

International Journal of Group Theory
ISSN (print): 2251-7650, ISSN (on-line): 2251-7669
Vol. 2 No. 4 (2013), pp. 17-20.
© 2013 University of Isfahan

NONINNER AUTOMORPHISMS OF FINITE *p*-GROUPS LEAVING THE CENTER ELEMENTWISE FIXED

A. ABDOLLAHI* AND S. M. GHORAISHI

Communicated by Ali Reza Jamali

ABSTRACT. A longstanding conjecture asserts that every finite nonabelian p-group admits a noninner automorphism of order p. Let G be a finite nonabelian p-group. It is known that if G is regular or of nilpotency class 2 or the commutator subgroup of G is cyclic, or G/Z(G) is powerful, then G has a noninner automorphism of order p leaving either the center Z(G) or the Frattini subgroup $\Phi(G)$ of G elementwise fixed. In this note, we prove that the latter noninner automorphism can be chosen so that it leaves Z(G) elementwise fixed.

1. Introduction

One of the most widely known, although nontrivial, properties of finite *p*-groups of order greater than *p* is that they always have a noninner automorphism α of *p*-power order. This fact was first proved by Gaschütz in 1966 [5]. Schmid [8] extended Gaschütz's result by showing that if *G* is a finite nonabelian *p*-group, then the automorphism α can be chosen to act trivially on the center. A longstanding conjecture that had been raised even before Gaschütz's result is the following

Conjecture 1. Every finite nonabelian p-group admits a noninner automorphism of order p.

Indeed, in 1964 Liebeck [7] proved that if p is an odd prime and G is a finite p-group of class 2 then G has a noninner automorphism of order p acting trivially on the Frattini subgroup $\Phi(G)$. The corresponding result for 2-groups is false in general, as Liebeck himself produced an example of a 2-group G of class 2 with the property that all automorphisms of order two leaving $\Phi(G)$ elementwise

MSC(2010): Primary: 20D45; Secondary: 20E36.

Keywords: Noninner automorphism; finite p-groups; center of a group; Frattini subgroup

Received: 25 February 2013, Accepted: 5 April 2013.

^{*}Corresponding author.

fixed are inner. By a cohomological result of Schmid [9], it follows that finite regular nonabelian pgroups admit a noninner automorphism leaving the Frattini subgroup elementwise fixed. Deaconescu and Silberberg [4] proved that if $C_G(Z(\Phi(G))) \neq \Phi(G)$, then the noninner automorphism can be chosen to act trivially on $\Phi(G)$. Hence the main result of [4] reduced the verification of Conjecture 1 to finite nonabelian p-groups G satisfying the condition $C_G(Z(\Phi(G))) = \Phi(G)$. In [1, 2, 3] it is proved that if G is a finite nonabelian p-group of class at most 3 or G/Z(G) is powerful, then G has a noninner automorphism of order p leaving either $\Phi(G)$ or $\Omega_1(Z(G))$ elementwise fixed. Jamali and Viseh [6] proved that every nonabelian finite 2-group with cyclic commutator subgroup has a noninner automorphism of order two leaving either $\Phi(G)$ or Z(G) elementwise fixed. They have also observed that the results of [1, 2] can be improved, that is, if G is of nilpotency class 2 or G/Z(G) is powerful, then G has a noninner automorphism of order p leaving either the center Z(G) or Frattini subgroup elementwise fixed. Therefore the following result holds.

Proposition 1.1. Let G be a finite nonabelian p-group satisfying one of the following conditions:

- (1) G is regular;
- (2) G is nilpotent of class 2;
- (3) the commutator subgroup of G is cyclic;
- (4) G/Z(G) is powerful.

Then G has a noninner automorphism of order p leaving either Z(G) or $\Phi(G)$ elementwise fixed.

The main result of our paper is the following.

Theorem 1.2. Let G be a finite nonabelian p-group satisfying one of the following conditions:

- (1) G is regular;
- (2) G is nilpotent of class 2;
- (3) the commutator subgroup of G is cyclic;
- (4) G/Z(G) is powerful.

Then G has a noninner automorphism of order p leaving Z(G) elementwise fixed.

2. Proof of the main result

We need the following result which may be well-known. We prove it for the reader's convenience.

Lemma 2.1. Let G be any finite p-group. Then G = AH for some subgroups A and H such that $A \leq Z(G)$ and $Z(H) \leq \Phi(H)$.

Proof. We prove Lemma by induction on |G|. If G is abelian then the assertion is clear, take A = Gand H = 1. Now let G be a finite nonabelian p-group and assume that the assertion holds for all p-groups of order less than |G|. Moreover we may assume that $Z(G) \not\leq \Phi(G)$, otherwise one may take A = 1 and H = G to complete the proof. Thus there exist some element $a \in Z(G)$ and a maximal subgroup M of G such that $a \notin M$. By induction hypothesis M = BH for some subgroups B and H of M such that $B \leq Z(M)$ and $Z(H) \leq \Phi(H)$. Let $A = \langle a, B \rangle$. Therefore $A \leq Z(G)$ and G = AH. This completes the proof.

www.SID.ir

Remark 2.2 ([4, Remark 4.]). Let G be a central product of subgroups A and B; i.e., G = AB and [A, B] = 1. Suppose that $\alpha \in Aut(A)$ and $\beta \in Aut(B)$ agree on $A \cap B$. Then α and β admit a common extension $\gamma \in Aut(G)$. In particular, if A has a noninner automorphism of order p which fixes Z(A) elementwise, then G has a noninner automorphism of order p leaving both Z(A) and B elementwise fixed.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let G be a finite nonabelian p-group. By Lemma 2.1, we have G = AH for some subgroups A and H of G such that $A \leq Z(G)$ and $Z(H) \leq \Phi(H)$. If G is regular, or of nilpotency class 2, or with cyclic commutator subgroup, then so is H. Now, suppose that G/Z(G) is powerful. If p > 2, then $H'Z(G)/Z(G) \leq G'Z(G)/Z(G) \leq G^pZ(G)/Z(G)$. Thus $H' \leq G^pZ(G) = H^pZ(G)$, since $G^p = A^pH^p$. Now if $c \in H'$, then c = ba for some $b \in H^p$ and $a \in Z(G)$. But $b^{-1}c = a \in Z(H)$. Therefore $H' \leq H^pZ(H)$ and this means that H/Z(H) is powerful. A similar argument shows that H/Z(H) is powerful for p = 2. Then, by Proposition 1.1, H has a noninner automorphism of order p fixing Z(H) elementwise. Now it follows from Remark 2.2 that G has a noninner automorphism of order p leaving AZ(H) = Z(G) elementwise fixed. This completes the proof.

We finish the paper with the following conjecture.

Conjecture 2. Every finite nonabelian p-group admits a noninner automorphism of order p leaving the center elementwise fixed.

Acknowledgments

The authors are grateful to the referee for his/her invaluable comments. The first author was financially supported by the Center of Excellence for Mathematics, University of Isfahan. This research was in part supported by a grant IPM (No. 91050219).

References

- A. Abdollahi, Powerful p-groups have noninner automorphisms of order p and some cohomology, J. Algebra, 323 (2010) 779–789.
- [2] A. Abdollahi, Finite p-groups of class 2 have noninner automorphisms of order p, J. Algebra, **312** (2007) 876–879.
- [3] A. Abdollahi, M. Ghoraishi and B. Wilkens, Finite p-groups of class 3 have noninner automorphisms of order p, Beitr. Algebra Geom., 54 no. 1 (2013) 363–381.
- [4] M. Deaconescu and G. Silberberg, Noninner automorphisms of order p of finite p-groups, J. Algebra, 250 (2002) 283–287.
- [5] W. Gaschütz, Nichtabelsche p-Gruppen besitzen äussere p-Automorphismen, J. Algebra, 4 (1966) 1–2.
- [6] A. R. Jamali and M. Viseh, On the existence of noinner automorphisms of order two in finite 2-groups, Bull. Aust. Math. Soc., 87 no. 2 (2013) 278–287.

- [7] H. Liebeck, Outer automorphisms in nilpotent p-groups of class 2, J. London Math. Soc., 40 (1965) 268–275.
- [8] P. Schmid, Normal p-subgroups in the group of outer automorphisms of a finite p-group, Math. Z., 147 no. 3 (1976) 271-277.
- [9] P. Schmid, A cohomological property of regular p-groups, Math. Z., 175 (1980) 1–3.

Alireza Abdollahi

Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran and School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O.Box: 19395-5746, Tehran, Iran Email: a.abdollahi@math.ui.ac.ir

S. Mohsen Ghoraishi

Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran and School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O.Box: 19395-5746, Tehran, Iran Email: ghoraishi@gmail.com

www.SID.ir