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ABSTRACT 

Karimizadeh, R., M. Mohammadi, N. Sabaghnia, T. Hosseinpour, and M. K. Shafazadeh. 2012. Analysis of genotype and 
genotype × environment interaction in durum wheat in warm rainfed areas of Iran. Crop Breeding Journal 2(2): 71-78. 
 

The objective of this investigation was to evaluate the magnitude of G × E interaction effects on durum wheat grain 
yield and to identify superior genotypes adapted to the test environments. Twenty improved durum wheat genotypes were 
tested in five locations over three growing seasons. Combined ANOVA indicated that the effect of year (Y) was significant 
and that of the location (L) was not, but that their interaction (Y × L) was highly significant. The main effect of genotype 
was also significant, as was the genotype × year interaction (G × Y); genotype × location interaction (GL) was not 
significant, but three-way interactions (G × Y × L) were highly significant. Clustering of genotypes based on intercept and 
slope parameters of the linear regression model produced three distinct groups, while using only line slopes for clustering 
produced no groups at all. The coefficient of determination of the linear regression model ranged from 0.84 (G10) to 0.98 
(G2); therefore, it can be concluded that this clustering method was somewhat useful for this data set. According to the 
dendrogram of clustering based on G and G × E interaction of ANOVA, there were 15 genotypic groups, while according 
to the dendrogram of clustering based on G × E interaction of ANOVA, there were 12 genotypic groups. Considering all 
clustering methods and mean grain yield, genotypes G8 (2590 kg ha-1) and G13 (2592 kg ha-1) were superior and thus 
can be recommended as candidates for release in warm rainfed areas of Iran. 

 
Keywords: cluster analysis, grain yield, grain yield stability, linear regression model 

  
INTRODUCTION 

urum wheat (Triticum durum Desf.) is the most 
important cereal crop for making macaroni and 

other types of foods (Anonymous, 2002). Globally, 
durum wheat is grown on about 14 million hectares, 
or 6% of the world’s total wheat growing area 
(USDA, 2009). Durum wheat production in Iran is 
relatively smaller than bread wheat production, and 
many companies have to import the semolina they 
need for making macaroni products (Karimizadeh  
et al., 2012). 

In recent years, several durum wheat breeding 
programs have been established with the purpose of 
improving grain yield potential using germplasm 
from the International Maize and Improvement 
Center (CIMMYT) and the International Center for 
Agricultural Research in Dry Areas (ICARDA). 
However, it is essential to identify which of the new 
improved genotypes are adapted to the conditions 
and production practices prevailing in Iran’s durum 
wheat growing regions. The effects of climate and 
soil factors are very important when improving new 

durum wheat genotypes for increased grain yield 
(Rharrabti et al., 2003). Thus, plant breeders aiming 
to increase grain yield should try to select genotypes 
adapted to diverse environmental conditions. 

Genotype × environment (G × E) interaction is an 
important issue in the improvement of breeding 
materials because it reduces grain yield stability in 
different environments (Löffler et al., 2005). The 
complexity of G × E interaction, particularly in 
environments prone to abiotic stress, can reduce 
grain yield heritability. In most multi-environmental 
trials, G × E interaction impedes plant breeding 
progress for broad as well as specific adaptation 
(Dreccer et al., 2008). The effectiveness of 
evaluating new improved genotypes is influenced by 
an understanding of G × E interaction and the degree 
to which the test locations are represented in multi-
environment trials (Podlich and Cooper, 1998). 

Several statistical procedures have been 
developed for modeling G × E interaction and 
identifying the most stable genotypes across 
different test environments. Parametric univariate 

D 

www.SID.ir



Arc
hive

 of
 S

ID

Crop Breeding Journal, 2012, 2(2) 

72 

methods such as the joint linear regression model 
(Finlay and Wilkinson, 1963) are the methods most 
commonly used for identifying superior genotypes; 
however, new stability analysis methods such as 
multivariate methods or nonparametric statistics are 
also applied (Sabaghnia et al., 2006). Multivariate 
methods have three main purposes: summarizing 
information, eliminating “noise” from the data sets 
and revealing the structure of the data sets (Crossa et 
al., 1990; Gauch, 1992). Multivariate methods can 
also be used for determining grain yield stability and 
identifying genotypic groups possessing desirable 
traits (Lin et al., 1986). Lin and Thompson (1975), 
Lin (1982) and Lin and Butler (1990) proposed a 
special cluster analysis for analyzing two-way G × E 
interaction data. Cluster analysis can identify 
differences among genotypes for the breeder via 
classification of genotypes (Karimizadeh et al., 
2006; Sabaghnia et al., 2012).  

Lin and Thompson (1975) used the deviation 
mean square from the linear regression model as the 
dissimilarity index for genotype grouping. Lin 

(1982) used the G × E interaction mean square as the 
dissimilarity index by slightly adjusting the distance 
coefficient. Lin and Butler (1990) introduced a new 
dissimilarity index according to the linear regression 
model which uses only the genotypic effect for 
genotype classification. Lin and Butler (1990) also 
proposed another new dissimilarity index based on 
the mean square of G × E interaction. Determining a 
cut-off point is critical because it reduces the risk of 
a type II error. Special F-tests for stopping the 
clustering procedure in each method were defined by 
Lin and Butler (1990). The objective of the present 
research was to use cluster analysis (i.e., four 
clustering methods) for grouping as well as studying 
G × E interaction in durum wheat in warm rainfed 
areas of Iran. 

 
MATERIALS AND METHODS 

The dataset analyzed in the present investigation 
was obtained from durum wheat multi-
environmental trials conducted at five locations in 
the 2008 to 2010 cropping cycles (Table 1).  

 

Table 1. Geographical characteristics of test locations. 
Location Longitude/ latitude Altitude (m) Soil texture Soil type† Rainfall (mm) 

Gachsaran 50°  50´ E 
30°  20´ N 710 silty clay loam Regosols 460.8 

Gonbad 55°  12´ E 
37°  16´ N 45 silty clay loam Regosols 367.5 

Khorramabad 33°  39´ E 
48°  28´ N 1125 silty-loam Regosols 433.1 

Ilam 46°  36´ E 
33°  47´ N 975 clay-loam Regosols 502.6 

Moghan 47°  88´ E 
39°  39´ N 

100 sandy-loam Cambisols 271.2 

† Based on the FAO soil classification system (FAO, 1990). 
 

Twenty new improved durum wheat genotypes or 
breeding lines were obtained from the ICARDA and 
CIMMYT durum wheat breeding programs  
(Table 2). A randomized complete block design 
replicated four times was used in each environment 
(year × location combination). Each plot consisted 

of six rows, 7 m long with between and within row 
spacing of 17.5 and 5 cm, respectively. In all 
environments, 50 kg N ha-1 and 70 kg P2O5 ha-1 were 
applied at planting and 40 kg N ha-1 at stem 
elongation. Appropriate pesticides and herbicides  
were used to control insects and diseases as well as

 

Table 2. The cross name/pedigree and origin of 20 durum wheat genotypes used in this study. 
No. Code Cross name / Pedigree Origin 
1 G1 BCR//MEMO/GOO/3/STJ7 ICARDA 
2 G2 Altar84/STN/Wdz-2   CIMMYT 
3 G3 DON-Md 81-36 ICARDA 
4 G4 Stj3//Bcr/Lks4  ICD94-0994-Cabl-10AP-0AP-2AP-0AP ICARDA 
5 G5 OUASERL-1 ICD96-0758-C-2AP-0AP-5AP-0AP ICARDA 
6 G6 GA//2*CHEN/ALTAR84 CIMMYT 
7 G7 AGAR1/5/SHEA/STK//BIT3/KYP/4/CHAH88 ICARDA 
8 G8 OSSL-1/4/MRBSH/3/RABI//GS/CR /5/HNA   ICD96-0744-C-1AP-0AP-3AP-0AP-3AP-AP-2AP-0AP ICARDA 
9 G9 DA-6 BLACK AWNS/3/BCR//MEMO/ GOO  ICD96-0058-C-0AP-2AP-0AP-9AP-AP-3AP-0AP-3AP-AP ICARDA 
10 G10 D86135/ACO89//PORRON_ 4/3/ SNITAN CDSS96Y00582S-1M-0Y-0M-0Y-0B-3Y-0B  CIMMYT 
11 G11 DUKEM/3/RUFF/FGO//YAV79/6/CGEN/ALTAR 84/4/… CDSS97Y00407S-9Y-0M-0Y-0B-0B-1Y-0M CIMMYT 
12 G12 SHAG_26/SNITAN CDSS96Y00415S-1Y-0M-0Y-1B-0Y-0B-0B  CIMMYT 
13 G13  GEDIZ/FGO/ /GTA/3/SRN_1/4/TOTUS/ 5ENTE/… DSS97Y00835S-0T0PM-4Y-0M-0Y-0B-0B-3Y-0BLR-4Y-0B CIMMYT 
14 G14 CMH82A.1062/3/GGOVZ394//SBA81/PLC/4/AAZ-1/…  CDSS99Y00643S-0M-0Y-16Y-0M-0Y-0B CIMMYT 
15 G15 SOOTY-9/RASCON-37/3/SOOTY-9/TARRO-1//AJAIA-2 CDSS97Y00565-8Y-0M-0Y-0B-0B-1Y-0M CIMMYT 
16 G16 LLARETA INIA/3/STOT//ALTAR 84/ALD /4/…   CDSS99B01149T-0TOPY-0M-0Y-48Y-0M-0Y-0B CIMMYT 
17 G17 ALTAR84/STN/WDZ-2 CIMMYT 
18 G18 GREEN-14//YAV-10/AUK CIMMYT 
19 G19 Seimareh ICARDA 
20 G20 Dehdasht ICARDA 
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weeds. To remove border effects, the four middle 
rows in each plot were harvested for grain yield 
assessment; yield was adjusted for 10% seed 
moisture before converting it to kg ha-1 for statistical 
analysis. 

Analyses of variance were performed for the data 
set in each environment, and the Anderson-Darling 
normality test and Bartlett’s test for homogeneity of 
variances were also applied. A combined analysis of 
variance using SAS software was performed on the 
data set to partition out environment (E), genotype 
(G) and G × E interaction. Genotype was regarded 
as a fixed effect, while environment was regarded as 
a random effect.  

The four cluster analysis methods used were 
based on: (1) the intercept and slope of the linear 

regression model (Lin and Thompson, 1975); (2) the 
similarity of G × E interaction (Lin, 1982); (3) the 
slope of the linear regression model (Lin and Butler, 
1990); and (4) the similarity of the G effect and G × 
E interaction (Lin and Butler, 1990). Details of these 
clustering procedures are given in Lin and Butler 
(1990). The statistical package Sl16 (Lin et al., 
1992) was used for all four methods of cluster 
analysis. 

 
RESULTS AND DISCUSSION 

Effects of all sources of variation except location 
and G × L were significant (Table 3); the GE 
interaction was highly significant, which indicated 
that the studied genotypes showed complicated GE 
interactions. 

 

Table 3. Combined analysis of variance for grain yield of durum wheat genotypes. 
Source of variation DF MS % of (G, E, GE) 

Year (Y) 2 206213572.0* 35.72 
Location (L) 4 94220057.1ns 32.64 
Y × L 8 34610128.9** 23.98 
Replication/ YL 45 618760.2  
Genotype (G) 19 680166.4* 1.12 
G × Y 76 341113.3* 2.25 
G × L 38 314535.9ns 1.04 
G × Y× L 152 248317.9** 3.27 
Residual 855 102927.8  

** and *: Significant at the 0.01 and 0.05 probability levels, respectively. 
ns: Not significant. 

 
The relatively large magnitude of G × E 

interaction implies more dissimilar plant genetic 
systems that control different physiological 
processes and yield stability (Cooper et al., 2001). 
The expression of grain yield as a quantitative trait is 
the result of genotypic, environmental and G × E 
interaction effects (Huehn and Leon, 1985). The 
relative contribution of G × E interaction effects 
found in this investigation was similar to those 
reported in other studies in rainfed areas, which 

makes it difficult to select the most suitable and 
superior genotypes (Mohebodini et al., 2006; 
Sabaghnia et al., 2008; Karimizadeh et al., 2012).  

The results of the joint linear regression model 
(Finlay and Wilkinson, 1963) are presented in Table 
4. The pooled error estimate was used to perform an 
F-test for stopping the clustering process and 
determining the cutoff point. In this step, genotype 
G14 was grouped in a cluster containing other 
genotypes; there was a significant difference among  

 

Table 4. Linear regression parameters and regression analysis of variance statistics. 
Genotype Mean grain yield Intercept Slope SS Total SS Reg.† SS Res.‡ R2 

G1 2478 2478 0.93 12138511 11439507 53770 94.2 
G2 2491 2491 1.10 16500838 16238339 20192 98.4 
G3 2430 2430 0.97 13340894 12485447 65803 93.6 
G4 2578 2578 1.02 15106204 13847153 96850 91.7 
G5 2357 2357 0.90 11420976 10894806 40475 95.4 
G6 2491 2491 1.02 14478755 13952549 40477 96.4 
G7 2505 2505 0.93 12124159 11546523 44434 95.2 
G8 2590 2590 1.02 14573921 13906970 51304 95.4 
G9 2566 2566 0.94 12235683 11801765 33378 96.5 
G10 2582 2582 0.95 14365200 12083463 175518 84.1 
G11 2246 2246 0.82 9703344 8944903 58341 92.2 
G12 2476 2476 1.06 16988457 15103351 145008 88.9 
G13 2592 2593 0.94 12366662 11861964 38823 95.9 
G14 2694 2694 1.15 18584055 17604686 75336 94.7 
G15 2575 2575 1.02 14464020 13780076 52610 95.3 
G16 2532 2532 1.04 15155977 14461684 53407 95.4 
G17 2454 2454 1.04 15123056 14480149 49454 95.7 
G18 2313 2313 1.06 16426798 14884496 118639 90.6 
G19 2587 2587 1.12 17292560 16601293 53174 96.0 
G20 2537 2537 0.96 13059946 12263520 61263 93.9 

†Linear regression model sum of squares. 
‡ Residual sum of squares. 
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them due to G and GE sources in the linear 
regression model or to the intercept and slope 
parameters. The positions of the genotypes and the 
cut-off point are given in Fig. 1. According to this 
dendrogram, there were three different genotypic 
groups. For improving the effectiveness of this 
method, it has been indicated that most of the 
variation among genotypes is included in the 
between-group component (Lin and Thompson, 
1975). The coefficient of determination (R2) of the 
linear regression model ranged from 0.84 (G10) to 
0.98 (G2) (Table 3). Genotypes with high coefficient 
of determination (R2) values can be evaluated 
adequately via the joint linear regression model and 
the response of the genotypes to different 
environments is predictable (Crossa, 1990). 
Regarding high R2 values, it can be concluded that 
this clustering method is useful to some extent for 

this data set. 
Most of the suitable genotypes (with high slopes) 

were clustered in major groups, indicating their 
specific adaptation to favorable conditions (Fig. 1). 
Genotypes G11 and G14 were the most unadapted 
and adapted genotypes, respectively; they had 
specific adaptation to poor and rich environments, as 
evidenced by their low and high line slopes, 
respectively. Clustering genotypes based on 
similarity of linear regression model parameters 
(intercept and slope) indicated considerable variation 
among genotypes. This may be due to the different 
origins, pedigrees and breeding procedures of these 
improved genotypes. Brandle and Brule-Bable 
(1991) reported that this clustering method may be a 
suitable tool for selecting the most stable as well as 
the highest yielding genotypes. 

 

Fig. 1. Dendrogram of dissimilarity indices based on line slope and intercept parameters of the regression model for durum 
wheat genotypes. 

 
Similar to the method of Lin and Thompson 

(1975), the line slope of the joint linear regression 
model (Finlay and Wilkinson, 1963) was used for 
clustering durum wheat genotypes (Lin and Butler, 
1990). The F-test statistic was not significant in 
clustering cycles and there was no significant 
difference among durum wheat genotypes based on 
lines slopes. According to Yue et al. (1997), the 
variation of the estimates of the regression 
coefficient is usually so small that classifying 
genotypes for stability and adaptability is difficult. 
The clustering cycles are summarized in Fig. 2 

Although Lin and Butler (1990) proposed this 
clustering method for improving the effectiveness of 
the previous clustering method (clustering based on 
both intercept and slope), it could not distinguish 
genotypic variations using linear slopes. 

Karimizadeh et al. (2006) reported that there was 
good agreement between these two clustering 
methods when studying multi-environment trials of 
different maize hybrids. The G × E interaction in the 
linear regression model was partitioned into 
heterogeneity (randomized variation) and residual 
components. The heterogeneity component was not 
significant, indicating that the contribution of non-
random effects was greater than that of random 
effects in G × E interaction. When the line slopes 
are identical for all genotypes, this component is 

distributed as χ2 and is independent of 
environmental effects. Therefore, considering the 

high R2 values, the model is suitable and the GE 
interaction partitioning provides a method for testing 
systematic GE interaction. 
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Fig. 2. Dendrogram of dissimilarity indices based on the line slope of the regression model for durum wheat genotypes. 
 

In multi-environment trials, E usually explains 
most of the total grain yield variation, while G and G 
× E interaction are small (Yan and Kang, 2003). Lin 
and Butler (1990) proposed a dissimilarity index 
using G and G × E interaction simultaneously in 
terms of distance adjusted for these effects in 
ANOVA.  

The F-test statistic was significant in cycle 6, 
where the dissimilarity index was 30652.8. In this 
step, genotype G15 was grouped in a cluster 
containing genotypes G8 and G9. Thus there was a 
significant difference between these clusters based 
on G and G × E sources. It should be mentioned that 
20% of the pooled error in the combined ANOVA 

table was used for obtaining the cutoff point in the 
dendrogram (Robert, 1997). 

According to the dendrogram in Fig. 3, there 
were 15 genotypic groups: genotypes G3, G4, G5, 
G10, G11, G12, G14, G15, G18, G19, and G20 as 
individual groups, while G7 and G13; G8 and G9; 
G1 and G17; and G2, G6 and G16 were composite 
groups. This grouping pattern showed high variation 
among the studied durum wheat genotypes 
considering both genotypic main effects and GE 
interaction. This clustering procedure, which uses 
both G and G × E interaction sources, can be useful 
for identifying the most stable genotype according to 
Type I stability (Lin et al., 1986). Successful 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Dendrogram of dissimilarity indices based on G and G × E interaction of the ANOVA model for durum wheat genotypes. 
 
applications of type I stability have been reported in 
multi-environment trials of different crops in semi-
arid regions (Mohebodini et al., 2006; Dehghani et 
al., 2008), while the other stability types (Types 2 

and 3) are very popular among plant breeders for 
assessing yield stability. Finally, considering both 
mean grain yield and stability performance, 
genotypes G8 and G13 may be regarded as the 
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superior genotypes according to joint linear 
regression-based on clustering procedures.  

The dissimilarity index of Lin (1982) is identified 
in terms of distance adjusted for the effects of 
genotypes and is equivalent to error term or within 
group MS of G × E interaction of ANOVA. In the 
present study, the optimized number of genotypes 
must be informative for G × E interaction 
interpretation. Similar to method 3, the cut-off point 
was fixed at 20% of the pooled error in combined 
ANOVA (Robert, 1997); therefore, G × E interaction 
within clusters must be less than 20% of the total 

variation. The F-test statistic was significant in cycle 
8, where the dissimilarity index was 31846.9; in this 
step, genotypes G2 and G6 were grouped together in 
a cluster containing genotypes G8 and G9, and there 
was a significant difference between these clusters 
based on G × E interaction. Visualization of this 
clustering method indicated that there were 12 
genotypic groups including genotypes G4, G10, G11, 
G12, G14, G18 and G19 as individual groups, while 
G1 and G17; G3 and G16; G4, G5 and G20; G7, G13 
and G15; and G2, G6, G8 and G9 were composite 
groups (Fig. 4). 

 
Fig. 4. Dendrogram of dissimilarity indices based on G × E interaction in the ANOVA model for the studied durum wheat 

genotypes. 
 

Lin (1982) reported this clustering method as an 
analytical tool for studying data sets from multi-
environment trials, which provides a logical base 
for comparing genotypes within clusters based on 
their average effect. The most prominent finding 
according to Fig. 4 is: genotypes G2, G6, G8 and G9 
as well as genotypes G7, G13 and G15 had 
relatively moderate mean grain yield and high 
stability a n d  were grouped in the same cluster, 
while other more stable or high yielding genotypes 
were clustered  individually or merged within 
clusters based on their average effect. Clustering the 
durum wheat genotypes based on similarity of G × E 
interaction revealed considerable variation among 
genotypes. Karimizadeh et al. (2006) showed that 
clustering maize hybrids using both ANOVA-based 
methods (G × E or G × E and G) produced similar 
results. 

Significant effects of genotype, environment and 
G × E interaction were observed, but the 
contributions of environment (92.3%) to total 
variation were higher than those of genotype (1.1%) 
and G × E interaction (6.6%). It has been reported 
that environment explains 80% or more of the total 

variation, while G and G × E interaction are relevant 
to genotype evaluation (Yan and Tinker, 2005). 
However, ANOVA was relatively uninformative in 
explaining G × E interaction when analyzing the 
durum wheat data set. In the multi-environment 
yield trials, genotypic main effects provided the only 
relevant information, while G × E interaction effects 
were absent or ignored. However, differences among 
genotypes were widely observed in the test 
environments in the presence of G × E interaction as 
large as those reported in other studies 
(Annicchiarico, 1997).  

G × E interaction may also be useful for genotype 
selection, indicating positive interaction with the test 
environment (Ceccarelli, 1996). In the present 
investigation, multivariate techniques were used as 
part of cluster analysis. The clustering method is an 
effective analysis that graphically displays how 
various genotypes were differentiated from G and G × 
E sources. This analysis described the properties of a 
group of various genotypes and gave a reasonable and 
useful interpretation of the data set. In general, these 
results will be useful to plant breeders when grouping 
durum wheat genotypes according to similarity 
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indexes that illustrate G or G + GE effects, as 
presented in Figs. 1 to 4. 

This study showed that various clustering 
methods were very effective for studying G × E 
interaction patterns and grouping genotypes. As a 
general rule, the linear regression model is effective 
when 50% of the total sum of squares is accounted 
for by linear G × E interaction (Hayward et al., 
1993). However, the R2 values for the studied durum 
wheat genotypes were high (more than 50%); 
therefore, methods 1 and 2 (based on the linear 
regression model) can be regarded as the most 
suitable methods. Other methods (based on G × E or 
on G and G × E) are also useful for understanding G 
× E interaction. These methods showed that G × E 
interaction was an important source of grain yield 
variation and the differential response of genotypes 
is clearly reflected in correspondent dendrograms. 
Although several statistical methods for estimating 
G × E interaction have been developed over the last 
decades, it was only recently that G × E interaction 
has been investigated using clustering methods 
(Robert, 1997; Karimizadeh et al., 2006). In 
practice, most plant breeders usually characterize 
their improved genotypes based on the performance 
of local checks or commercial cultivars. This 
method has some limitations when statistically 
analyzing G × E interactions within multi-
environment trials. In contrast, clustering methods 
used for studying multi-environment trials allow the 
selection of superior genotypes. 

The joint linear regression model is also used to 
explore G × E interaction in multi-environment 
trials. Brandle and Brule-Bable (1991) and Lin and 
Lin (1994) indicated that cluster analysis based on a 
regression model is able to distinguish similarities 
and dissimilarities among genotypes. Although most 
linear regression models follow the Type II stability 
concept, but study of multi-environment trials 
through G × E interaction implies Type I stability 
concept; however, Type II and Type III stability 
concepts are popular among most plant breeders.  

In contrast, all the clustering methods used in this 
investigation enable plant breeders to group a data 
set into homogeneous subsets and find the G × E 
interaction structure. Clustering results showed that 
there were distinct genotypic groups of durum wheat 
genotypes based on G × E interaction and G + GE 
interaction. Of further interest was the fact that the 
improved genotypes in some groups were either 
more stable with lower mean grain yield or higher 
yielding with lower stability, indicating that cluster 
analysis was successful in identifying inherent 
variations among genotypes. 

It was concluded that: (1) genotypes G8 (2590 kg 

ha-1) and G13 (2592 kg ha-1) were the superior 
genotypes based on the four clustering methods, 
mean grain yield and stability performance, and can 
thus be recommended as suitable candidates for 
release in warm rainfed areas of Iran; and (2) the 
magnitude of G× E interaction and changes in the 
ranking of genotypes across test environments 
suggest that some genotypes are specifically adapted 
to homogeneously grouped test environments. 
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