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Abstract – In this paper, simultaneous control of source terms is considered in a vibrational string problem. 
In the considered problem, the terms to be controlled are the force and the initial velocity functions. We state 
the generalized (weak) solution about the considered problem. The existence and uniqueness of the solution 
for optimal control problem is investigated. The Frechet derivative of the functional and the Lipschitz 
continuity of the gradient are investigated. Minimizing sequence is obtained by the method of the projection 
of the gradient. 
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1. INTRODUCTION 
 

Simultaneous determination of the functions in inverse hyperbolic problems has been investigated by 
some researchers. Bamberger, Chavent and Lailly investigated the parameter functions     ,z z   in  
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from the only boundary measurement of  , 0y z t z   in [1]. V. Isakov dealt with the problem of 
determining the other two coefficients functions in [2]. Gugat, Leugering and Sklyar investigated the 
problem of determination of    1 2,  f t f t  from the condition        0 1, ,  ,ty x T y x y x T y x   in the 
problem 
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in [3]. A. Hasanov examined the determination of the pair     : , ,w F x t f t  from the final state 

   ,u x T x  in the problem; 
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in [4]. 

Considering the inverse source problem by a control method, the reconstruction formula 
and regularization methods have been obtained in [5] and [6]. In [5], Mordukhovich and Raymond 
considered the problem of minimizing the integral functional 
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J y u x y T dx g x t y dxdt h s t u dsdt
 

      

 
for the problem 
 

 
 

   0 1

                   in    : 0,

                               on   : 0,

0 ,  0       in 

tt

t

y y f Q T

y u T

y y y y

   

   

  

 

 
M. Yamamoto in [6] considered the determination of  f x  from    / ,u f n x t     in the problem 
 

         , , ,   ,0u x t u x t t f x x t T        
 

     ,0 ,0 0,   u x u x x    
 

   , 0,   ,0u x t x t T    . 
 

The stress in this paper is the force and initial velocity functions in the vibrational string problem can 
be controlled simultaneously from the final state of the string. The paper is organized as follows: In 
section 2, we give the statement of the problem with its physical motivation and state the definition of the 
generalized (weak) solution. In section 3, we prove the existence and uniqueness of the solution for 
optimal control problem by Weierstrass theorem and strict convexity of the functional. In section 4, we get 
the Frechet differentiability of the functional and Lipschitz constant of the gradient. In the last section, we 
constitute a minimizing sequence using the Lipschitz constant by the method of the projection of the 
gradient and prove its convergence to the optimal solution.  

 
2. STATEMENT OF THE PROBLEM 

 
In this paper, we consider the problem of simultaneous control of the functions   : ( , ),w f x t h x  in 
the problem  

 
                                  2( ) ( ( ) ) ( , ), ( , ) (0, ) 0,tt x x Tx u k x u f x t x t l T                                    (1) 

 
                                                  ( ,0) ( ), ( ,0) ( ), (0, )tu x g x u x h x x l                                                (2) 

 
                                                            0, 0, , 0, 0, .u t u l t t T                                                       (3) 

 
Using the functional 
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                                                     2 2

0

, ;
l

W
J w u x T w y x dx w      .                                           (4) 

 
For 0.   we will deal with the problem 

 
                                                                       * inf

w W
J w J w 

 .                                                             (5) 

 
The problem (1)-(3) models the vibration of a flexible string made of nonhomogeneous material. 

Here the functions 0)( x  and 0)( xk  represent the density and flexural rigidity of the string. 
( , )f x t  is the applied force function to the string. According to the Hooke’s law, the function 

),()(:),( txuxktxT x  defines the tension of the flexible string. ( )g x  and ( )h x  state the initial position 
and the initial velocity, respectively. The 0x   and x l  ends of the string are fixed.  
Here, the functions satisfy the conditions; 

 
                                       1

2 2 2, ,  0, ,  0,Tf x t L g x W l h x L l    ,    2 0,y x L l                     (6) 
 
and 

 

                                          
0

0 1 0 10 ( ) ,   0 ( ) ,   0,x k k x k x l          .                                   (7) 
 

The space 1
2W  is a Sobolev space whose functions with their first order generalized derivatives 

belong to 2L  space. 
The admissible control set is defined as follows: 

 

                                                   2 2: , : 0,TW
W w f h w b L L l      .                                     (8) 

 
The inner product in the space W  is defined as  

 

                                  1 2 1 2 1 2 1 2

0 0 0

, : , , ,   ,
T l l

W
w w f x t f x t dxdt h x h x dx w w W      ,                       (9) 

 
and the norm of an element is 

 

                                                 
1/2

2 2
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T l l
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   .                                       (10) 

 

Definition 2.1. The function 
10

2u W  with ( ,0) ( )u x g x , which satisfies the following equation for all 
1

0̂

2W , is called the generalized solution of the problem (1)-(3),  
 

                            
0

( ) ( ) ( ) ,0 ( , )
T T

l

t t x xx u k x u dxdt x h x x dx f x t dxdt     
 

      .               (11) 

 

Here, the space 
10

2W  consists of those elements of 1
2W  which vanish for 0t   and 

0̂
1

2W  consists of those 

elements of 
10

2W  which vanish for .t T  

Now, for w W  the following theorem is valid;  
 
Theorem 2.2. Let the conditions (6), (7) hold. Then for each w W , there is a generalized solution of the 
problem (1)-(3), and for this solution the estimate 
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                                                             1 1

2 2 2

5 0,TH H l W
u c g w


                                                        (12) 

 
is valid. 
 
Proof: The proof follows from the Galerkin method [7].  
Since the problem is ill-posed for 0  , we use the parameter 0   as the regularization parameter, 
which is the strong convexity constant, which guarantees the uniqueness and stability of the regularized 
solution. This parameter can be found for numerical investigations by regularization method such as 
Tikhonov regularization ([8]-[9]). 
 

3. THE EXISTENCE AND UNIQUENESS OF THE OPTIMAL SOLUTION 
 

In this section, we prove that the problem (5) has a solution. Here, we show that the problem satisfies the 
conditions of Weierstrass theorem. The space    2 2 0,TL L l   is a Hilbert space and the set W is a 
weakly compact set in this space. If we can show that the functional  J w  is weakly semicontinuous 
from below on the set W , then according to the generalized Weierstrass theorem[10], we will prove the 
existence of the minimum. In addition, if the functional  J w  is strictly convex then the minimum will 
be unique (Theorem 38.C. in [10]). 
Let’s consider the functional 
 

      2

0

0

, ;
l

J w u x T w y x dx     

 
and 
 

    2

0 W
J w J w w   . 

 
If the functional  J w  is convex and continuous on W  then it is weakly semicontinuous from 

below. Now, let’s prove the continuity of  J w  on .W  To do this it is enough to show the continuity of 

 0 .J w  
 
Theorem 3.1. Let w W  be an arbitrary element and w  be an increment for w  such that 

.w w W    So, the following inequality is valid; 
 

                                                2

0 0 0 0 w w
J w J w w J w s w w         .                             (13) 

 
Here the number 0s  is independent of w .  
 
Proof: For  ,w w f f h h       , we show by    , ; , ;u x t w u x t w w     and the increment 
function      , ; , ; , ;u x t w u x t w u x t w    satisfies the problem; 
 
                                                                   tt x x

u k u f                                                                 (14) 
 

                                                              ,0 0   ,0tu x u x h                                                           (15) 
 

                                                                    0, , 0u t u l t    .                                                           (16) 
 

The variation of  0J w  is 
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With Cauchy-Bunyakovsky inequality, we can write that  
 

                                            2 2 2

2

0 0, 0, 0,
2 , ; , ,

L l L l L l
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Lemma 3.2. For the function  ,u x T , the following estimate is valid; 
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                             (19) 
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0 0

max ,
3

r T T
s T

 

    
  

 and  0 1 1max ,r k . 
 
Proof: Proof can be obtained via the processes in [4].   
Since    2 0,y x L l , applying Cauchy   inequality for (18), we get 
 

   2

0 0 w w
J w s w w     . 

 
Here the number 0s  is independent of w . Theorem 3.1 has been proven. 
So, the functional  J w  is continuous on W , then it is weakly semicontinuous from below. 
 
Theorem 3. 2. The functional  J w  is strongly convex on .W   
 
Proof: We know that the set W  is convex [11]. From the linearity of the boundary value problem and 
uniqueness of the solution, we can write that  
 

        1 2 1 2, ; 1 , ; 1 , ;u x t w w u x t w u x t w         
 

for each 1 2,w w W  and  0,1  . Now, we will show that the following inequality is valid with the 
constant 0  ,  
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So, the cost functional is strongly convex with   . 
We proved that the cost functional is strongly convex (so strictly convex ) for strong convexity 

constant 0   on the weakly compact set .W  So according to the generalized Weierstrass theorem [8], 
the optimal solution *w W  to the problem 
 

   * inf
w W

J w J w 
  

 
exists and is unique. 
 

4. FRECHET DIFFERENTIABILITY OF THE FUNCTIONAL 
 AND LIPSCHITZ CONTINUITY OF GRADIENT 

 
In this section, we use the definition  
 

          2
,

ww
J w J w w J w J w w O w             

 
of Frechet differentiability of  J w , 
 
Theorem 4.1. Let the conditions (6)–(7) hold. Therefore, the functional    1J w C W   can be Frechet 
differentiable. Moreover, this derivation can be defined as  
 
                                                  , ; 2 ,  ,0; 2J w x t w f p x x w h                                          (20) 

 
via the solution of adjoint boundary value problem; 

 
                                                                           tt x x

k                                                                    (21) 
 

                                                                            , 0x T                                                                      (22) 
 

                                                               , 2 ,t x T u x T y                                                           (23) 
 

                                                                0 0, 0,   , 0k t k l l t                                                     (24) 
 

Proof: Let’s consider the increment of the functional  J w ; 
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2

0 0 0

                                              2 2 .
T l l

W
f fdxdt h hdx w        

 

 
Now we must estimate the term    

0

2 , ; ,
l

u x T w y u x T dx    , whose relation with  0J w  can 
be seen in (17). 
If we multiply the adjoint boundary value problem by u and integrate over T , we find  
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0 0 0 0

l T l T

tt x x
udtdx k udtdx       . 

 
By integration by parts, we get 

 

                         
0 0

,0 2 , , .
l l

tt x x
u k u dxdt x hdx u x T y u x T dx                              (25) 

 
After multiplying (14)- (16) by  ,x t  and integrating over T , if we subtract this from (25), we have  
 

     
0 0 0 0

,0 2 , ; ,
l T l l

x hdx f dxdt u x T w y u x T dx             

 
Considering (19) here, we write  
 

     2

0 0 0 0 0 0

,0; 2 2
T l l T l l

w
J w fdxdt x w hdx f fdxdt h hdx o w                     

 
so the Frechet derivative is 
 

        , ; 2 ,  ,0; 2J w x t w f x x w h         . 
 

Hence, theorem 4.1 has been proven.  
 
Theorem 4.2. Let the conditions of Theorem 4.1 hold. Then the estimate  
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Proof: We can rewrite (28) with the inequality    2 2 22a b a b    such that 
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If we use the increment w w   in the solution of adjoint boundary value problem and show by 

 , ;x t w w     , we get the following problem for    , ; , ;x t w w x t w       ; 
 

                                                                         tt x x
k                                                                   (29) 

 
                                                                            , 0x T                                                                   (30) 

 
                                                               , 2 , ;t x T u x T w                                                           (31) 

 
                                                             0 0, 0  , 0.k t k l l t                                                    (32) 

 
If we multiply the both sides of (29) by t , integrate over  0, l  and use boundary conditions, we have  
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Integrating the last equality over  ,t T we obtain, 
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For the term x , we have the following inequality;  
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Substituting this into (33), we write 
 

 

       
2 2

22
2

00 0

2
22

0, 0,
0

2 4
,

2
, ,  0,

l l

L l L l

dx u x T dx
l

l
u x T t T







    

    

 
 

 
and integrating over  0,T , we get  
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Moreover, we can write that  
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and taking as 

2 22
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0 0

44
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q


 

 
  

 
, we obtain  

 

       2

2 2 22

0,
, 8

Ww L l
J w w J w q u x T w           

 
With (19) one can write 
 

    2 2 22
22 8

w Ww
J w w J w qs w w           

 
and for 2

22 8L qs   , we have  
 

    ww
J w w J w L w       . 

 
Hence, theorem 4.2 has been proven. 

 
5. MINIMIZING SEQUENCE AND ITS CONVERGENCE 

 
We set the minimizing sequence according to the method of projection of the gradient [10], by 
 
                                                   1 ,    0,1, 2,...k W k k kw P w J w k                                              (35) 

 
where   W k k kP w J w   is the projection of the element  k k kw J w   in the set .W   
 
Theorem 5.1. Let 0w W  be the initial point. The sequence  kw  defined by (35) converges to the 
unique minimum element *w  of the functional  J w  for  20, 4k L     . Here, L  is the Lipschitz 
constant for  J w . Moreover, for the minimizing sequence the following inequality holds;  
 

* 0 * . ,  0,1,...k
kw w w w q k     

 
where    1 22 21 4 0,1q L     . 
 
Proof: We define the mapping :A W W  with 
 

  .WAw P w J w    
 

It can easily be shown that the mapping WP  is a contraction mapping, namely; 
 

    ;  , .W WP u P v u v u v W      
 

We must show that the mapping A  also holds this property, while 20 4 .L     We know that  
 

                                                2
, 2 ,  , .J u J v u v u v u v W                                             (36) 

 
So, using (36) and Lipschitz continuity of the functional, we write the following: 

Archive of SID

www.SID.ir

www.SID.ir


T. Yeloglu / M. Subasi 
 

Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A1                                                              Winter 2010 

46

 

     
      

       

 

22

2

22 2

22 2

                 

                 2 ,

                 1 4

W WAu Av P u J u P v J v

u v J u J v

u v J u J v u v J u J v

L u v

 

 

   

 



 

 

     

    

         

   

 

 
Then we have 
 

Au Av q u v    
 

by  1 22 21 4 .q L     The condition 24 L    gives  0,1 .q  
The statement (35) can be written as 1 .k kw Aw   Then by the contraction mapping principle, the 

sequence  kw  converges to the fixed point * *w Aw  of the operator A  with the factor q . We know 
that the minimum element *w  is unique. So we get the following: 
 

* 1 * 1 *
2

2 *

0 *

 



    
 

 


k k k

k

k

w w Aw Aw q w w

q w w

q w w

 

 
Hence, the theorem 5.1. has been proven. 
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