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ABSTRACT 
 

In the last three decades, the constitutive modelling of concrete evolved considerably. This 
paper describes various developments in this field based on different approaches such as 
elasticity, plasticity, continuum damage mechanics, plastic fracturing, endochronic theory, 
microplane models, etc. In this article the material is assumed to undergo small 
deformations. Only time independent constitutive models and the issues related to their 
implementation are discussed.  
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1. INTRODUCTION 
 

Concrete is a heterogeneous, cohesive-frictional material and exhibits complex non-linear 
inelastic behaviour under multi-axial stress states. The increased use of concrete as primary 
structural material in building complex structures such as reactor vessels, dams, offshore 
structures, etc., necessitates the development of sophisticated material models for accurate 
prediction of the material response to a variety of loading situations. The new developments 
which are taking place in the area of concrete technology resulted in new generation of 
concretes, which are better in terms of performance, such as high strength concrete (HSC) 
(Khaloo and Ahmad [106], ACI state-of art report [2], Candappa et al. [36]), reactive 
powder concrete (RPC), high performance light weight concrete (HPLC) and self 
compacting concrete, etc. Kmita [109] and Aitcin [4] further stressed the need for new 
material models. 

Concrete structures are often analyzed by means of the finite element method. Analysis 
of a structural engineering problem by finite element method is based on solution of a set of 
equilibrium equations and a kinematically admissible displacement field. These are 
supplemented by boundary and initial conditions of a particular problem. These statically 
and kinematically admissible sets are independent of each other, and to link them material 
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constitutive relations are required [35]. In recent decades, considerable effort has been 
undertaken to achieve this goal has resulted in partial success. With the present state of 
development of computer programs related to finite element method, inadequate  
modelling of engineering materials in general and concrete in particular is often one of the 
major factors limiting the capability of structural analysis (Chen [54], Bouzaiene and 
Massicotte [32]). 

Concrete contains a large number of micro-cracks, especially at the interface between 
aggregates and mortar, even before the application of the external load. Many theories 
proposed in the literature for the prediction of the concrete behaviour such as empirical 
models, linear elastic, nonlinear elastic, plasticity based models, models based on 
endochronic theory of inelasticity, fracturing models and continuum damage mechanics 
models, micromechanics models, etc., are discussed in the following sections.  

 
 

2. EMPIRICAL MODELS 
 

The material constitutive law is, in general gained through a series of experiments [52, 92, 
10]. The experimental data is then used to propose functions, which describe the material 
behaviour, by curve fitting. Obtaining the experimental data is not so easy. Even for the 
uniaxial case, there is little information available on strain softening portion and the 
difficulties are much more in case of multiaxial stress situations. One reason for insufficient 
experimental information after peak is due to difficulties associated with the testing 
techniques of materials [159]. Many testing machines used for standard compression test 
apply increasing loads rather than deformation which results in uncontrolled sudden failure 
after peak load. Several investigators have developed techniques to overcome this difficulty 
but some of them are costly which require stiff testing equipment which is not available in a 
normal testing lab (Wang et al. [197], Shah [173]). In most laboratories, cylindrical 
specimens are used for triaxial testing but the type of loading is unfortunately not truly 
triaxial in nature. The loading may be. Sometimes these are called untrue triaxial test or false 
triaxial test. Several investigators tried to develop a true triaxial system where all the three 
principal stresses can be varied independently and also for obtaining homogeneous state of 
stress in specimens. Bangash [10] reported experimental results for triaxial compression (see 
Figure 3). 

Another reason for the scarcity of test data is scatter of the test data associated with 
machine precession, testing technique and statistical variation of material properties from 
sample to sample. There were many attempts in the literature to overcome the above 
mentioned difficulties for specific loading situation such as uniaxial,  biaxial, triaxial and 
cyclic loading, etc. (see Table 1) 
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Table 1. References for different loading situations 

Loading References 

Uniaxial 

Khaloo and Ahmad   [106], Tsai   [187], Neville   [141], Domingo and 

Chu   [63], Shah   [173], Wang et al.   [197], Kotsovos and 

Newman   [110], Drawin and Pecknold   [59], Newman   [144], 

Desayi and Krishnan   [61], Smith and Young   [182] 

Biaxial Gerstle   [80, 78], Taylor   [186], Newman   [144],Kupfer   [118] 

Triaxial 

Grassl et al.   [82],Li and Ansari   [128, 7], Attard and Setunge   [8], 

Imran   [92], Khaloo and Ahmad   [106], Ahmad and Shah   [3], 

Bazant and Oh   [25], Gerstle   [79], Cedolin et al.   [46], 

Mills and Zimmerman   [137], Akroyd   [5], Domingo et al.   [64] 

Cyclic 
Bahn and Hsu   [9], Karsan and Jirsa   [105],Sinha et al.  [180], 

Fafitis and Shah   [70], Yankelevsky and Reinhardt   [202] 

Confined Iyengar et al.   [93], Mander   [133, 132], Attard and Setunge   [8] 

  

 

Figure 1. Uniaxial stress-strain curve [52] 
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Figure 2. Biaxial stress-strain curve [118] 

 
Many uniaxial and biaxial stress-strain relations are available in the literature. Figures 1, 

2 shows a typical uniaxial compressive and biaxial stress-strain curves respectively. Some of 
the uniaxial stress-strain relations proposed by various researchers are given below: 

Desayi and Krishan [61]  
 

 2

1
p

Eεσ
ε
ε

=
 

+   
 

 (1) 

 
where σ, ε  are stress and strain tensors, E is Young’s modulus, pε is strain at peak stress. 

Saenz [171]  
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where pE is Young’s modulus at peak stress. 
Smith and Young [182]  
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Figure 3.  Triaxial stress-strain curve [10] 

 

where,  

o

Ee
E

=  , oE  initial tangent modulus. 

The European Concrete Committee (CEB) for short-term loading gives a parabola and a 
straight line up to ultimate strain uε as  

 

 
2

1 ( 2)
c

u

k
k

σ η η
σ η

−
=

+ −
 (4) 

 
where cσ  is the cylindrical compressive strength of concrete. 

uσ  = Ultimate stress 
 

0.002
uεη = , 

[0.0022(1.1 )]

u

Ek
σ

=  
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The value of uε is given between 0.003 and 0.0035 

A monotonically increasing uniaxial stress and axial strain equation proposed by Sargin 
and modified by Attard and Setunge [8]  

 

 
2

21
AX BXY
CX DX

+
=

+ +
 (5) 

 
X, Y refers to stress and strain non-dimensional zed with respect to the corresponding 

values at peak stress. Where A, B, C and D are material constants [173, 197, 154]. 
Richard and Abbott [165] proposed a three parameter stress-strain relation  
 

 

1
1
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ε
σ

= +
  
 +     

 (6) 

 
where pE  is plastic modulus, oσ is a reference plastic stress, 1 pE E E= − and n is a shape 
parameter of stress-strain curve. 

Carreira and Chu   [44] proposed a stress-strain relation for reinforced concrete in tension  
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 (7) 

 
where stress corresponding to the strainε , 

'
tσ point of maximum stress, 

'
tε straincorresponding to maximum stress '

tσ , β is a parameter depends on the shape of the 
stress-strain diagram. 

Mander et al. [132]  
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 (8) 

 
where  pcσ  and pcε  are peak stress and strain of confined concrete. 
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c
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Gerstle [78] proposed a biaxial stress-strain relation by conducting biaxial compression 
tests  

 
2

(1 )
o

oct
ou

G

oct p e
γ

ττ τ
 −
 
 = −  (9) 

 
oG  = Initial shear modulus. 

octτ = Octahedral shear stress. 

octγ = Octahedral shear strain. 

pτ = Peak octahedral shear stress obtained from the failure envelope. 
Equivalent uniaxial stress-strain relations Chen [52] are also available for biaxial and 

triaxial stress conditions of concrete. For biaxial compression  
 

 21 [ 2] [ ]
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 (10) 

 
 oE =  Initial tangent modulus of elasticity. 

ic
s

ic

E σ
ε

= = Secant modulus at the maximum (peak) compressive stress. 

 icε =  Equivalent uniaxial strain corresponding to peak compressive principal stress. 
 iuε =  Equivalent uniaxial strain. 
For triaxial tension and compression  
 

 
31 [ 2] (2 1)[ ] ( )

o iu

o iu iu iu

s ic ic ic

E
ER R R
E

εσ ε ε ε
ε ε ε

=
+ + − − − +

 (11) 

 
where  

 2

( 1)

( 1)

ic
o

if ic

ic if
s

if

E
R

E

σ
σ ε
ε ε
ε

−
= −

−  (12) 

 

www.SID.ir



Arc
hi

ve
 o

f S
ID

R. Raveendra Babu, Gurmail S. Benipal and Arbind K. Singh 218 

ifσ , ifε Coordinates of some point on the descending branch of the stress-equivalent strain 
curve. 

Apart from the above many stress-strain relations specific for ascending branch and for 
different kind of loading are available in the literature (Popovics [159] and Chen [52]).  

 
 

3. LINEAR ELASTIC MODELS 
 

Linear elastic models are the simplest constitutive models available in the literature Chen 
[52], Bangash [10]. In linear elastic models concrete is treated as linear elastic until it 
reaches ultimate strength and subsequently it fails in brittle manner. For concrete under 
tension, since the failure strength is small, linear elastic model is quite accurate and 
sufficient to predict the behaviour of concrete till failure. Linear elastic stress-strain relation 
using index notation can be written as (Ahmad and Shah   [3])  

 
 ( )ij ij klFσ ε=  (13) 

 
 ij ijkl klCσ ε=  (14) 
 
where ijF is a function and ijklC represents material stiffness. 

But this simple linear elastic constitutive law is often inappropriate as concrete falls 
under pressure sensitive group of materials whose general response under imposed load is 
highly nonlinear and inelastic. Also, in case of reversal of loading, these models fail to 
predict the concrete behaviour.  

 
 

4. NONLINEAR ELASTIC MODELS 
 

Concrete under multiaxial compressive stress states exhibit significant nonlinearity and 
linear elastic models fail in these situations. Significant improvements can be made in this 
situation using nonlinear constitutive models. There are two basic approaches followed for 
nonlinear modelling namely secant formulation (Total stress-strain) and tangential stress-
strain (Incremental) formulation. Incremental stress-strain relation using index notation can 
be written in the following form   [78, 79]. 

 
 t

ij ijkl kld C dσ ε=  (15) 
 

Here  t
ijklC  is the tangent material stiffness. 

Secant formulations are reversible and path independent and are applicable primarily to 
monotonic or proportional loading situations. These models are simple extensions of linear 
elastic models and formulated by assuming functional relations for secant bulk modulus, 
secant shear modulus   [52] and assuming stresses and strains are derived as gradients of 
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stress and strain potentials   [139]. Especially the incremental or hypoelastic models using 
variable tangent moduli for describing the material stiffness can handle inelastic 
deformations and cyclic loading. 

In the elasticity based models, a suitable failure criterion is incorporated for a complete 
description of the ultimate strength surface. Defining failure itself is a difficult task. Criteria 
such as yielding, load carrying capacity and initiation of cracking have been used to define 
failure. Failure can be defined as the ultimate load carrying capacity of concrete and 
represents the boundary of the work-hardening region. Many failure criterion are available 
in the literature for normal, high strength, light weight and steel fibre concrete. The most 
commonly used failure criteria are defined in stress space by a number of constants varying 
from one to five independent control parameters. Various criteria are available for concrete 
[86, 33, 34, 27, 57, 137, 122, 30, 143, 205] and more familiar criterion like Mohr-Coulomb 
criteria, Drucker-Prager, Chen and Chen [55], Ottosen [151], Hsieh-Ting-Chen [89], Willam 
and Warnke [198], Menetrey and Willam [136], Sankarasubrsmanian and Rajasekaran 
[172], Fan and Wang [71], etc. Out of the available failure models Ottosen [151] four 
parameter and Willam and Warnke [198] five parameter models are very popular in the 
literature (see Figure 4). A more sophisticated criterion was developed by Menetrey and 
Willam [136] by modifying the well-known Hoek and Brown criterion for rock masses. This 
criterion predicts the behaviour of concrete in a better manner and is expressed by the 
following expression.  

 

 

Figure 4.  Willam and Warkne five-parameter model [198] 

 

 
' ' '

( , , ) [ 1.5 ] [ ( , ) ] 0
6 3c c c

f m r e c
f f f
ρ ρ ξξ ρ θ θ= + + − =  (16) 

 
where ξ = Hydrostatic stress invariant, ρ = Deviatoric stress invariant and θ = Deviatoric 
polar angle and r(θ,e) is an elliptic function. 

 
1

3
Iξ = , 1 iiI σ=  
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22Jρ = , 2
1
2 ij jiJ S S=  

3
3
2

2

3 3cos3
2

J

J
θ =  , 3

1
3 ij jk kiJ S S S=  

 
 

5. PLASTICITY BASED MODELS 
 

Classical plasticity based models form a big group in literature in the recent past. The 
mechanism of material non-linearity in concrete consists of both plastic slip and micro 
cracking. The large variety of models which are available to characterize the stress-strain 
and failure behaviour of material under multidimensional stress states (Domingo et al. [64], 
Chuan-Zhi et al. [56], Tsai [187], Richard et al. [165]) have certain advantages and 
disadvantages, which depend, to a large extent on their particular application. Yield criteria, 
flow rule and hardening rule are the three corner stones of any plasticity model. 

In plasticity theory the total strain increment tensor is assumed to be the sum of the 
elastic and plastic strain increment tensors  

 
 e p

ij ij ijd d dσ σ σ= +  (17) 

 

Figure 5. Microplane and stress-strain components on a microplane [24] 

 
Hooke’s law provides the necessary relationship between incremental stress and elastic 

strain. The plastic part of the strain increment tensor needs a flow rule to define the direction 
of plastic flow as explained bellow.  

 
5.1 Yield criteria 
Yield criteria of material should be known from experiments. Bridgman in his experiments 
pressure showed that hydrostatic pressure has negligible effect on the yield point but this is 
not the case with all the materials. Concrete is one such material whose behaviour  
is influenced by the effect of hydrostatic pressure. Yield criterion, which are  
hydrostatic pressure dependent and hydrostatic pressure independent, are available in the 
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literature (see Table 2). 

Table 2. Yield criterion 

Yield criterion References 

Pressure independent 
Tresca yield criterion or Maximum shear stress 

Von-Mises criterion or Maximum distortion energy criterion. 

Pressure dependent 

Rankine or Maximum tensile stress criterion 

Mohr-Coulomb criterion 

Drucker-Prager criterion 

Mises-Schleicher criterion. 

 
Some failure models, developed specifically for concrete (Ottosen [151], Willam and 

Warnke [198], Menetrey and Willam [136]) are also used as yield function by applying 
some corrections and integrated into the theory of plasticity to compute strains and stresses 
in the yielded materials [82, 140]. Apart from the hydrostatic pressure, the directional 
dependence of material is also considered while formulating yield criteria. For isotropic 
materials orientation of the principal stresses is immaterial while for an anoisotropic material 
the material properties are highly direction dependent. Hill [88] proposed a yield criteria for 
anisotropic materials. 

Any yield surface needs to satisfy certain physical requirements which ensure uniqueness 
of solution for the boundary value problem, such as condition of irreversibility of plastic 
deformation and the work which is expended on plastic deformation in a cycle is positive 
[130]. These requirements impose some restrictions on the shape of the yield surface such as 
smoothness, convexity and non-circular deviatoric section. But non-smooth yield surfaces 
are often included in the constitutive description of a material for the mere fact that an 
appropriate, smooth yield function is simply not available (Bigoni et al. [31], Jiang et. al 
[98]). But these non-smooth yield surfaces (Tresca or Mohr-Coulomb)cause an 
indeterminate situation while determining the direction of the plastic strain increment. de 
Borst[60] described an algorithm to handle the integration of stress-strain laws with singular 
yield point. 

Out of the above criteria, Menetrey and Willam [136] three-parameter model predicts 
concrete behaviour better than any other with less number of parameters and includes the 
effect of intermediate principal stress. 

 
5.2 Flow rules 
A stress increment dσ to the current state of stress σ results in elastic as well as plastic 
strain, if the stress state falls outside the elastic region. To describe the stress-strain 
relationship for an elastic-plastic deformation, we must define flow rule which define the 
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direction of the plastic strain increment without any information regarding magnitude. Flow 
rule may or may not be associated with the yield criteria.  
 

 p
ij

ij

Qd dε λ
σ

∂
=

∂
  (18) 

 
where dλ Is a non-negative scalar;   Q  is plastic potential function. 

The above equation is similar to fluid flow equation, so this is called flow rule. When  
Q = f (f is yield function), a special form of the above equation will be obtained and this is 
called an associated flow rule, meaning that the form is associated with the yield surface. 
Experimental data, however, indicate that associated flow may not be the most appropriate 
assumption for characterizing the response of concrete. Researchers like Smith et al. [181], 
Grassel [82] and Vermeer et al. [192], Frantziskonis et al. [75] have noted that concrete 
displays shear dilatancy characterized by volume change associated with shear distortion of 
the material. For typical yield functions, this characteristic is contrary to the assumption of 
associated flow. Additionally, data show that concrete subjected to compressive loading 
exhibits non-linear volume change, displaying contraction at low load levels and dilation at 
higher load levels. These characteristics of concrete response may be difficult than the 
assumption of associated flow. In order to improve modelling of concrete material response, 
non-associated flow models, in which the yield and plastic potential functions are not 
identical,in the form of equation 18, were used. Various forms of the plastic potentials were 
tried in literature with a general form as [53]. 

 
 1 2( , , ,..., )ij NQ Q σ α α α=  (19) 
 

1 2, ,..., Nα α α  are functions of hardening parameters. 
Han and Chen   [84],  Dvorkin et al.   [67, 68] used a plastic potential in the form of 

Drucker-Prager type as  
 

 1 2( , )ijQ I Jσ α α= + + Constant (20) 
 

α can be obtained from an uniaxial compression test as 
 

 1

3[1 ]
p

p
v

α
ε
ε

=

−

 

 
p

vε  is the volumetric part of the plastic strain and  is the second invariant of stress tensor. 
Onate et al. [149], Vermeer and de Borst [192] used a Mohr-Coulomb type plastic 

potential with angel of dilatancy Ψ instead of the internal friction angle φ. 
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 1
2

sin( , ) sin [cos ]
3 3
I sinQ J θ ψσ ψ ψ θ= + −  (21) 

 
where Ψ is the angle of dilatancy obtained by experiments. Grassl et al. [82] expressed a 
plastic potential in the Haigh-Westergaard space as: 

 

 2( ) 0
( ) ( ) ( )

Q A B
q k q k q k
ρ ρ ξ

= − − + =  (22) 

 
A  and B are parameters determined from the axial strain state in uniaxial and triaxial 

compression.  ( )q k  is the hardening/softening law. 
Materilas exhibitig nonassociated flow voilates the Drucker’s stability postulates. Lade et 

al. [120, 121] studied the material stability during nonassociated flow and the possible 
consequences of nonassociate flow.  

 
5.3 Hardening rules 
The law, which governs the phenomenon of configuration change in yield surface which 
occurs during loading process, is hardening rule. One of the major problems of work/strain 
hardening plasticity is finding the evolution of the yield surface (Ohtami and Chen [147]). 
Several hardening rules have been proposed in the literature. Depending on the hardening 
rule used, the material response after initial yielding differs considerably. The hardening 
rules available in the literature are isotropic hardening, kinematic hardening, independent 
hardening and mixed hardening. In isotropic hardening, the basic assumption is uniform 
expansion of the yield surface. Yield surface do not under go any distortion or translation. 
The concrete behaviour under monotonic loading has been modelled by many Imran et al. 
[91], Smith et al. [181] using isotropic hardening. 

Prager [160] proposed a model in connection with his kinematic model to predict the 
translation of the yield surface. Kinematic model assumes that, during plastic loading, the 
yield surface translates as a rigid body in stress space without any expansion. 

Suppose the initial yield surface is described by  
 

 f(σ)-k=0 (23) 
 

Due to kinematic hardening the subsequent yield surface takes the form as  
 

 f(σ-α)-k=0 (24) 
 
where α= Back stress, that represents the centre of the yield surface. 

K = Material constant representing the size of the yield surface. 
Prager proposed a linear constitutive equation for the back stress as  
 

 pd cdα ε=  (25) 
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where c = Material constant. 
The main deficiency of this model is its inconsistency when applied to subspaces. Ziegler 

[208] rectified this inconsistency by modifying  
 

 dα=(σ-α)dµ (26) 
 
where dµ=Proportionality scalar constant determined by the yield criterion. Later several 
models were developed to predict the yield center movement,on the basis of thermodynamic 
principles and to further simplify kinematic hardening rule (Voyiadjis and Rashid [193], 
Wang [196], Jiang [95, 96, 97], Lade and Kim [119], Phillips et al. [158]). 

Mixed hardening rule, which is a combination of isotropic hardening and kinematic 
hardening. In mixed hardening, the increment of plastic strain can be split in to the following 
two components  

 
 (1 )p pi pk p pd d d Md M dε ε ε ε ε= + = + −  (27) 

 
where  pidε and pkdε are isotropic and kinematic strains respectively. 

M is a mixed hardening parameter and varies between  0≤M≤1 
M = 0, Kinematic hardening and M = 1, Isotropic hardening. 
Mixed hardening can be used to simulate the Baushinger effect. Bathe [13] derived 

Prager’s mixed hardening parameter while dealing with the computational plasticity. 
In addition to the above mentioned hardening rules, several models such as Single 

hardening model (Lade et al. [119]), Multiple hardening model first proposed by Murray et 
al.  [140] further developed by Ohtami and Chen [147] and Novel hardening model by 
Grassl et al. [82], etc. have been proposed in the literature by different researchers and used 
with partial sucesses in different loading situations. Different number and type of hardening 
parameters has been used for modelling concrete. In multiparameter hardening parameter 
model each hardening parametere characterizes a loading surface starting from intial yield 
surface to the failure surface. By introducing a shape factor k the initial yield and subsequent 
loading surfaces can be written as   [85].  

 
 0ff kρ ρ= − =  (28) 

 
where   22Jρ = ,    ( , )o mk k σ is a shape factor. 

ok  is hardening parameter, fρ  defines the failure envelope. 
In the above equation, shape factor depends on the hardening parameter and the 

hardening parameter ranging between intial yield surface and the failure surface. Typically 
hardenig parameters commonly used in practice are effective plastic strain or plastic work 
defined as follows: 

Effective plastic strain  
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 p p
p d dε ε ε= ∫  (29) 

 
Plastic work  
 

 p
pW dσ ε= ∫  (30) 

 
Apart from the plastic work/effective plastic strain, many other hardening parameters 

have been used to model concrete. 
Han and chen   [85] used , , ( ( ))p

o ok k f W= , as hardening parameter in their nonuniform 
hardening plasticity model to model inelastic behaviour of concrete including brittle failure 
in tension, ductile behaviour in compression and volumetric dilation under compressive 
loading. In this model the range of the hardening parameter is taken as 1y ok k≤ ≤ . 

When o yk k= , the loading surface corresponds to initial yield surface and when the yield 

surface reaches the ultimate/failure surface the hardening parameter becomes 1ok = . When 
1ok =   the loading surface must match with the failure surface and the intersection point of 

the loading surface with hydrostatic axis can be written as  
 

 
1 o

A
k

ρ =
−

 (31) 

 
where A is a constant. 

Han and Chen have given the importance of hardening parameter in defining the loading 
surface. And also proposed a relation between hardening parameter and base plastic 
modulus. Base plastic modulus p

bH  is obtained from uniaxial compressive test and related 
to the plastic modulus as  

 
 ( , )

b

p p
mH M Hσ θ=  (32) 

 
where ( , )mM σ θ   is a modification factor. 

This model is flexible and can fit wide range of experimental data. The parameters such 
as shape factor, plastic modulus, modification factor, etc. can be adjusted and calibrated 
against additional experimental data. 

Grassl   [82] used volumetric part of the plastic strain as hardening parameter in his 
hardening law to model the influence of multiaxial stress states on the deformation capacity 
of concrete.  

 

 ( )p p
v v ij

ij

gk d d dε ε λδ
σ
∂

= =
∂

 (33) 
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where ijδ is the kronecker delta. 

In this model he used only volumetric part of the plastic strain instead of plastic strain 
itself because plastic strain as the hardening parameter cannot describe the increase of 
plastic deformation in multiaxial compression stress states. In this study the representation 
of the behaviour of concrete in uniaxial, biaxial and triaxial compression with single 
calibration is achieved. 

Murry et al. [140] used multiple hardening parameters such as current values of uniaxial 
compression, equal biaxial compression and uniaxial tension in his model to predict the 
behaviour of prestressed concrete tension structures. In this study the hardening rule 
proposed in the form of  

 
 ( )o

c c gσ σ λ= +  (34) 
 

 1 1 1( )o
t t hσ σ µ= +  (35) 

 

 2 2 2( )o
t t hσ σ µ= +  (36) 

 
where g and h are hardening functions of the equivalent plastic strain parameters,   λ is 
compressive plastic strain parameter, 1µ  and 2µ are tensile plastic strain parameters 

, o
c cσ σ Current and initial compressive yield stresses,    current and initial tensile yield 

stresses in directions 1 and 2. 
Ohtani and Chen [147] in their multiple hardening parameter model proposed a concept 

of N hardening parameters with each hardening mode associates with corresponding damage 
parameter as  

 
 1 2( , , ,..., ) 0ij Nf σ µ µ µ =  (37) 
 
 ( )M M Mµ µ ξ=  (38) 
 
where Mξ is damage parameter related to plastic strain tensor and no way related to the 
damage parameter used in continuum damage models described in the later sections of this 
article. 

Lin et al. [129] proposed a two stage hardening rule based on work hardening hypothesis. 
In the first stage the current yield stress in the uniaxial compression increases from its initial 
value 0 0.6c cfσ =  to the value corresponding to the peak of the uniaxial compressive 
curve c cfσ = . In this model the initial hardening is assumed to be deviatoric and 

characterized in terms of effective strain pε  and by work equality the rate form of the 
effective plastic strain defined as  
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p

ijp

c

d
d

σ ε
ε

σ
=   (39) 

This model satisfies Drucker’s postulate and the equation (39) is always positive. Once 
the value of cσ reaches the peak of the uniaxial compressive strength the material follow 
either hardening or softening depending on the sign of the volumetric plastic strain rate  

3

p
p

v
dd εε =  

 
The hardening-softening law valid for the second stage is given by 
if  0p

vdε ≤  (hardening)  
 

 1
p

c c vd d dσ λ σ ε= −  (40) 
 
if  0p

vdε f  (softening)  

 
 2 p p

c c v vd d dσ λ σ ε ε= −  (41) 
 
where λ and 1λ are empirical parameters. 

The advantage of this model is that the material parameters can be identified in a 
sequential manner from a set of well defined characteristic states rather than optimizing the 
data fits. Kang and William [104] proposed a concrete model based on an intermediate 
loading surface of the form  

 
 ( , , ) ( , , ) ( , , ( )) ( , , ( )) 0fail fail h hardg s softgF F F k q F c qξ ρ θ ξ ρ θ ξ ρ ξ ρ= + + =  (42) 

 
whereξ , ρ, θ are Haigh-Westergaard coordinates. 

 k, c are variables which parameterize the loading surface. 
The hardening is incorporated through the function  
 

 
1 1
'

1

( , , ( )) [( ) 1]h hardg
c o

F k q
f
ρ ξ ξξ ρ

ξ ξ
− −

= −
−  (43) 

 

where β = 
2

2

10.25[ ]
1 o

k
k

−
−

 β  is a function of the hardening parameter k. In this model when 

ok k=  and c=1, sf vanishes and the initial yield surface is described by  0fail hardhf f+ = . 
This model capture the main deformation characteristics of concrete such as pressure 
sensitivity, nonlinear behaviour, deviatoric evolution, strain softening, etc. 
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Table 3 shows some of the plasticity based models for concrete along with the hardening 
parameter used.  
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Table 3. Plasticity models for concrete 

Constitutive model  Remarks 

Grassl (2002) 

 Menetrey and Willam (1995) yield surface 
Non-associative flow rule 
Proposed a novel hardening law 
is used as hardening parameter 

Imran et al.(2001) 

 Four-parameter Hsieh-Ting-Chen Criterion 
Non-associative flow rule 
Isotropic hardening 
plastic strain is used as hardening parameter 

Kang and Willam (1999) 

 Derived from the proposed intermediate loading surface 
Non-associated plastic flow rule 
Proposed a hardening function 
0≤k≤1 is used as hardening parameter 

Feenstra and de Borst (1996) 
 Drucker-Prager yield surface 

Non-Associative flow rule 
are hardening parameters (defined in [72]). 

Onate et al. 1988 
 Modified version of Mohr-Coulomb yield surface 

Non-associative flow rule 
changes in intergranular cohesion as hardening parameter 

Ohtani and Chen 
(1988) 

 Chen and Chen yield surface (1975) 
Associative flow rule 
N number of hardening parameters 
hardening parameters: 

Han and Chen (1987) 

 Yield surface: 
Willam-Warnke five-parameter, Hsieh-Ting-Chen four 
parameter 
Non-Associative flow rule and Non uniform hardening 
rule 
effective plastic strain as hardening parameter 

Han and Chen (1985) 

 Chen and Chen yield surface (1975) 
Associative flow rule 
Multiple hardening parameters 
effective plastic strain as hardening parameter 

Vermeer and de Borst (1984) 
 Mohr-Coulomb yield surface 

Non-Associative flow rule 
cohesion and internal friction as hardening paremeters. 

Murry (1979) 

 Arrived from a biaxial failure surface 
Associative flow rule 
Multiple hardening parameters 
are hardening parameters 

Chen and Chen(1975) 
 Initial discontinuous surface, loading surface 

and failure surfaces proposed 
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In summary, the classical elasto-plasticity theory of concrete employs the chosen yield 
criterion, flow and hardening rules alongwith the observed material behaviour under 
uniaxial compressive stress. The resulting incremental stress-strain relations are then used to 
obtain the material response to any chosen stress or strain history.  

 
 

6. STRAIN SOFTENING AND STRAIN SPACE PLASTICITY 
 

For pressure dependent materials like concrete, the slope of the stress-strain curve decreases 
steadily and monotonically with the load and eventually becomes negative (Frantziskonis et 
al. [73, 74, 148]). The behaviour after the peak, where a further deformation requires a 
decrease in load is called the strain softening. Capturing the stress-strain response after peak 
(strain softening) depend on many factors like test equipment, test procedure, sample 
dimensions and stiffness of the machine, etc. (Lubliner [130], Shah [173], Chen [53], Read 
and Hegemier [162]). 

Classical plasticity theories are developed in stress space where stress and its increments are 
treated as independent variables. Eventhough stress space formulation is commonly accepted 
in engineering practice this approach has some inherent disadvantages: (a) For strain softening 
materials, there is no clarity in defining the criteria of loading-unloading. (b) For many 
structural materials, the slope of the uniaxial stress-strain curve becomes zero at the ultimate 
strength point (peak) where the stress space formulation may not offer reliable results. 

These disadvantages of stress space formulation can be eliminated with the help of strain 
space formulation. Drucker’s stability postulate which is the basis for the stress based 
formulation is invalid in strain softening portion where a weaker stability criterion proposed 
by Il’yushin   [90], provides necessary basis for the strain space formulation. 

Il’yushin’s postulate states that the work done by the external forces in a closed cycle of 
deformation of an elastic-plastic material is nonnegative.  

 
 0p

ij ijdW d dσ ε= ≥∫�  (44) 

 
However, Il’yushin did not formulate a complete plasticity theory in strain space, which 

was proposed later by Naghdi and coworkers. The basic formulation of strain space 
formulation as well as equivalance or otherwise with the stress-space formulation have been 
discussed in the literature (Naghdi and Trapp [142], Casey and Naghdi [45], Pekau et al. 
[157], Kiousis [107], Mizono and Hatanaka [138], and Barbagelata [11]). The application of 
the strain space formulation for strain softening materials for different situations are also 
discussed in the literature (Stevens [185], Iwan and Chelvakumar [94], Han and Chen [84, 
83], Dafalias [58]). Computational algorithms based on the strain space formulation was 
examined by some researchers like Iwan and Yoder [94], Runesson et al. [169] and Lee 
[127], etc. 
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7. ENDOCHRONIC THEORY OF INELASTICITY 
 

In the classical plasticity-based models, finding the yield surface pose many problems and 
an attempt was made to develop a continuous model for inelastic behaviour which did not 
require the existence of the yield condition. This model is based on the concept of intrinsic 
(or endochronic) time, defined in terms of strain or stress and used to measure the degree of 
damage occurred to the internal structure of the material. This model was primarily 
developed for metals by Valanis [188, 189, 190, 191]. Sandler [170] studied its stability and 
uniqueness and Rivlin [167] critically evaluated the theory. It has been extended to concrete 
by Bazant et al. [27, 28, 29], to fibre reinforced concrete by Reddy and Gopal [163]. 
Endochronic model can describe inelastic volume dilatancy, unloading, strain softening, 
hydrostatic pressure sensitivity and pinching of hysteresis loops under cyclic loading. 
Eventhough this model gives superior results, its popularity is restricted by its complexity. 
The numerous numerical coefficients required for the development of a constitutive law are 
estimated by curve fitting of available experimental data. The main obstacle in the 
development and application of this method is the large number of parameters required. As a 
result, this model has not undergone further development in the last 15-20 years. 

The intrinsic time ξ (on pseudo-time scale) introduced by endochronic theory is  
 

 
0 ( )

d
f

ζ ζξ
ζ

= ∫  (45) 

 
where f(ζ)>0 and dζ>0. 

The value of f(ζ) is a history-dependent material function. A typical constitutive equation 
for linear endochronic theory with pseudo-time measure ξ is as follows (which is similar to a 
linear viscoelastic model)  

 

 '
'

0

( ) kl
ij ijklE

ξ εσ ξ ξ
ε

∂
= −

∂∫  (46) 

 
 

8. FRACTURING AND CONTINUUM DAMAGE MODELS 
 

These models are based on the concept of propagation and coaleesence of microcracks, 
which are present in the concrete even before the application of the load. Damage based 
models are often used to describe the mechanical behaviour of concrete in tension. In the 
earlier class of models (Dougill [65, 66]), plastic deformation is defined by usual flow 
theory of plasticity and the stiffness degradation is modelled by fracturing theory. The 
second class of models is based on the use of a set of state variables quantifying the internal 
damage resulting from a certain loading history. The fundamental assumption in these 
models is that the local damage in the material can be averaged and represented in the form 
of damage variables, which are related to the tangential stiffness tensor of the material. The 
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models of this category can describe progressive damage of concrete occurring at the 
microscopic level, through variables defined at the level of the macroscopic stress-strain 
relationship Krajcinovic and Fonseka [112]. Continuum damage mechanics was introduced 
by Kachanov in 1958 for creep related problems and has been applied to the progressive 
failure of materials. In 1980s, it was established that damage mechanics could model 
accurately the strain-softening response of concrete (Krajcinovic [113, 114], Lemaitre [123, 
124], Chaboche [49, 51]). Considering the material as a system described by a set of 
variables and a thermodynamic potential, constitutive law is derived which has to obey the 
kinematics of damage. Various models of gradually increasing complexity with choice of 
potential and damage parameter (Scalar, Tensor, etc.) are proposed (Mazars and Cabot 
[135], Kratzig and Polling [115]) and implemented for concrete (see Table 4). Various 
damage models such as elastic damage, plastic damage (Ju [102], Lee et al. [126]), damage 
model using bounding surface concept (Voyiadjis [195, 194]),Wu and Komarakulnanakorn 
[200] presented an endochronic theory of continuum damage mechanics, models for cyclic 
loading, etc.   [183, 1, 126] are available in the literature. Continuum damage mechanics 
based material models in the literature basically followed two approaches one inspired by 
plasticity and the other followed the thermodynamic fundamentals and energy balance.In the 
first approach, similar to plasticity, assumes a damage surface, damage loading function and 
a consistency condition [195, 203] where as in the second approach [101, 100, 102, 176, 
177] assumes a free energy potential in the form of Helmholtz or Gibbs subjected to the 
satisfaction of Clausius-Duhem inequality. 

 

Table 4. Representation of damage   (Singh [178])   

Damage variable as References 

Scalar 

Kachnov   [103], Rabotov   [161], Simo and Ju   [176, 177], 

Ju   [101], Lemaitre   [123, 124, 125], Chaboche   [47, 48] 

Mazars   [135], Krajcinovic 

Vector 
Kachnov, Hayhurst and Storakers, Davison and Stevens, 

Krajcinovic and Foneska   [112], Krajcinovic   [111] 

Second rank tensor 
Rabotov, Murakami and Ohno, Vakulenko and 

Kachanov, Dragon and Mroz, Cordebois and Sidoroff, 
Betten. 

Fourth order tensor 
Chaboche   [50], Sidroff, Chow and Wang, 

Chow and Wei, Ortiz   [150] 

Eight order tensor Chaboche. 

Strain tensor 
Rudnicki and Rice   [168], Singh and Digby   [179], 

Bazant and Kim   [30], Nicholson   [145] 
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Kratzig (1998) derived a strain based damage theory by assuming a Helmholtz free 

energy expression of the form  
 

  1( , , )
2ij ijklC pψ ε

ρ
=  (47) 

where ρ= Material density. 
ijklC  Current stiffness tensor,   ijε = Strain tensor. 

P= an internal variable describing the radius of the limit state surface. 
The assumed free energy potential should satisfy the Clausius-Duhem inequality and 

assumed a damage evolution law of the form  
 

 : 0ρψ σ ε− + ≥& &  (48) 
 

 1p
H

λ= &&  (49) 

 
where λ= Consistency parameter. 

H= Hardening/softening modulus. 
Thus, the following incremental stress-strain law is obtained  
 

 4[ ]
/ ( ) ( )ij ijkl mn pq

ij mn pq kl

HCσ ε ε
ρ ε ε ε ε

∂Γ ∂Γ
= +

∂Γ ∂ ∂ ∂
&  (50) 

 
where ( , ) 0ij kl pε εΓ =&   is a consistency condition. 

Among the variety of theories that describe the behaviour of concrete, CDM has the 
advantage to be founded on a rational frame work of the material theory, therefore having a 
sound physical background (Suanno and Ramm [184]). The CDM alone is not able to 
reproduce all facets of the behaviour of quasibrittle materials. It works rather as the missing 
link between the theories like plasticity or elasticity. Therefore a fully coupled model is 
more able to describe the realistic material behaviour. The CDM formulations also are finite 
element oriented. 

 
 

9. MICROPLANE MODELS 
 

Micromechanical models attempt to develop the macroscopic stress-strain relationship from 
the mechanics of the microstructure. The only popular model in this category, which reached 
up to implementation stage, is the microplane model proposed by Bazant and his associates 
(Bazant [24]). The microplane model, first proposed by Budianski for metals in the name of 
slip theory of plasticity and later extended to concrete and other geomaterials like rock 
(Bazant et al. [14], Gambarova and Floris [76], Caner et al. [38], Carol et al. [40], Pande and 
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Sharma [155]). Unlike the other constitutive models, which characterize the material 
behaviour in terms of second order tensors, the microplane model characterize in terms of 
stress and strain vectors. The macroscopic strain and stress tensors are determined as a 
summation of all these vectors on planes of various orientations (Microplanes) under the 
assumption of static or kinematic constraint. The static constraint (the stress vector acting on 
a given plane is the projection of the macroscopic stress tensor) used in the earlier models, 
act as an obstruction for the generalization of the microplane model for post peak strain 
softening quasi-brittle materials (Bazant [23], Bazant and Oh [25, 22]). In the later models 
this shortcoming was rectified by using kinematic constraint (the strain vector on any 
inclined plane is the projection of the macroscopic strain tensor). Later the microplane 
formulation was generalized for nonlinear triaxial behaviour of concrete by Bazant and Prat 
[20, 21], implemented into nonlocal finite element code by Bazant and Ozbolt [18], Carol 
and Prat [40] and successfully used in the analysis of compression failure by Bazant and 
Ozbolt [19]. This model was further modified by introducing stress-strain boundaries by 
Bazant et al. [15, 16, 17], introduced damage by Carol et al. [41] and plasticity concepts in 
to the microplane model by Carol and Bazant [43] and the numerical algorithm was 
developed by Caner and Bazant [38]. The latest effective formulation of microplane for 
concrete is named model M4 by Bazant et al. [14]. These microplane formulations were 
thermodynamically inconsistent in some loading situations and this was rectified by Carol et 
al. [42, 117]. Further research in microplane theory is still an active area and some recent 
studies such as vertex effect at rotating principle axes by Caner et al. [37], the application of 
microplane plane model to model triaxial compression for low confinement Ghazi et al.[81], 
cyclic triaxial behaviour Ozbolt and Bazant [153], for reinforced planar members by Park 
and Kim [156], development of elastic and elasto-plastic micropolar microplane models by 
Etse et al. [69],and application to large strain problems Carol et al. [39] were reported in 
literature. 

The basic relations of the microplae model are briefly explained below The normal strain 
on the microplane is  
 
 N ij ijNε ε=  (51) 

where ij i jN n n= . 
The shear strains on each microplane are characterized by their components in the chosen 

directions M and L  
 

 M ij ijMε ε= ;  L ij ijLε ε=  (52) 
 

Static equivalence of stresses between the macro and micro levels can be enforced by 
principle of virtual work written for the surface Ω of a unit hemisphere.  

 

 2 ( )
3 ij ij N N L L M M dπ σ δε σ δε σ δε σ δε= + + Ω∫  (53) 

 
This equation means that the virtual work of macro-stresses within a unit sphere must be 
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equal to the work of micro-stresses regarded as the tractions on the surface of the sphere. 
The integral physically represents a homogenization of different contributions coming from 
planes of various orientations within the material. The kinematic constraint links the 
microplane strains to the macroscopic strain tensor, and the same constraint hold for the 
virtual strains. The volumetric and deviatoric components are  

 

 
3 3

ijkk
v ij

δδεδε δε 
= =  

 
 (54) 

 

 ( )
3
ij

D N v ij ijN
δ

δε δε δε δε= − = −  (55) 

 
 L ij ijLδε δε= ; M ij ijMδε δε=  (56) 
 

The following incremental constitutive equations for the microplane are suggested by 
Bazant et al. [14, 99]:  

 
 ; ; ;v v v D D D M T M L T LE E E Eσ ε σ ε σ ε σ ε= = = =& & & && & & &  (57) 
 
where ,v DE E  and TE  are microplane elastic moduli defined from the macroscopic material 
behaviour. 

Substitution of equations   (54),  (55) and   (56) in to equation  (53) yields a modified 
integral formula for the macroscopic stress (Carol et al. [42])  

 

 

3 [ ( ) ]
2 3 3

ij ij
ij v D ij M ij L ijN M L d

δ δ
σ σ σ σ σ

π Ω

= + − + + Ω∫
 

       3( ) ( )
2v D ij D ij M ij L ijN M L dσ σ δ σ σ σ
π Ω

= − + + + Ω∫  (58) 

where 

 

1
2D Ddσ σ
π Ω

= Ω∫
 

 
In conclusion the three major steps of microplane model are projecting macro stress/stain 

tensor to microplane using static or kinematic constraint, defining a constitutive law at 
microplane level and getting the constitutive law at macro level by summing up all the 
stress/strain vectors on microplane. 

The main advantage of microplane models is its conceptual clarity as the model is 
formulated in terms of vectors and the inherent nature of satisfying tensorial invariance 
requirements. Microplane model treats apparent corners (Vertex) which appear in the 
conventional yield surface based material models. The disadvantage in the microplane 
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model is the huge computational work and storage requirements (4 to 10 times more than the 
conventional models). 

 
 

10. COMPUTATIONAL IMPLEMENTATION 
 

Formulation and solution of inelastic constitutive equations has been an active area of 
investigation for so many years. Integration of constitutive equation, solution of nonlinear 
equation and derivation of the tangent operator are the main concerns among researchers. 
There exists a whole field spread across many disciplines with roots in numerical analysis, 
finite element method (FEM) and boundary element method (BEM) etc. Extensive studies 
have been reported in the literature (Matzenmiller and Taylor [134], Malavar et al. [131], 
Ristinmaa and Tryding [166], Hartmann and Haupt [87], Owen and Hinton [152], Dodds 
[62], Simo and Taylor [175], Wissmann and Hauck [199], Nyssen [146], Yoder and Whirly 
[204], de Borst [60], Al-Rasby [6]) related to the development of accurate, sTable, 
consistent and convergent algorithms, implementation of various yield criterion and failure 
criterion into various computational codes such as linear and non-linear finite element 
method (LFEM, NLFEM), Boundary element method (BEM), etc. These developments 
leads to various analytical tools in the form of commercial finite element codes such as 
ANSYS, ABAQUS, ADINA, ASKA, DYPLAS(Dynamic Plasticity),FLAC-3D, LS-DYNA, 
NISA, etc. These software packages often implement many of the available material models 
in the literature as these packages are not material specific. In the case of FLAC-3D (Fast 
Lagrangian Analysis of Continua in 3-Dimensions), only one failure criterion-Drucker-
Prager criterion was implemented. 

The fast development of digital computers has resulted in a tendency toward more 
complicated models with number of material parameters. But Krieg and Krieg [116] note 
that even the simplest traditional models with von Mises yield criterion is implemented with 
considerable error in structural analysis. 

The user has to take enough care while selecting the particular material model because 
these softwares often use familiar von Mises or Drucker-Prager models as default material 
models. These models do not represent the properties of the failure surface of concrete. In 
the most of the cases the failure surface obtained by these FE codes gives straight meridians 
and ignores the effect of intermediate principal stress in contrast to the original concrete 
behaviour with curved meridians and influence of intermediate principal stress component. 

Artificial neural networks(ANNs) has been used as an alternatives for characterizing the 
behaviour of concrete (Basneer [12], Shin and Pande   [174], Ghaboussi et al.   [77], Zhao et 
al. [205, 206, 207], Ren and Zhao [164] Sankarasubrsmanian and Rajasekaran [172]). An 
adequately trained and validated ANN can represent general rules governing the material 
behaviour and can predict the constitutive behaviour of material. Theory of fuzzy sets have 
also been used for material modelling by Klisinski [108].  

 
 

11. CONCLUSIONS 
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In this article concrete constitutive modelling based on various approaches, their 
implementation and the aspects related to strain space formulation are discussed. 

Elasticity based models are simple and material is modelled up to peak. Many attempts 
for proposing a suitable failure criterion for concrete can be found in literature. These efforts 
resulted in a realistic failure model such as Willam and Warnke five parameter and 
subsequently a three parameter model of Menetrey and Willam. These models represent 
concrete behaviour in a realistic manner. 

One advantage of theory of plasticity is the simple and direct calibration of the stress 
state. The yield surface corresponds to a certain stage of hardening to the strength envelop of 
concrete, and thus has a strong physical meaning. The theory of plasticity has a very long 
tradition and hence implementation of the formulation is efficient and thermodynamic 
validity is assured. One of the disadvantages is the indirect calibration of the deformation 
behaviour in the form of plastic potential. 

Plasticity theory heavily depends on the assumption of existence of a yield surface. This 
assumption poses a problem while applying plasticity theory to concrete, where a well 
defined yield surface and experimental data related to yield surface are insufficient. This 
difficulty gives rise to new theories such as endochronic theory, microplane theory, etc.  

Concrete structures subjected to complex stress states exist widely. Modern analytical 
tools like finite element method demands a realistic constitutive model. This need has given 
researchers a chance to explore various approaches such as endochronic theory, continuum 
damage mechanics, micromechanics, etc. Each of these models has their own strengths and 
weaknesses as discussed in the above sections. 

It is very important to choose a reasonable constitutive model in research and design as it 
affects the design accuracy to a great extent. More experimental results in complex stress 
states and more realistic material models are demanded for research and engineering 
application in the future. 

 
 

REFERENCES 
 

1. Abu-Lebdeh, T.M. and Voyiadjis, G.Z. Plasticity-damage model for concrete under 
cyclic multiaxial loading, J. Engrg. Mech., ASCE, 119(1993)1465-1484. 

2. ACI Committee 363, State-of-the-Art report on high-strength concrete, ACI. J., 
81(1984)364-411. 

3. Ahmad, S.H. and Shah, S.P. Complete triaxial stress-strain curves for concrete, 
J.Struct. Engrg., ASCE, 108(1982)728-742. 

4. Aitcin, Pierre-Claude,Cements of yesterday and today concrete of tomorrow, Cement 
and Concrete Research, 30(2000)1349-1359. 

5. Akroyd, T.N.W. Concrete under triaxial stress, Mag.Concrete Res., 13(1961)111-118. 
6. Al-Rasby, S.N. Solution techniques in nonlinear structural analysis, Computers and 

Structures, 40(1991)985-993. 
7. Ansari, F. and Li, Q. High-strength concrete subjected to triaxial compression, ACI 

Mat. J., 95(1998)747-755. 
8. Attard, M.M. and Setunge, S. Stress-strain relationship of confined and unconfined 

www.SID.ir



Arc
hi

ve
 o

f S
ID

R. Raveendra Babu, Gurmail S. Benipal and Arbind K. Singh 238 

concrete, ACI Mat. J., 93(1996)432-442. 
9. Bahn, B.Y. and Hsu, C.T. Stress-strain behaviour of concrete under cyclic loading, 

ACI Mat. J., 95 (1998)178-193. 
10. Bangash, M.Y.H. Concrete and Concrete Structures, Elsevier Publications, 1989. 
11. Barbagelata, A. Correspondence between stress and strain-space formulations of 

plasticity for anisotropic materials, Proc. SMiRT-9, 1987, Lausanne. 
12. Basneer, I.A. Stress-strain behaviour of geomaterials in loading reversal simulated by 

time-delay neural networks, J. Mat. Civil Engrg. Tech Note, 14(2002)270-273. 
13. Bathe, K.J. and Montans, F.J. On modelling mixed hardening in computational 

plasticity, Computers and Structures, 82(2004)535-539. 
14. Bazant. Z.P. Caner. F.C. Carol. I., Mark D.Adley and Akers. A. S, Microplane model 

M4 for concrete: I. Formulation with work- conjugate deviatoric stress, J. Engrg. 
Mech., ASCE, 126(2000)944-953. 

15. Bazant. Z.P. Xiang. Y. and Prat. P.C. Microplane model for concrete. I:stress-Strain 
boundaries and finite strain, J. Engrg. Mech., ASCE, 122(1996)245-254. 

16. Bazant. Z.P. Xiang. Y., and Prat. P. C, Microplane model for concrete. II: data 
delocalization and verification, J. Engrg. Mech., ASCE, 122(1996)255-262. 

17. Bazant. Z.P. Jirasek, M. Xiang. Y. and Prat. P.C. Microplane model with stress-strain 
boundaries and its identification from tests with localized damage, Proc. of EURO-C 
1994 Int. Conf., Innsbruck, Austria, 22-25 March, pp. 255-261. 

18. Bazant, Z.P. and Ozbolt., J., Non local microplane model for fracture, damage and 
size effects in structures, J. Engrg. Mech., ASCE, 116(1990)2484-2504. 

19. Bazant, Z.P. and Ozbolt. J., Compression failure of quasi-brittle material: Non local 
microplane model, J. Engrg. Mech., ASCE, 118(1992)540-556. 

20. Bazant. Z.P. and Prat. P. C, Microplane model for brittle plastic materials: I. Theory, 
J. Engrg. Mech., ASCE, 111(1988)1672-1688. 

21. Bazant. Z.P. and Prat. P.C., Microplane model for brittle plastic materials: II. 
Verification, J. Engrg. Mech., ASCE, 111(1988)1689-1702. 

22. Bazant. Z.P. and Oh. B.H., Microplane model for progressive failure of concrete and 
rock, J. Engrg. Mech., ASCE, 111(1985)559-581. 

23. Bazant. Z.P. and Gambarova. P.G, Crack shear in concrete: crack band microplane 
model, J. Engrg. Mech., ASCE, 110(1984)2015- 2035. 

24. Bazant. Z.P., Microplane model for strain controlled inelastic behaviour, Int. 
conference on constitutive equations for engineering materials: Theory and 
application, Tuscon, Arizon, USA, 10-14, Jan 1983. 

25. Bazant, Z.P. and Oh, B.H, Strain-rate effect in rapid triaxial loading of concrete, J. 
Engrg. Mech., ASCE, 108(1982) 764-782. 

26. Bazant, Z.P., and Ysubaki, T, Total Strain Theory And Path - Dependence of 
Concrete, J. Engrg. Mech., ASCE, 106(1980)1151-1173. 

27. Bazant, Z.P. and Bhat, P.D., Endochronic theory of inelasticity and failure of concrete, 
J. Engrg. Mech., ASCE, 106(1976)701-721. 

28. Bazant, Z.P. Endochronic inelasticity and incremental plasticity, Int. J. Solids Struct., 
14(1978)691-714. 

29. Bazant, Z.P. and Shieh, H. Endochronic model for non-linear triaxial behaviour of 

www.SID.ir



Arc
hi

ve
 o

f S
ID

CONSTITUTIVE MODELLING OF CONCRETE: AN OVERVIEW... 

 

239

concrete, Nucl. Engrg. Design., 47(1978)305-315. 
30. Bazant, Z.P., and Kim, S.S. Nonlinear creep of concrete adaptation and flow, J. 

Engrg. Mech., ASCE, 105(1979)429-446. 
31. Bigoni, D., Piccolroaz, A, Yield criteria for quasibrittle and frictional materials, Int. J. 

Solids Struct., 41(2004)2855-2878. 
32. Bouzaiene, A. and Massicotte, B. Hypoelastic tridimensional model for 

nonproportional loading of plain concrete, J. Engrg. Mech., ASCE, 123(1997)1111-
1120. 

33. Bresler, B. and Pister, K.S. Strength of concrete under combined stress, ACI J.,Proc. 
55(1958)321-345. 

34. Bresler, B. and Pister, K.S. Failure of plain concrete under combined stress, Proc. 
ASCE, 81(1955)674-345. 

35. Buyukozturk, O. and Shareef, S.S. Constitutive modelling of concrete in finite 
element analysis, Computers and Structures, 21(1985)581-610. 

36. Candappa, D.C. Sanjayan, J.G. and Setunge, S., Complete stress-strain curves of high-
strength concrete, J. Mat. Civil Engrg., ASCE, 13(2001)209-215. 

37. Caner, F.C. Bazant, Z.P. and Cervenka, J. Vertex Effect in Strain-Softening Concrete 
at Rotating Principal Axes, J. Engrg. Mech., ASCE, 128(2002)24-33. 

38. Caner. F.C. and Bazant. Z.P. Microplane model M4 for concrete: II. Algorithm and 
calibration, J. Engrg. Mech., ASCE, 126(2000)954-960. 

39. Carol, I. Jirasek, M. and Bazant, Z.P. A framework for microplane models at large 
strain, with application to hyperelasticity, Int. J. Solids Struct, 41(2004)511-557. 

40. Carol. I. and Prat. P.C. New explicit microplane model for concrete: Theoretical 
aspects and numerical implementation, Int. J. Solids Struct, 29(1992)1173-1191. 

41. Carol. I. Bazant Z.P. and Prat. P.C. Geometric Damage Tensor Based on Microplane 
Model, J. Engrg. Mech., ASCE, 117(1991)2429-2448. 

42. Carol. I. Jirasek, M. and Bazant Z.P. A thermodynamically consistent approach to 
Microplane theory. Part I: Free energy and consistent microplane stresses, Int. J. 
solids structures. 8(2001)2921 - 2931. 

43. Carol. I. Bazant Z.P. Damage and plasticity in microplane theory, Int. J. Solids Struct, 
34(1997)3807-3835. 

44. Carreira. D.J. Chu, Kuang-Han, Stress-strain relationship for reinforced concrete in 
tension, ACI. J. 84(1986)21-28. 

45. Casey, J. and Naghdi, P. M, On the nonequivalance of the stress space and strain 
space plasticity theory, J. App. Mech, ASME, 50(1983)350-354. 

46. Cedolin, L. Crutzen, Y.R.J. and Poli, S.D. Triaxial stress-strain relationship for 
concrete, J. Engrg. Mech., ASCE, 103(1977)423-439. 

47. Chaboche, J.L. Continuum damage mechanics I. General concepts, J. App. Mech., 
ASME, 55(1988)55-59. 

48. Chaboche, J.L. Continuum damage mechanics II. Damage growth, crack initiation and 
crack growth, J. App. Mech., ASME, 55(1988)65-72. 

49. Chaboche, J.L. Continuum damage mechanics :Present state and future trends, Nucl. 
Engrg. Design., 105(1987)19-33. 

50. Chaboche, J.L. Mechanical Behaviour of Anisotropic Solid, Ed. J.P. Boehler, 

www.SID.ir



Arc
hi

ve
 o

f S
ID

R. Raveendra Babu, Gurmail S. Benipal and Arbind K. Singh 240 

Martinus Nijhoff, 1982. 
51. Chaboche, J.L. Continuum damage mechanics-A tool to describe phenomena before 

crack initiation, Nucl. Engrg. Design., 64(1981)233-247. 
52. Chen, W.F. Constitutive Equations for Engineering Materials, Vol. 1: Elasticity and 

Modelling, Elsevier Publications, 1994. 
53. Chen, W.F. Constitutive Equations for Engineering Materials, Vol. 2: Plasticity and 

modelling, Elsevier Publications, 1994. 
54. Chen, W.F. Plasticity in Reinforced Concrete, McGraw-Hill Book Company, 1982. 
55. Chen, A. C.T. and Chen, W.F. Constitutive relations for concrete, J. Engrg. Mech., 

ASCE, 101(1975)465-481. 
56. Chuan-Zhi, W. Zhen-Hai, G. and Zxiu-Qin, G, Experimental investigation of biaxial 

and triaxial compressive strength, ACI Mat. J., 84(1987)92-100. 
57. Coon, M.D. and Evans, R.J. Incremental constitutive laws and their associated failure 

criteria with application of plain concrete, Int. J. of solids structures. 8(1972)1169-
1183. 

58. Dafalias, Y.F. Elasto-plastic coupling within a thermodynamic strain space 
formulation of plasticity, Int. J. Non-Linear Mech., 12(1977)327-337. 

59. Darwin, D. and Pecknold, D.A.W. Analysis of RC shear panels under cyclic loading, 
J. Struct. Eng.,ASCE, 102(1976)355-369. 

60. de Borst, R. Integration of plasticity equations for singular yield functions, Computers 
and Structures., 26(1987)823-829. 

61. Desayi, P. and Krishnan, S., Equation for the stress-strain curve of concrete, ACI J., 
Vol. 61(1964)345-350. 

62. Dodds, R.H.Jr. Numerical techniques for plasticity computations in finite element 
analysis, Computers and Structures, 26(1987)767-779. 

63. Domingo, J.C. and Chu, K.H. Stress-strain relationship for reinforced concrete in 
tension, ACI Mat. J., 83(1986)21-27. 

64. Domingo. S. Ignacio, C. Ravindra, G. and Guillermo, E. Study of the behaviour Of 
concrete under triaxial compression, J. Eng. Mech., ASCE, 128(2002)156-163. 

65. Dougill, J.W. Some remarks on path independence in the small in plasticity, 
Quart.App. Math., 32(1975)233-243. 

66. Dougill, J.W. On sTable progressively fracturing solids, ZAMP, 27(1976)423-437. 
67. Dvorkin, E.N. Torrent, R.J. and Alvaredo, A.M. A constitutive relation for concrete, 

Proc. first Int. Conf. Computational plasticity, Barcelona, Spain, 6-10 April, 1987, pp. 
1415-1430. 

68. Dvorkin, E.N. Cuitino, A.M. and Gioia, G. A concrete material model based on non-
associated plasticity and fracture, Engrg. Comput., 6(1989)281-294. 

69. Etse, G. Nieto, M. and Steinmann, A micropolar microplane theory, Int. J. Eng. Sci., 
41(2003)1631-1648. 

70. Fafitis, A. Shah, S.P. Constitutive model for biaxial cyclic loading of concrete, J. 
Engrg. Mech., ASCE, 112(1986)760-775. 

71. Fan, Sau-Cheong., and Wang, F, A new strength criterion for concrete, ACI Struct. J., 
99(2002)317-326. 

72. Feenstra, P.H. and de Borst, R, A composite plasticity model for concrete, Int. J. 

www.SID.ir



Arc
hi

ve
 o

f S
ID

CONSTITUTIVE MODELLING OF CONCRETE: AN OVERVIEW... 

 

241

Solids Struct, 33(1996)707-730. 
73. Frantziskonis, G. and Desai, C.S. Constitutive model with strain softening, Int. J. 

Solids Struct, 23(1987)733-750. 
74. Frantziskonis, G. and Desai, C.S. Analysis of a strain softening constitutive model, 

Int. J. Solids and struct. 23(1987)751-767. 
75. Frantziskonis, G. Desai, C.S. and Somasundaram, S., Constitutive model for 

nonassociative behaviour, J. Engrg. Mech., ASCE, 112(1986)932-946. 
76. Gambarova, P.G. and Floris, C. Microplane model for concrete subject to plane 

stresses, Nucl. Engrg. and Des., 97(1986)31-48. 
77. Ghaboussi, J. Garrett, Jr.J.H. and Wu, X, Knowledge based modeling of material 

behaviour with neural networks, J. Engrg. Mech., ASCE, 117(1991)132-153. 
78. Gerstle, K.H. Simple formulation of biaxial concrete behaviour, ACI Journal, 

78(1981)62-68. 
79. Gerstle, K.H. Simple formulation of triaxial concrete behaviour, ACI Journal, 

78(1981)382-387. 
80. Gerstle, K.H. Aschi, H. Bellotti, R. Bertacchi,P., Katsovos, M.D., Hon-Yim Ko., 

Linse, D. Newman, J.B. Rossi, P. Schickert, G., Tayler, M.A. Traina, L.A. Winkler, 
H. and Zimmerman, R.M, Behaviour of concrete under multiaxial stress states, J. 
Engrg. Mech., ASCE, 106(1980)1383-1403. 

81. Ghazi, M. Attard, M.M. and Foster, S.J. Modelling of triaxial compression using 
microplane formulation for low confinement, Computers and Structures, 
80(2002)919-934. 

82. Grassl, P. Lundgren, K. and Gyltoft, K. Concrete in compression: A plasticity theory 
with novel hardening law, Int. J. Solids and struct., 39(2002)5205-5223. 

83. Han, D.J. and Chen, W.F. Constitutive modelling in analysis of concrete structures, J. 
Engrg. Mech., ASCE, 113(1987)577-593. 

84. Han, D.J. and Chen, W.F. strain space plasticity formulation for hardening-softening 
materials with elastoplastic coupling, Int. J. Solids Struct., 22(1986)935-950. 

85. Han, D.J. and Chen, W.F. A nonuniform hardening plasticity model for concrete 
materials, Mech. Mat., 4(1985)283-302. 

86. Hannat, D.J. and Frederick, C. O, Failure criteria for concrete in compression, Mag. 
Concrete Res., 20(1968)137-144. 

87. Hartmann, S. and Haupt, P. Stress computation and consistent tangent operator using 
non-linear kinematic hardening models, Int. J. Num. Meths. Engrg., 36(1993)3801-
3814. 

88. Hill, R. The Mathematical Theory of Plasticity, Oxford University Press, New York, 
1950. 

89. Hsieh, S.S. Ting, E.C. and Chen, W.F. A plastic-fracture model for concrete, Int. J. 
Solids Struct., 18(1982)181-197. 

90. Il’yushin, A.A. On the postulate of plasticity, J. Appl. Math. and Mech., 25(1961)746-
752. 

91. Imran, I. and Pantazopoulou, S.J. Plasticity model for concrete under triaxial 
compression, J. Engrg. Mech., ASCE, 127(2001)281-290. 

92. Imran, I. and Pantazopoulou, S.J. Experimental study of plain concrete under triaxial 

www.SID.ir



Arc
hi

ve
 o

f S
ID

R. Raveendra Babu, Gurmail S. Benipal and Arbind K. Singh 242 

stress, ACI Mat. J., 93(1996)589-601. 
93. Iyengar, K.T.S. Desayi, P. and Reddy, K.N. Stress-strain characteristics of concrete 

confined in steel binders, Mag.Concrete Res., 22(1970)173-184. 
94. Iwan, W.D. and Yoder, J. Computational aspects of strain space plasticity, J. Engrg. 

Mech., ASCE, 109(1983)231-243. 
95. Jiang, W. General kinematic-isotropic hardening model, J.Engrg. Mech., ASCE, 

125(1999)487-490. 
96. Jiang, W. Hardening models and their predictions of material response, J.Engrg. 

Mech., ASCE, 125(1999)382-391. 
97. Jiang, W. New kinematic hardening model, J.Engrg. Mech., ASCE, 120(1994)2201-

2222. 
98. Jiang, J. and Pietruszczak, S., Convexity of yield loci for pressure sensitive materials, 

Computers and Geomechnics., (1988)51-63. 
99. Jirasek, M. and Bazant, Z.P. Inelastic Analysis of Structures."John Wiley & Sons., 

New York, 2001 
100. Ju, J.W. and Lee, X. Micromechanical damag models for brittle solids. I: Tensile 

loadings, J.Engrg. Mech., ASCE, 117(1991)1495-1513. 
101. Ju, J.W. Isotropic and anisotropic damage variables in continuum damage mechanics, 

J.Engrg. Mech., ASCE, 116(1990)2764-2770. 
102. Ju, J.W. On energy based coupled elasto-plastic damage theories: Constitutive 

modelling and computational aspects, Int. J. Solids and Struct., 25(1989)803-833. 
103. Kachanov, L.M. Introduction to Continuum Damage Mechanics, Kulwer Academic 

Publishers, Dordrecht, Netherlands, 1986. 
104. Kang, H.D. and Willam, K.J. Localization characteristics of triaxial concrete model, J. 

Engrg. Mech., ASCE, 125(1999)941-950. 
105. Karsan, P. and Jirsa, J.O. Behaviour of concrete under compressive loading, J. Struct. 

Eng. ASCE, 95(1969)2543-2563. 
106. Khaloo, AR. and Ahmad, S.H. Behaviour of high strength concrete under torsional 

triaxial compression, ACI Mat. J., 86(1989)550-558. 
107. Kiousis, P.D. Strain space approach for softening plasticity, J. Engrg. Mech., ASCE, 

113(1987)1365-1386. 
108. Klisinski, M. Plasticity theory based on fuzzy sets, J. Engrg. Mech., ASCE, 

114(1988)563-582. 
109. Kmita, A. A new generation of concrete in civil engineering, J. Mat. Processing 

Tech., 106(2000)80-86. 
110. Kotsovos, M.D. and Newman, J.B. Generalized stress-strain relation for concrete, J. 

Engrg. Mech., ASCE, 104(1978)845-856. 
111. Krajcinovic, D. Constitutive equations for damaging materials, J. Appl. Mech., 

50(1983)355-360. 
112. Krajcinovic, D. and Foneska, G.U. The continuous damage theory of brittle materials 

Part I: General theory, J. App. Mech., 48(1981)809-815. 
113. Krajcinovic, D. and Mastilovic, S. Some fundamental issues of damage mechanics, 

Mech. Mat., 21(1995)217-230. 
114. Krajcinovic, D. Damage mechanics, Mech. Mat., 8(1989)117-197. 

www.SID.ir



Arc
hi

ve
 o

f S
ID

CONSTITUTIVE MODELLING OF CONCRETE: AN OVERVIEW... 

 

243

115. Kratzig, W.B. and Polling, R. Elasto-plastic damage-theories and elasto-plastic 
fracturing theories-a comparison, Comp. Mat. Sciences., 13(1998)117-131. 

116. Krieg, R.D. and Krieg, D.B. Accuracies of numerical solution methods for elastic-
perfectly plastic model, ASME J. Pressure Vessel Technology, 99(1977)510-515. 

117. Kuhl, E. Steinmann, P. and Carol, I. A thermodynamically consistent approach to 
microplane theory. Part II. Dissipation and inelastic constitutive modelling, Int. J. 
Solids and Struct., 38(2001)2933-2952. 

118. Kupfer, H. Hilsdorf, H.K. and Rush, H. Behaviour of concrete under biaxial stresses, 
ACI Journal, 66(1969)656-666. 

119. Lade, P.V. and Kim, M.K. Single hardening constitutive model for soil, rock and 
concrete, Int. J. Solids and Struct., 32(1995)1963-1978. 

120. Lade, P.V. Nelson, R.B. and Lto, Y.M. Instability of granular materials with 
nonassociated flow, J. Engrg. Mech., ASCE, 114(1988)2173-2191. 

121. Lade, P.V. Nelson, R.B. and Lto, Y.M. Nonassociated flow and stability of grannular 
materials, J. Engrg. Mech., ASCE, 113(1987)1302-1318. 

122. Lade, P.V. Three parameter failure criterion for concrete, J. Engrg. Mech., ASCE, 
108(1982)850-863. 

123. Lamaitre, J. A Course on Damage Mechanics, Springer-Verlag. 1992. 
124. Lamaitre, J. How to use damage mechanics, Nucl. Engrg. Design., 80(1984)233-245. 
125. Lamaitre, J. A continuous damage mechanics model for ductile fracture, J. Engrg. 

Mat. Tech., 107(1985)83-89. 
126. Lee, J. and Fenves, G.L. Plastic-Damage model for cyclic loading of concrete 

structures, J. Engrg. Mech., ASCE, 124(1998)892-900. 
127. Lee, J.H. Advantages of strain space formulation in computational plasticity, 

Computers and Structures, 54(1995)515-520. 
128. Li, Q. and Ansari, F. High-strength concrete in triaxial compression by different sizes 

of specimens, ACI. Mat. J, 97(2000)684-689. 
129. Lin, F.B. Bazant, Z.P. Chern, J.C. and Marchertas, A. M, Concrete model with 

normality and sequential identification, Computers and Structures, 26(1987)1011-
1025. 

130. Lubliner, J. The Plasticity Theory, Macmillan Publishing Company, NY, 1990. 
131. Malavar, L.J. Craford, J.E. and Wesevich, J.W. A Plasticity Concrete Material Model 

For DYNA3D, Int. J. Impact Engrg. 19(1997)847-873. 
132. Mander, J.B. Priestley, M. J. N., and Park, R, Theoretical stress-strain model for 

confined concrete, J.Struct. Engrg., ASCE, 114(1988)1804-1825. 
133. Mander, J. B., Priestley, M. J. N., and Park, R. "Observed stress-strain model for 

confined concrete." J. Struct. Engrg., ASCE, No. 8, 114(1988)1827-1849. 
134. Matzenmiller, A. and Taylor, R. L, A return mapping algorithm for isotropic elasto-

plasticity, Int. J. Num. Meth. Engrg., 37(1994)813-826. 
135. Mazars, J. and Pijaudier-Cabot, Continuum damage theory - Application to concrete, 

J. Engrg. Mech., ASCE, 115(1989)345-365. 
136. Menetrey, P.H. and Willam, K.J. Triaxial failure criterion for concrete and its 

generalization, ACI. Struct. J, 92(1995)311-318. 
137. Mills, L.L. and Zimmerman, R.M. Compressive strength of plain concrete under 

www.SID.ir



Arc
hi

ve
 o

f S
ID

R. Raveendra Babu, Gurmail S. Benipal and Arbind K. Singh 244 

multiaxial loading conditions, ACI. J., 67(1970)802-807. 
138. Mizono, E. and Hatanaka, S. Compressive softening model for concrete J. Engrg. 

Mech., ASCE, 118(1992)1546-1563. 
139. Mroz, Z. Mathematical Models of Inelastic Material Behaviour, Lect. Notes, Solid 

Mech. Div., Univ. of Waterloo, Waterloo, Ontario, 1973. 
140. Murray, D.W. Chitnuyanondh, L. Rijub-Agha, K.Y. and Wong, C, Concrete plasticity 

theory for biaxial stress analysis, J. Engrg. Mech., ASCE, 105(1979)989-1006. 
141. Neville, A.M. Properties of Concrete, English language book society,Longman, Third 

edition, 1988. 
142. Naghdi, P.M. and Trapp, J.A. The significance of formulating plasticity theory with 

reference to loading surfaces in strain space, Int. J. Engrg. Sci., 13(1975)785-797. 
143. Nannant, D.J. and Frederick, C.O. Failure criteria for concrete in compression, Mag. 

Concrete Res., 20(1968)64. 
144. Newman, K. Concrete Systems, Chapter VIII in Composite materials, L.Holiday, 

Editor, Elsevier, Amsterdam, (1966)336-452. 
145. Nicholson, D.W. Constitutive model for rapidely damaged structural material, Acta. 

Mech., 39(1981)195-205. 
146. Nyssen, C. An efficient and accurate iterative method, allowing large incremental 

steps, to solve elasto-plastic problems, Computers and Structures, 13(1981)63-71. 
147. Ohtami, Y. and Chen, W.F. Multiple hardening plasticity for concrete materials, J. 

Engrg. Mech., ASCE, 114(1988)1890-1910. 
148. Ohtani, Y. and Chen, W.F. A plastic-softening model for concrete materials, 

Computers and Structures, 33(1989)1047-1055. 
149. Onate, E. Oller, S. Oliver, J. and Lubliner, J. A constitutive model for cracking of 

concrete based on the incremental theory of plasticity, Engrg. Comput., 5(1988)309-
319. 

150. Ortiz, M. A constitutive theory for inelastic behaviour of concrete, Mech. Mater., 
4(1985)67-93. 

151. Ottosen, N.S. A failure criterion for concrete, J. Engrg. Mech., ASCE, 103(1977)527-
535. 

152. Owen, D.R.J. and Hinton, E. Finite elements in plasticity, Pineridge Press Ltd, 
Swansea, UK, 1980. 

153. Ozbolt. J. and Bazant. Z.P. Microplane Model for Cyclic Triaxial behaviour of 
Concrete, J. Engrg. Mech., ASCE, 118(1992)1365-1386. 

154. Palmquist, S.M. and Jansen, D.C. Postpeak strain-stress relationship for concrete in 
compression, ACI. Mat. J., 98(2001)213-219. 

155. Pande G.N. and Sharma K.G. Multilaminate Model of clays a numerical evolution of 
the influence of rotation of the principal stress axes, Int. J. Numerical and Analytical 
Methods in Geomechanics., 7(1983)397-418. 

156. Park. H. and Kim. H. Microplane model for reinforced concrete planar members in 
tension-compression, ASCE, J. Struct. Eng., 129(2003)337-345. 

157. Pekau, O.A. Zhang, Z.X. and Liu, G.T., Constitutive model for concrete in strain 
space, J. Engrg. Mech., ASCE, 118(1992)1907-1927. 

158. Phillips, A. Tang, J.L. and Ricciuti, M. Some new observations on yield surfaces, Acta 

www.SID.ir



Arc
hi

ve
 o

f S
ID

CONSTITUTIVE MODELLING OF CONCRETE: AN OVERVIEW... 

 

245

Mechanica, 20(1974)23-39. 
159. Popovics, S. A review of stress-strain relationships for concrete, ACI J., 67(1970)243-

248. 
160. Prager, W. A new method of analyzing stresses and strains in work-hardening plastic 

solids, J. App. Mech., 23(1956)493-496. 
161. Robotov, Y.N. Creep Problems in Structural Mechanics, North Holland Publishing 

Company, Amsterdam, 1969. 
162. Read, H.E. and Hegemier, G.A., Strain softening of rock, soil and concrete-A review 

article, Mech. Mat., 3(1984)271-294. 
163. Reddy, D.V. and Gopal, K.R. Endochronic constitutive modeling of marine fiber 

reinforced concrete, Comp. Modeling of RC struct., Edited by Hinton, E and Owen, 
R., (1986)154-186. 

164. Ren, L.Q. and Zhao, Z.Y. An optimal neural network and concrete strength modeling, 
J. Advances in Eng. Software, UK, 33(2002)117-130. 

165. Richard, R.M. and Abbott, B.J. Versatile elastic-plastic stress-strain formula, J. 
Engrg. Mech., ASCE, 101(1975)511-515. 

166. Ristinmaa, M. and Tryding, J. Exact integration of constitutive equations in elasto-
plasticity, Int. J. Num. Meth. Engrg., 36(1993)2525-2544. 

167. Rivlin, R.S. Some comments on the endochronic theory of plasticity, Int. J. Solids and 
Struct., 17(1981)231-248. 

168. Rudnicki, J.W. and Rice, J.R. Conditions for the localization of deformation in 
pressure sensitive dilatant material, J. Mech. Phys Solids., 23(1975)371-394. 

169. Runesson, K. Larsson, R., and Sture, S, Characteristics and computational procedures 
in softening plasticity, J. Engrg. Mech., ASCE, 115(1989)1628-1646. 

170. Sandler, I.S. On the uniqueness and stability of endochronic theories of material 
behaviour, J. App. Mech., 45(1978)263-266. 

171. Sanez, L.P. Discussion of ’Equation for the stress-strain curve of concrete’ by Desayi 
and Krishnan, ACI. J. Proc., 61(1964)1229-1235. 

172. Sankarasubramanian, G. and Rajasekaran, S. Constitutive modeling of concrete using 
a new failure criterion, Computers and Structures, 58(1996)1003-1014. 

173. Shah, S.P. Strain softening stress-strain relations for concrete, Mech. Engrg. Mat., 
Edited by C.S. Desai and R.H. Gallagher, John Wiley & Sons, 1984(579-590). 

174. Shin, H.S. and Pande, G.N. On self learning finite element codes based on monitored 
response of structures, Comp. and Geomechanics, 27(2000)161-178. 

175. Simo, J.C. and Taylor, R.L. A return mapping algorithm for plane stress elasto-
plasticity, Int. J. Num. Meth. Engrg., 22(1986)649-670. 

176. Simo, J.C. and Ju, J.W. Strain and stress based continuum damage models-I. 
Formulation, Int. J. Solids. Struct., 23(1987)821-840. 

177. Simo, J.C. and Ju, J.W. Strain and stress based continuum damage models-II. 
Computational aspects, Int. J. Solids. Struct., 23(1987)841-869. 

178. Singh, A.K. Finite element analysis of damage coupled elastoplastic problems based 
on continuum damage mechanics, Ph.D thesis, Indian Institute of Science, Bangalore, 
India, 1999. 

179. Singh, U.K. and Digby, P.J. A continuum damage model for simulation of the 

www.SID.ir



Arc
hi

ve
 o

f S
ID

R. Raveendra Babu, Gurmail S. Benipal and Arbind K. Singh 246 

progressive failure of brittle rocks, Int. J. Solids. Struct., 25(1989)647-663. 
180. Sinha, B.P. Gerslt, K.H. and Tulin, L.G. Stress-strain relations for concrete under 

cyclic loading, ACI. J, 61(1964)195-210. 
181. Smith, S.S. Willam, K.J. Gerstle, K.H. and Sture, S. Concrete over the top, or is there 

life after peak? , ACI Mat. J., 86(1989)491-497. 
182. Smith, G.M. and Young, L.E. Ultimate flexural analysis based on stress-strain curves 

of cylinders, ACI J., 53(1956)597-610. 
183. Suaris, W. Ouyang, C. and Fernando, V.M. Damage model for cyclic loading of 

concrete, J. Engrg. Mech., ASCE, 116(1990)1020-1035. 
184. Suanno, R. and Ramm, E. Analysis of three-dimensional reinforced concrete 

structures with coupling of plasticity and damage theory, Proc. of the US-EUROPE 
workshop on fracture mechanics and damage in quassibrittle structures., Prague, 
Chech Republic, Sept. 21-23, 1994. 

185. Stevens, D.J. and Liu, D. Strain based constitutive model with mixed evolution rules 
for concrete, J. Engrg. Mech., ASCE, 118(1992)1184-1200. 

186. Taylor, M.A. Jain, A.K. and Ramey, M.R. Path dependent biaxial compressive testing 
of an all light weight concrete, ACI. J, 69(1972)758-764. 

187. Tsai, W.T. Uniaxial compressional stress-strain relation of concrete, J. Engrg. Mech., 
ASCE, 114(1988)2133-2136. 

188. Valanis, K.C. A theory of visco-plasticity with out a yield surface, part I: General 
theory, Archives of Mech., 23(1971)517-551. 

189. Valanis, K.C. Fundamental consequences of a new intrinsic time measure-plasticity as 
a limit of the endochronic theory, Archives of Mech., 32(1980)171-191. 

190. Valanis, K.C. and Lee, C.F. Some recent developments of the endochronic theory with 
applications, Nucl. Engrg. and Des., 69(1982)327-344. 

191. Valanis, K.C. and Lee, C.F. Endochronic plasticity:physical basis and applications 
with applications, Mech. of Engrg. Mat., Edited by C.S. Desai and R.H. Gallagher, 
John Wiley & Sons, 1984(591-609). 

192. Vermeer, P.A. and de Borst, R. Non-associated plasticity for soils, concrete and rock, 
Heron, 29(1984)1-64. 

193. Voyiadjis, G.Z. and Rashid K. Abu Al-Rub, Thermodynamic based model for the 
evolution of the backstress in cyclic plasticity, Int. J. plasticity., 19(2003)2121-2147. 

194. Voyiadjis, G.Z. and Abu.Lebdeh, J.M. Plasticity model for concrete using the 
bounding surface concept, Int. J. plasticity., 10(1994)1-21. 

195. Voyiadjis, G.Z. and Abu.Lebdeh, J.M. Damage model for concrete using the bounding 
surface concept, J. Engrg. Mech., ASCE, 119(1993)1865-1885. 

196. Wang, H. and Barkey, M.E. A strain space nonlinear kinematic hardening /softening 
plasticity model, Int. J. Plasticity., 15(1999)755-777. 

197. Wang, P.T. Shah, S.P. and Naaman, A.E. Stress-strain curves of normal and 
lightweight concrete in compression, ACI J., 75(1978)603-611. 

198. Willam, K.J. and Warnke, E.P. Constitutive model for triaxial behaviour of concrete, 
Concrete structures subjected to triaxaial stresses, International Association for 
Bridges and Structural Engineering, Bergamo, Italy, May 1974. 

199. Wissmann, J.W. and Hauck, C. Efficient elastic-plastic finite element analysis with 

www.SID.ir



Arc
hi

ve
 o

f S
ID

CONSTITUTIVE MODELLING OF CONCRETE: AN OVERVIEW... 

 

247

higher order stress-point algorithms, Computers and Structures, 17(1983)89-95. 
200. Wu, H.C. and Komarakulnanakorn, C. Endochronic theory of continuum damage 

mechanics, J. Engrg. Mech., ASCE, 124(1998)200-208. 
201. Yamaguchi, E. and Chen, W.F. Post-Failure behaviour of concrete materials in 

compression, Engrg. Fracture mech., 37(1990)1011-1023. 
202. Yankelevsky, D.Z. and Reinhardt, H.W. Model for cyclic compressive behaviour of 

concrete, J. Struct. Engrg., ASCE, 113(1987)228-240. 
203. Yazdami, S. and Schreper, H.C. Combined plasticity and damage mechanics model 

for plain concrete, J. Engrg. Mech., ASCE, 116(1990)1435-1450. 
204. Yoder, P.J. and Whirley, R.G. On the numerical implementation of elasto-plastic 

models, J. App. Mech., 51(1984)283-288. 
205. Zhao, Z.Y. and Ren, L.Q. Failure Criterion of Concrete under Triaxial Stresses Using 

Neural networks, J. Computer-aided Civil and Infrastructure Eng., USA, 17(2002)68-
73. 

206. Zhao, Z.Y. Concrete Strength under Triaxial Stress-A Neural Network Approach, 1st 
Int. Conf. Advances in Structural Engineering and Mechanics, Seoul, Korea, 
(1999)291-296. 

207. Zhao, Z.Y. and Ren, L.Q. Neural network architecture and its application in concrete 
strength modelling, First Asian-Pacific Congress on Computational Mechanics, 
Sydney, Australia, (2001)1321-1326. 

208. Ziegler, H. A modification of Prager’s hardening rule, Quart. Appl. Math., 
17(1959)55-65.  

  

www.SID.ir


