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Abstract. Let n, t1, . . . , tk be distinct positive integers. A Toeplitz graph G = (V,E) is a graph

with V = {1, . . . , n} and E = {(i, j) | |i− j| ∈ {t1, . . . , tk}}. In this paper, we present some results on

decomposition of Toeplitz graphs.

1. Introduction

A Toeplitz matrix which is named after Otto Toeplitz (1881–1940), is an n × n matrix A = (ai,j)

where for i and j, 1 ≤ i, j ≤ n−1, aij = a(i+1)(j+1). Toeplitz matrices are precisely those matrices such

that all their diagonals parallel to the main diagonal have constant values. Thus, Toeplitz matrices

are defined by their first row and first column.

Let n, t1, . . . , tk be integers such that 1 ≤ t1 < t2 < · · · < tk < n. A Toeplitz graph, denoted by

Tn〈t1, t2, . . . , tk〉 is a graph with vertex set {1, . . . , n} and edge set {(i, j) | |i− j| ∈ {t1, . . . , tk}}. The

name of this class of graphs is due to the fact that their adjacency matrices are Toeplitz matrices.

For example, see the graph T7〈3, 4, 5〉, in Figure 1. Obviously, any such graph is uniquely defined by

the first row of its adjacency matrix, i.e. by a 0–1 sequence whose first element is zero. Moreover, the

number of edges in Toeplitz graph Tn〈t1, . . . , tk〉 is equal to
∑k

i=1(n− ti).
Properties of Toeplitz graphs, such as bipartiteness, planarity, colourability and Hamiltonicity have

been studied in [1–11]. Now some usual graph notations: LetG = (V (G), E(G)) be a simple graph. For

any vertex v ∈ V (G), the open neighborhood of v, denoted by N(v), is the set {u ∈ V (G) | uv ∈ E(G)}
and the closed neighborhood, denoted by N [v] is N(v) ∪ {v}. An open neighborhood of set S ⊆ V

is N(S) =
⋃

v∈S
N(v) and its closed neighborhood is N [S] = N(S) ∪ S. We denote the degree of v
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by d(v) which is |N(v)| and the minimum degree of G is denoted by δ(G). The vertex v is called a

leaf if d(v) = 1. A complete graph with n vertices, denoted Kn, is a graph where any two vertices

are adjacent. A graph G is r-regular if d(v) = r, for all v ∈ V (G). A graph G is connected if there

is a path between u and v for all u, v ∈ V (G). An induced subgraph of G is a subgraph obtained by

deleting a set of vertices.
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Figure 1. The Toeplitz graph T7〈3, 4, 5〉

Let M ⊆ E(G). The graph G \M is defined to be (V (G), E(G) \M). Also, an induced subgraph

of G on V (G) \ S, where S ⊆ V (G) is denoted by G \ S. The cycle of order n is denoted by Cn.

The diameter of a graph G is the largest distance between two vertices of G, denoted by diam(G).

In a graph G with at least one cycle, the length of a shortest cycle is called the girth of G and

denoted by grith(G). A decomposition of a graph G is a family F of edge-disjoint subgraphs of G

such that
⋃
F∈FE(F ) = E(G). If the family F consists entirely of paths or entirely of cycles, we call

F a path decomposition or a cycle decomposition of G. A k- factor of G is a k- regular spanning

subgraph. In particular, a 1- factor is a spanning subgraph whose edge set is a perfect matching and a

2- factor is a spanning subgraph whose components are cycles. A graph G is k- factorable if it admits

a decomposition into k- factors.

Theorem 1.1. [12] A graph G is 2- factorable if and only if it is a 2k- regular graph.

2. Bipartite Toeplitz Graphs

When we talk about graph decompositions, perhaps a natural problem is investigating whether the

graph is decomposable to matchings, paths, or cycles. First, we address the matching problem. Hall

theorem states that a bipartite graph with color classes X and Y has a matching which saturates X

if and only if |N(S)| ≥ |S| for all S ⊆ X. Clearly, graph Tn〈t1〉 is a bipartite graph. In [4], a complete

characterization of Tn〈t1, t2〉 and partial results for Tn〈t1, t2, t3〉 to be bipartite graphs is presented.

The following procedure recognizes whether a finite 0–1 sequence S with two 1s defines a bipartite

Toeplitz graph or not.

Theorem 2.1 ([4]). Let be G = Tn〈t1, t2〉. Determine r from t1 = (2β+1)2r. If t2/2
r is an odd integer

then S defines a bipartite Toeplitz graph; if t2/2
r is not an odd number and if n ≤ t1 + t2− gcd(t1, t2),

then again S defines a bipartite Toeplitz graph; else S defines a non-bipartite Toeplitz graph.
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Suppose G = Tn〈t1, t2, t3〉. For convenience, let α = t1, δ = t2 − t1, and ω = t3 − t2, so such a

sequence has the following form:

Bα,δ,ω = (0 . . . 0︸ ︷︷ ︸
α

1 0 . . . 01︸ ︷︷ ︸
δ

0 . . . 01︸ ︷︷ ︸
ω

0 . . . 0).

Let δ∗ be the remainder of the division of δ by ω. For convenience and throughout the following, let

t2 = α+ δ∗ + kω and t3 = α+ δ∗ + (k + 1)ω with k ∈ N such that t3 ≤ 2α.

In the following a complete solution for three special cases: (i) u = 0, (ii) δ∗ divides u, and (iii) divides

u is presented.

Theorem 2.2 ([4]). Suppose that G = Tn〈t1, t2, t3〉.

(i): Let α ≡ u (mod ω). If gcd(δ, ω) does not divide u (and thus α), then Bδ,ω induces a bipartite

Toeplitz graph.

(ii): Let α ≡ 0 mod ω, i.e. α = γω with γ ∈ N.

(a): If δ ≡ mod ω, then Bδ,ω defines a non-bipartite Toeplitz graph if and only if 0 ≤ k ≤
γ − 1.

(b): Let 1 ≤ δ∗ ≤ ω−1. If α = 2βω with β ∈ N, or if α = (2β+ 1)ω with β ∈ N and δ∗ does

not divide ω, then Bδ,ω defines a non-bipartite Toeplitz graph if and only if 0 ≤ k ≤ (β−1).

(c): If α = (2β+1)ω with β ∈ N and δ∗ divides ω, then Bδ,ω defines a non-bipartite Toeplitz

graph if and only if 0 ≤ k ≤ β.

(iii): Let α ≡ u mod ω, i.e. α = γω + u with 1 ≤ u ≤ ω and let δ∗ be a divisor of u, then

(a): If δ∗ = u, then Bδ,ω defines a non-bipartite Toeplitz graph if and only if 0 ≤ k ≤ γ − 1.

(b): If δ∗ < u, then Bδ,ω defines a non-bipartite Toeplitz graph if and only if 0 ≤ k ≤ bγ/2c.
(iv): Let α ≡ u mod ω and let (ω − δ∗) be a divisor of u, i.e u = ρ(ω − δ∗). Then Bδ,ω defines

a non-bipartite Toeplitz graph if and only if 0 ≤ k ≤ b(γ − 2)/2c.

Along of these lines of argument, we present some results.

Proposition 2.3. If G = Tn〈t1, . . . , tk〉 is a bipartite graph, then k ≤ bn2 c.

Proof. Let

N(1) = {1 + t1, . . . , 1 + tk}.

Assume A = {tk − tk−1, tk − tk−2, . . . , tk − t1, } and {t1, . . . , tk} to be two subsets of {1, . . . , n}. Since

G is bipartite, A ∩ B = ∅. Clearly, |A| = k − 1 and |B| = k. Since |A ∪ B| ≤ n− 1 and A ∩ B = ∅,

2k − 1 ≤ n− 1, so k ≤ n−1
2 , providing the result. �

Proposition 2.4. If for each i, 1 ≤ i ≤ k, ti is odd, then Tn〈t1, . . . , tk〉 is a bipartite graph.

Proof. Let X and Y be the set of odd and even integers of {1, . . . , n}, respectively. Then clearly, no

two vertices in X or Y are adjacent. �

Proposition 2.5. The graph G = Tn〈n− dn−12 e, n− d
n−1
2 e+ 1, . . . , n− 1〉 is a bipartite graph.
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Proof. Assume that X = {1, . . . , n − dn−12 e − 1} and Y = {n − dn−12 e, . . . , n}. No two vertices in X

or in Y are adjacent. �

Corollary 2.6. If for each i, ti ∈ {n − dn−12 e, n − d
n−1
2 e + 1, . . . , n − 1}, then Tn〈t1, . . . , tk〉 is a

bipartite graph.

It is clear that there are exactly 2n−1 symmetric (0, 1) Toeplitz matrices of order n. This is a very

small portion in comparison with the number of all (0, 1) symmetric matrices of order n. This allows

us to investigate bipartitness of Toeplitz graphs by empirical search. Through a computation, we

found all non-isomorphic bipartite Toplitze graphs up to order 20. It turns out that all the bipartite

Toeplitz graph up to order 13 are obtained by Theorems 2.1, 2.2, Propositions 2.4, 2.5. Therefore

these results all together give a characterization of all bipartite Toeplitz graphs up to order 13. Up to

order 16, there are only 7 bipartite Toeplitz graph, namely

T14〈2, 6, 10, 13〉, T14〈4, 11, 12, 13〉, T15〈2, 6, 10, 14〉, T15〈4, 12, 13, 14〉,

T16〈6, 11, 13, 14〉, T16〈2, 6, 10, 14, 15〉, T16〈4, 12, 13, 14, 15〉,

which do not come from Theorems 2.1 and 2.2, Propositions 2.4 and 2.5. Moreover, Table 1 shows the

distribution of bipartite Toeplitz graphs of order up to 20. The characterization of bipartite Toeplitz

graphs remains an open problem.

3. Factors and Decomposition of Toeplitz Graphs

We follow up the subject with a definition.

Definition 3.1. If A = [aij ] is a n × n matrix whose entries come from a field, then the permanent

of A is defined as,

per(A) =
∑

a1δ(1) . . . anδ(n),

where the summation is on all the permutations δ on {1, . . . , n}.

Theorem 3.2. If A is the adjacency matrix of a graph G, then G has {1, 2}- factor if and only if

per(A) > 0.

Theorem 3.3. Suppose G = Tn〈t1, . . . , tk〉 and S = {t1, . . . , tk}. If n − t ∈ S for some t ∈ S, then

per(A) > 0 and G has a {1, 2}-factor.

Proof. Let A be the adjacency matrix of G. The main diagonal contains only zeros. The n − 1

distinct diagonals above the main diagonal will be labeled 1, 2, . . . , n − 1. Since t and n − t ∈ S, the

diagonals with labels t and n− t are 1. Therefore a1(t+1)a2(t+2) . . . a(n−t)na(n−t+1)1 . . . ant = 1. Hence

per(A) > 0. �

Theorem 3.4. Let G = Tn〈t1, t2, t3〉, n = t1 + t3, and t3 = n
2 . If n is even, then G is decomposable

to P4.
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Table 1. The distribution of bipartite Toeplitz graphs of order up to 20

XXXXXXXXXXXXXX
Order

# of arguments
1 2 3 4 5 6 7 8 9 10

2 1 0 0 0 0 0 0 0 0 0

3 2 0 0 0 0 0 0 0 0 0

4 3 1 0 0 0 0 0 0 0 0

5 4 2 0 0 0 0 0 0 0 0

6 5 4 2 0 0 0 0 0 0 0

7 6 6 2 0 0 0 0 0 0 0

8 7 9 9 2 0 0 0 0 0 0

9 8 12 7 2 0 0 0 0 0 0

10 9 17 21 10 2 0 0 0 0 0

11 10 23 19 9 2 0 0 0 0 0

12 11 26 47 31 12 2 0 0 0 0

13 12 31 38 27 11 2 0 0 0 0

14 13 40 73 69 40 14 2 0 0 0

15 14 48 76 67 37 13 2 0 0 0

16 15 54 133 148 114 53 16 2 0 0

17 16 63 118 133 107 49 15 2 0 0

18 17 71 188 261 250 166 70 18 2 0

19 18 83 181 251 241 162 65 17 2 0

20 19 93 275 441 513 415 240 87 20 2

Proof. Let M = {i, i+ n
2 |1 ≤ i ≤

n
2 } ⊆ E(G). Clearly, M is a perfect matching. It is straightforward

to check that G\M '
⋃d−1
i=0 Ci, where d = gcd(t1, t3) and

Ci = (d− i, 2d− i, . . . , n
d
d− i)

for i = 0, 1, . . . , d−1. We consider a clockwise direction for each Ci for i = 0, 1, . . . , d−1. So each vertex

has exactly one in-neighbor and one out-neighbor. For each e = {i, j} ∈ M , consider out-neighbors
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of i and j as u and v, respectively. The path Pe = (u, i, j, v) contains e and Pe ' P4. Now, we show⋃
e∈M Pe is a decomposition of G. Clearly, M ⊆

⋃
e∈M Pe. Suppose that an edge {r, s} ∈ E(G\M).

Therefore, there is an i, 0 ≤ i ≤ (d − 1), such that {r, s} ∈ E(Ci). Now, we assume that r < s and

r = dj − i. So s = d(j + 1) − i. First let that r < n
2 and let e = {r, r + n

2 }. We have e ∈ M and

{r, s} ∈ Pe. Next, suppose that r > n
2 . Let e = {r − n

2 , r}. We have e ∈ M and {r, s} ∈ Pe. Thus

E(G) ⊆
⋃
e∈M Pe. Now, we claim that for each edge {r, s} ∈ G\M , there exists a unique edge e ∈M

such that {r, s} ∈ E(Pe). The claim is correct since, in the chosen direction, each {r, s} ∈ G\M is an

out-edge of the unique vertex. Hence the proof is complete. �

Lemma 3.5. (See [14, p. 147]) Let G be a 2m-regular graph. Suppose that T is a tree with m edges.

If diam(T ) ≤ grith(G), then G admits a decomposition to copies of T .

Corollary 3.6. Let G = Tn〈t1, . . . , t2m〉 such that n = ti + t2m−i+1 for each i, 1 ≤ i ≤ m. Let T be a

tree with m edges. If diam(T ) ≤ grith(G), then G admits a decomposition into some copies of T .

Proof. First suppose that p ∈ V (Tn〈t1, . . . , t2m〉) and p ≤ t1. Since t1 + t2m = n, N(p) = {p +

t1, . . . , p+ t2m}. Hence d(p) = 2m. Next, assume that ti−1 < p ≤ ti, for some i, 1 ≤ i ≤ 2m. Now, we

have N(p) = {p− t1, . . . , p− ti−1, p+ t1, . . . , p+ t2m−i+1} since ti+ t2m−i+1 = n. Therefore, d(p) = 2m.

Finally, suppose that t2m < p ≤ n. Clearly, N(p) = {p − t1, . . . , p − t2m}. Thus Tn〈t1, . . . , t2m〉 is a

2m-regular graph. By Theorem 3.5, the assertion holds. �
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