 

 

                                                         ,
)(

)(
Re 







 


zf

zfz
(zΔ*).                                                        (3) 

 
Definition 1.1: A function f (z)   Σp  is said to be in the subclass )(* jX p  if it satisfies the inequality 
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is the j-th differential of f (z) and a function f (z)   Σp is said to be in the subclass )(* jYp if it satisfies the 

inequality 
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To establish our main results we need the following lemma due to Jack [1]. 
 
Lemma 1.2. Let w(z) be analytic in Δ = {z : | z | < 1} with w(0) = 0. If | w (z) | attains its maximum value 
on the circle | z | = r < 1 at a point z0, then 

 
z0w´ (z0) = cw(zo) 

 
where c is a real number and c ≥ 1. 
 

Some different inequalities on p-valent holomorphic and p-valent meromorphic functions by using 
operators were studied in [2-5]. 

 
2. MAIN RESULTS 

 

In the first theorem we give a sufficient condition for f   Σp to be in the chass ).(* jX p  

 
Theorem 2.1. If f (z)   Σp satisfies the inequality 
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then f (z)  ).(* jX p  

 
Proof: Let f (z)   Σp,  we define the function w(z) by 
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It is easy to verify that w(0) = 0. 
From (8) we obtain 
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After a simple calculation we obtain 

 

                                                       
).(

)(

])([

)(1

)(
)(

)(

jp
zf

zfz

zw

zwz
j

j








                                                  (9) 

 

www.SID.ir

www.SID.ir


Arc
hi

ve
 o

f S
ID

Inequalities for meromorphically p-valent function 
 

Spring 2009                                                              Iranian Journal of Science & Technology, Trans. A, Volume 33, Number A2 

141

Now, suppose that there exists a point z0   Δ* such that 
 

.1|)(||)(|max 0
|||| 0
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Then by letting w (z0 ) = eiθ (w (z0 ) ≠ 1) and using the Jack’s lemma in the equation (9), we have 
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which contradicts the hypothesis (7). Hence, we conclude that for all z, | w (z) | < 1 and from (8) we have 
 

1|)(|1
)!1()1(

)()!1( )(





 zw

zjp

zfp
jpj

j

 
 

and this gives the result. 
 
Theorem 2.2. If f (z)   Σp satisfies the inequality 
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then f (z)  )(* jYp . 

 
Proof: Let f (z)   Σp. We consider the function w (z) as follows: 
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It is easy to see that w(0)= 0. Furthermore, by differentiating both sides of (11) we get 
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Now suppose there exists a point z0 *  such that .1|)(||)(|max 0
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 Then by letting w(z0)=eiθ 

and using Jack’s lemma we have 
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which contradicts the condition (10). So we conclude that | w (z) | < 1 for all z * . Hence, from (11) we 
obtain 
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This completes the proof.  

By taking j = 0 in Theorems 2.1 and 2.2, we obtain the following corollaries. 
 

Corollary 1. If f (z)   Σp satisfies the inequality 
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Corollary 2. If f (z)   Σp satisfies the inequality 
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  or equivalently f(z) is meromorphically p-valent starlike with respect to the origin. 

By taking j= 1 in theorems 2.1 and 2.2, we obtain the following corollaries. 
 

Corollary 3. If f (z)  Σp satisfies the inequality 
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)(
 or equivalently f(z) is meromorphically p-valent close-to-convex with respect 

to the origin. 
 
Corollary 4. If f (z)   Σp  satisfies the inequality 
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or equivalently f(z) is meromorphically multivalent convex. 
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