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Abstract — The aim of this paper is to prove some inequalities for p-valent meromorphic functions in the
punctured unit disk A* and find important corollaries.
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1. INTRODUCTION

Let X, denote the class of functions f(z) of the form

f@) =2+ a2 (1
k=p
which are analytic meromorphic multivalent in the punctured unit disk

A¥={z:0<|z|<1}

We say that f(z) is p-valently starlikef order y(0 < y<p) if and only if for z € A*

d«n}
—Re {———=}>v, 2)
{ ey
Also, f(z) is p-valently convex of order y (0 <y < p) if and only if
4«@}
—Re {Z—"21>7, (z€ A¥). 3)
{f@) nE

Definition 1.1: A function f'(z) € X, is said to be in the subclass X ; (j) if it satisfies the inequality

(p—l)! f(j) (Z,) —-1i<1 4)
(D (p+j-Dt 27
where
f(j) (Z) :(_l)j (p + J _1)! + i k! Zk—j (5)

- —ada
(p-Dz' & (k-
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is the j-th differential of f (z) and a function f'(z) € X, is said to be in the subclass Y, ; (/) if it satisfies the

inequality

ARG
f(j) (Z)

To establish our main results we need the following lemma due to Jack [1].

—-(p+)|<p+] (6)

Lemma 1.2. Let w(z) be analyticin A = {z: | z | < 1} with w(0) = 0. If | w (z) | attains its maximum value
on the circle | z| =r <1 at a point z,, then

Zow ’ (Zo) = CW(ZO)

where ¢ 1s a real number and ¢ > 1.

Some different inequalities on p-valent holomorphic and p-valent meromorphic functions by using
operators were studied in [2-5].

2. MAIN RESULTS

In the first theorem we give a sufficient condition for /'€ Z, to be in the chass X ; (j)-

Theorem 2.1. If f(z) € X, satisfies the inequality

()] : 1
Re{w+p+]}>l—5 (7)

thenf(z) € X, ()).

Proof: Let f(z) € X, we define the function w(z) by

(p-n @, :
Cip+ /-1 27 =1-w(z), (ze A). (8)

It is easy to verify that w(0) = 0.
From (8) we obtain

F0 (5= W Pri=D oy D'+

(p-D! (p-D!
0@ = () (p+ )= P”%ﬂ D! (p+ e
(p+j-D! mlpt =Dl
P () TR )

After a simple calculation we obtain

2w(z) _AfV @1
I-w(z)  f(2)

+(p+)) )
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Now, suppose that there exists a point zy € A* such that

max| w(z)| =| w(z,) = 1.

BSEN

Then by letting w (z9) = € (w (zy) # 1) and using the Jack’s lemma in the equation (9), we have

_Re{deKﬂT+p+j}: Re{%w%%>}: Re{cw@o }
r76) 1=w)z,) 1=w(z,)

i0 _ _
= cRe ¢ 7 =—C<—1,
1-¢€' 2 2

which contradicts the hypothesis (7). Hence, we conclude that for all z, | w (z) | < 1 and from (8) we have

= o
(=D (p+j =Dz

and this gives the result.

Theorem 2.2. If f (z) € %, satisfies the inequality

) ’ ) ”
Re{z[f(‘) (2)] —[1+Z[f( : ()] ]}> 2ptl (10)
/7 (2) (2] 2(p+1
thenf () € Y, (j)-
Proof: Let f(z) € X, We consider the functionw (z) as follows:
2Lf @] .
—W—(P'FJ)G—W(Z))- (11
It is easy to see that w(0)= 0. Furthermore, by differentiating both sides of (11) we get
e @ (@)
{H ()] }— (p+)H)d-w(2))+ (o)’

Now suppose there existsapoint z,€ A~ such that ‘max\ w(z)|=|w(z,) |=1. Then by letting w(z,)=¢"

2|<|zo

and using Jack’s lemma we have
R%%UV%@T_@+df@@ﬂj}zR%zwﬂ%)}
() /(2] 1-w(z,)
=cRe { eiaﬂ }: —£<—l
l1-e¢' 2 2

which contradicts the condition (10). So we conclude that | w (z) | < 1 for all z& A" . Hence, from (11) we
obtain

A/ @] :
—W—(p +7)
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This completes the proof.
By taking j = 0 in Theorems 2.1 and 2.2, we obtain the following corollaries.

Corollary 1. If f(z) € X, satisfies the inequality
’ 1
—Re{i+p}>1—— :
f 2p
then

e

-p

<1.
z

Corollary 2. If f(z) € X, satisfies the inequality
—Re {i—(l + Zf, j}> 2p ] ,
f f 2(p+1)

< p or equivalently f{z) is meromorphically p-valent starlike with respect to the origin.

4

then —i—p
/

By taking j= 1 in theorems 2.1 and 2.2, we obtain the following corollaries.

Corollary 3. If f (z)€ Z, satisfies the inequality

—Re{zj:,+p+l)}>l—$.

Then < p or equivalently f{z) is meromorphically p-valent close-to-convex with respect

e,
z

to the origin.

Corollary 4. If f(z) € X, satisfies the inequality
~Re {Zf—,—[nzf” J}> 2ptl
f f 2(p+1)

5
f/

or equivalently f(z) is meromorphically multivalent convex.

then

-(p+D|<p+1
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