Iranian Journal of Mathematical Sciences and Informatics Vol. 7, No. 1 (2012), pp 1-6

On C3**-Like Finsler Metrics**

A. Tayebi^a and E. Peyghan^{b,*}

Department of Mathematics, Faculty of Science, Qom University, Qom, Iran Department of Mathematics, Faculty of Science, Arak University, Arak, Iran

ABSTRACT. In this paper, we study the class of of $C3$ -like Finsler metrics which contains the class of semi-C-reducible Finsler metric. We find a condition on C3-like metrics under which the notions of Landsberg curvature and mean Landsberg curvature are equivalent.

Keywords: Finsler metric, C3-like metric, semi-C-reducible metric.

2000 Mathematics subject classification: 53C60, 53C25.

1. INTRODUCTION

ARSTRACT. In this paper, we study the class of of C3-like Finsler metrics
which contains the class of semi-C-reducible Finsler metric. We find a
condition on C3-like metrics under which its notions of Landsberg cur-
vatur Various interesting special forms of Cartan and Landsberg tensors have been obtained by some Finslerians [3][5][14][16]. The Finsler spaces having such special forms have been called C-reducible, P-reducible, general relatively isotropic Landsberg, and etc [6][7]. In [5], Matsumoto introduced the notion of C-reducible Finsler metrics and proved that any Randers metric is C-reducible. Later on, Matsumoto-Hōjō proves that the converse is true too [2]. A Randers metric $F = \alpha + \beta$ is just a Riemannian metric α perturbated by a one form β , which has important applications both in mathematics and physics [15].

Let us remark some important curvatures in Finsler geometry. Let (M, F) be a Finsler manifold. The second derivatives of $\frac{1}{2}F_x^2$ at $y \in T_xM_0$ is an inner product \mathbf{g}_y on T_xM . The third order derivatives of $\frac{1}{2}F_x^2$ at $y \in T_xM_0$ is a symmetric trilinear forms \mathbf{C}_y on T_xM . We call \mathbf{g}_y and \mathbf{C}_y the fundamental

[∗]Corresponding Author

E-mail addresses: akbar.tayebi@gmail.com (A. Tayebi), epeyghan@gmail.com (E. Peyghan)

Received 22 October 2010; Accepted 17 March 2011

⁻c 2012 Academic Center for Education, Culture and Research TMU

¹

form and the Cartan torsion, respectively. The rate of change of C_y along geodesics is the Landsberg curvature \mathbf{L}_y on T_xM for any $y \in T_xM_0$. F is said to be Landsbergian if $\mathbf{L} = 0$.

In [11], Prasad-Singh introduced a new class of Finsler spaces named by C3-like spaces which contains the class of semi-C-reducible spaces, as special case (see [8], [9], [10]). A Finsler metric F is called C3-like if its Cartan tensor is given by

(1)
$$
C_{ijk} = \{a_i h_{jk} + a_j h_{ki} + a_k h_{ij}\} + \{b_i I_j I_k + I_i b_j I_k + I_i I_j b_k\},
$$

mplies that $b_i = 1/(3C^2)I_i$. Then F is a C2-like metric; (ii) it $b_i = 0$, then
 α_i be have $C_{ijk} = \{a_i h_{jk} + a_j h_{ki} + a_k h_{ij}\}$, contracting it with g^{ij} implies that
 $u_i = 1/(n + 1)I_i$. Then F is a C-reducible metric; (where $a_i = a_i(x, y)$ and $b_i = b_i(x, y)$ are homogeneous scalar functions on TM of degree -1 and 1, respectively. We have some special cases as follows: (i) if $a_i = 0$, then we have $C_{ijk} = \{b_i I_j I_k + I_i b_j I_k + I_i I_j b_k\}$, contracting it with g^{ij} implies that $b_i = 1/(3C^2)I_i$. Then F is a C2-like metric; (ii) if $b_i = 0$, then we have $C_{ijk} = \{a_i h_{jk} + a_j h_{ki} + a_k h_{ij}\}\text{, contracting it with } g^{ij} \text{ implies that}$ $a_i = 1/(n+1)I_i$. Then F is a C-reducible metric; (iii) if $a_i = p/(n+1)I_i$ and $b_i = q/(3C^2)I_i$, where $p = p(x, y)$ and $q = q(x, y)$ are scalar functions on TM , then F is a semi-C-reducible metric. It is remarkable that, in [3] Matsumoto-Shibata introduced the notion of semi-C-reducibility and proved that every non-Riemannian (α, β) -metric on a manifold M of dimension $n \geq 3$ is semi-C-reducible. Therefore the study of the class of C3-like Finsler spaces will enhance our understanding of the geometric meaning of (α, β) -metrics.

In this paper, we study C3-like metrics and find a condition on C3-like metrics under which the notions of Landsberg curvature and mean Landsberg curvature are equivalent. More precisely, we prove the following.

Theorem 1.1. Let (M, F) be a C3-like Finsler manifold. Suppose that $b_i =$ bi(x, y) *is constant along Finslerian geodesics. Then* F *is a weakly Landsberg metric if and only if it is a Landsberg metric.*

There are many connections in Finsler geometry [12][13]. In this paper, we use the Berwald connection and the h - and v - covariant derivatives of a Finsler tensor field are denoted by " \parallel " and ", " respectively.

2. Preliminaries

Let M be a n-dimensional C^{∞} manifold. Denote by T_xM the tangent space at $x \in M$, and by $TM = \bigcup_{x \in M} T_xM$ the tangent bundle of M.

A Finsler metric on M is a function $F: TM \to [0,\infty)$ which has the following properties:

(i) F is C^{∞} on $TM_0 := TM \setminus \{0\};$

(ii) F is positively 1-homogeneous on the fibers of tangent bundle TM ,

(iii) for each $y \in T_xM$, the following quadratic form \mathbf{g}_y on T_xM is positive definite,

$$
\mathbf{g}_y(u,v) := \frac{1}{2} \left[F^2(y + su + tv) \right] |_{s,t=0}, \ \ u, v \in T_xM.
$$

Let $x \in M$ and $F_x := F|_{T_xM}$. To measure the non-Euclidean feature of F_x , define $\mathbf{C}_y : T_xM \otimes T_xM \otimes T_xM \to \mathbb{R}$ by

$$
\mathbf{C}_{y}(u,v,w) := \frac{1}{2} \frac{d}{dt} \left[\mathbf{g}_{y+tw}(u,v) \right] |_{t=0}, \ \ u, v, w \in T_xM.
$$

The family $\mathbf{C} := {\{\mathbf{C}_y\}_{y \in TM_0}}$ is called the Cartan torsion. It is well known that **C=0** if and only if F is Riemannian. For $y \in T_xM_0$, define mean Cartan torsion \mathbf{I}_y by $\mathbf{I}_y(u) := I_i(y)u^i$, where $I_i := g^{jk}C_{ijk}$ and $u = u^i \frac{\partial}{\partial x^i}|_x$. By Diecke Theorem, F is Riemannian if and only if $I_y = 0$.

For $y \in T_xM_0$, define the Matsumoto torsion $\mathbf{M}_y : T_xM \otimes T_xM \otimes T_xM \to \mathbb{R}$ by $\mathbf{M}_y(u, v, w) := M_{ijk}(y)u^iv^jw^k$ where

$$
M_{ijk} := C_{ijk} - \frac{1}{n+1} \{ I_i h_{jk} + I_j h_{ik} + I_k h_{ij} \},\,
$$

and $h_{ij} := FF_{y^i y^j} = g_{ij} - \frac{1}{F^2}g_{ip}y^p g_{jq}y^q$ is the angular metric. A Finsler metric F is said to be C-reducible if $M_y = 0$. This quantity is introduced by Matsumoto [5]. Matsumoto proves that every Randers metric satisfies that $\mathbf{M}_y = 0$. A Randers metric $F = \alpha + \beta$ on a manifold M is just a Riemannian metric $\alpha = \sqrt{a_{ij}y^i y^j}$ perturbated by a one form $\beta = b_i(x)y^i$ on M such that $\|\beta\|_{\alpha}$ < 1. Later on, Matsumoto-Hōjō proves that the converse is true too.

Lemma 2.1. ([2]) A Finsler metric F on a manifold of dimension $n \geq 3$ is a Randers metric if and only if $\mathbf{M}_y = 0$, $\forall y \in TM_0$.

A Finsler metric is called semi-C-reducible if its Cartan tensor is given by

$$
C_{ijk} = \frac{p}{1+n} \{h_{ij}I_k + h_{jk}I_i + h_{ki}I_j\} + \frac{q}{C^2}I_iI_jI_k,
$$

M_{ijk} := $C_{ijk} = \frac{n}{n+1} \{i_i h_{jk} + i_j h_{ik} + i_k h_{ij}\}$,

and $h_{ij} := FF_{j^*ij^j} = g_{ij} - \frac{1}{r^2} g_{ip} y^p g_{jq} y^q$ is the angular metric. A Finsler

metric F is said to be C-reducible if $\mathbf{M}_y = 0$. This quantity is introduced

b where $p = p(x, y)$ and $q = q(x, y)$ are scalar function on TM and $C^2 = I^i I_i$. Multiplying the definition of semi-C-reducibility with g^{jk} shows that p and q must satisfy $p + q = 1$. If $p = 0$, then F is called C2-like metric. In [3], Matsumoto and Shibata proved that every (α, β) -metric is semi-C-reducible. Let us remark that an (α, β) -metric is a Finsler metric on M defined by $F :=$ $\alpha\phi(s)$, where $s = \beta/\alpha$, $\phi = \phi(s)$ is a C^{∞} function on the $(-b_0, b_0)$ with certain regularity, α is a Riemannian metric and β is a 1-form on M [4].

Theorem 2.2. ([3][4]) Let $F = \phi(\frac{\beta}{\alpha})\alpha$ be a non-Riemannian (α, β) -metric on a manifold M of dimension $n \geq 3$. Then F is semi-C-reducible.

The horizontal covariant derivatives of **C** along geodesics give rise to the Landsberg curvature $\mathbf{L}_y : T_xM \otimes T_xM \otimes T_xM \to \mathbb{R}$ defined by

$$
\mathbf{L}_y(u, v, w) := L_{ijk}(y)u^iv^jw^k,
$$

where $L_{ijk} := C_{ijk|s} y^s$, $u = u^i \frac{\partial}{\partial x^i} |_x$, $v = v^i \frac{\partial}{\partial x^i} |_x$ and $w = w^i \frac{\partial}{\partial x^i} |_x$. The family $\mathbf{L} := {\mathbf{L}_y}_{y \in TM_0}$ is called the Landsberg curvature. A Finsler metric is called a Landsberg metric if $\mathbf{L} = 0$.

3. Proof of Theorem 1.1

In this section, we are going to prove the Theorem 1.1.

Proof of Theorem 1.1: F is C3-like metric

(2)
$$
C_{ijk} = \{a_i h_{jk} + a_j h_{ki} + a_k h_{ij}\} + \{b_i I_j I_k + I_i b_j I_k + I_i I_j b_k\},
$$

where $a_i = a_i(x, y)$ and $b_i = b_i(x, y)$ are scalar functions on TM. Multiplying (2) with g^{ij} implies that

(3)
$$
a_i = \frac{1}{n+1} \{ (1 - 2I^m b_m)I_i - C^2 b_i \},
$$

where $C^2 = I^m I_m$. By plugging (3) in (2), we get

$$
C_{ijk} = \frac{1}{n+1} \{ I_i h_{jk} + I_j h_{ki} + I_k h_{ij} \} - \frac{2I^m b_m}{n+1} \{ I_i h_{jk} + I_j h_{ki} + I_k h_{ij} \}
$$

(4)
$$
- \frac{C^2}{n+1} \{ b_i h_{jk} + b_j h_{ki} + b_k h_{ij} \} + \{ b_i I_j I_k + I_i b_j I_k + I_i I_j b_k \},
$$

or equivalently

$$
M_{ijk} = -\frac{2I^m b_m}{n+1} \{ I_i h_{jk} + I_j h_{ki} + I_k h_{ij} \} - \frac{C^2}{n+1} \{ b_i h_{jk} + b_j h_{ki} + b_k h_{ij} \} + \{ b_i I_j I_k + I_i b_j I_k + I_i I_j b_k \}.
$$

(5)

By taking a horizontal derivation of (5) , we have

$$
C_{ijk} = \frac{1}{n+1} \{l_i h_{jk} + l_j h_{ki} + l_k h_{ij}\} - \frac{1}{n+1} \{l_i h_{jk} + l_j h_{ki} + l_k h_{ij}\}
$$
\n(4)
$$
- \frac{C^2}{n+1} \{b_i h_{jk} + b_j h_{ki} + b_k h_{ij}\} + \{b_i I_j I_k + I_i b_j I_k + I_i I_j b_k\},
$$
\nor equivalently
\n
$$
M_{ijk} = -\frac{2I^m b_m}{n+1} \{I_i h_{jk} + I_j h_{ki} + I_k h_{ij}\} - \frac{C^2}{n+1} \{b_i h_{jk} + b_j h_{ki} + b_k h_{ij}\}
$$
\n(5)
$$
+ \{b_i I_j I_k + I_i b_j I_k + I_i I_j b_k\}.
$$
\nBy taking a horizontal derivation of (5), we have
\n
$$
\widetilde{M}_{ijk} = -\frac{2}{n+1} (J^m b_m + I^m b'_m) \{I_i h_{jk} + I_j h_{ki} + I_k h_{ij}\}
$$
\n
$$
- \frac{2I^m b_m}{n+1} \{J_i h_{jk} + J_j h_{ki} + J_k h_{ij}\} - \frac{C^2}{n+1} \{b'_i h_{jk} + b'_j h_{ki} + b'_k h_{ij}\}
$$
\n
$$
- \frac{1}{n+1} (J^m I_m + I^m J_m) \{b_i h_{jk} + b_j h_{ki} + b_k I_i J_j + b_k I_i J_j\}
$$
\n(6)
$$
+ \{b'_i I_j I_k + b'_j I_k I_k + b'_k I_i I_j\},
$$
\nwhere $b'_i = b_{i|s} y^s$ and
\n
$$
\widetilde{M}_{ijk} = L_{ijk} - \frac{1}{n+1} \{J_i h_{jk} + J_j h_{ki} + J_k h_{ij}\}.
$$
\nLet F be a weakly Landsberg metric. Since b_i is constant along geodesics, i.e.,
\n $b'_i = 0$, then (6) reduces to following
\n(7)
$$
L_{ijk} = \frac{1}{n+1} \{J_i h_{jk} + J_j h_{ki} + J_k h_{ij}\} = 0.
$$

where $b'_i = b_{i|s} y^s$ and

$$
\widetilde{M}_{ijk} = L_{ijk} - \frac{1}{n+1} \{ J_i h_{jk} + J_j h_{ki} + J_k h_{ij} \}.
$$

Let F be a weakly Landsberg metric. Since b_i is constant along geodesics, i.e., $b_i' = 0$, then (6) reduces to following

(7)
$$
L_{ijk} = \frac{1}{n+1} \{ J_i h_{jk} + J_j h_{ki} + J_k h_{ij} \} = 0.
$$

This means that F is a Landsberg metric.

Corollary 3.1. *Let* (M,F) *be a weakly Landsberg* C3*-like Finsler manifold. Suppose that* $q = q(x, y)$ *is constant along Finslerian geodesics. Then* F *is a Landsberg metric.*

<www.SID.ir>

$$
f_{\rm{max}}
$$

$$
\Box
$$

Proof. Since F is weakly Landsberg, then (6) reduces to following

(8)
$$
L_{ijk} = -\frac{C^2}{n+1} \{b'_i h_{jk} + b'_j h_{ki} + b'_k h_{ij}\} + \{b'_i I_j I_k + b'_j I_i I_k + b'_k I_i I_j\}.
$$

It is obvious that if $q = q(x, y)$ is constant along Finslerian geodesics, i.e., $q' = 0$ then F is a Landsberg metric.

Corollary 3.2. *Let* (M,F) *be a semi-C-reducible Finsler manifold. Suppose that* $q = q(x, y)$ *is constant along Finslerian geodesics. Then* F *is a weakly Landsberg metric if and only if it is a Landsberg metric.*

Proof. According to Theorem 1.1, a weakly Landsberg semi-C-reducible metric is a Landsberg metric if and only if the following holds

$$
0 = b'_i = \frac{q'}{3C^2}I_i + \frac{q}{3C^2}J_i - \frac{q}{3C^4}(I^mJ_m + J^mI_m)I_i
$$
\n(9)
\n
$$
= \frac{q'}{3C^2}I_i
$$
\nThus $b'_i = 0$ if and only if $q' = 0$.
\n**Acknowledgments.** The authors would like to express their gratitude to
\nthe references for careful reading and helpful comments.
\nREFERENCES
\n11 N. Broojerdian, E. Peyghan and A. Heydari, Differentiation along Multivector
\nFields, *Inanian Journal of Mathematical Sciences and Informatics*, **6**(1) (2011), 79-
\n96.
\n21 M. Matsumoto and S. Hōjō, A conclusive theorem for C-reducible Finsler spaces,
\n*Tensor*, *N*, *S*, **32** (1978), 225-230.
\n[3] M. Matsumoto and C. Shibata, On semi-C-reducibility, T-tensor and S4-1ikeness of
\nFinsler spaces, *J. Math. Kyoto Univ*, **19** (1979), 301-314.
\n[4] M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, *Rep. Math. Phys.*, **31**
\n(1992), 43-84.
\n[5] M. Matsumoto, On Finsler spaces with Randers metric and special forms of impor-
\ntant tensors, *J. Math. Kyoto Univ.*, **14** (1974), 477-498.
\n[6] B. Najafi, A. Taylorto *Univ.*, **14** (1974), 477-498.
\n[7] B. Najafi, A. Taylored, *On general relatively isotropic L-curvature
\nEinsler metrics, *Iranian Journal of Science and Technology, Transaction A*, **29**
\n(2005), 357-366.
\n[8] K. Naxish, A. Taylor and M. M. Rezaei, On general relatively isotropic mean Lands-
\nberg metrics, *Iranian Journal of Science and Technology, Transaction A*, **29** (2005),
\n497-505.
\n[8] K. Naxish, **18** A. Trayebi and M*

Thus $b'_i = 0$ if and only if $q' = 0$.

Acknowledgments. The authors would like to express their gratitude to the referees for careful reading and helpful comments.

REFERENCES

- [1] N. Broojerdian, E. Peyghan and A. Heydari, Differentiation along Multivector Fields, *Iranian Journal of Mathematical Sciences and Informatics*, **6**(1) (2011), 79- 96.
- [2] M. Matsumoto and S. Hōjō, A conclusive theorem for C-reducible Finsler spaces, *Tensor. N. S.*, **32** (1978), 225-230.
- [3] M. Matsumoto and C. Shibata, On semi-C-reducibility, T-tensor and S4-1ikeness of Finsler spaces, *J. Math. Kyoto Univ.*, **19** (1979), 301-314.
- [4] M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, *Rep. Math. Phys.*, **31** (1992), 43-84.
- [5] M. Matsumoto, On Finsler spaces with Randers metric and special forms of important tensors, *J. Math. Kyoto Univ.*, **14** (1974), 477-498.
- [6] B. Najafi, A. Tayebi and M.M. Rezaei, On general relatively isotropic L-curvature Finsler metrics, *Iranian Journal of Science and Technology, Transaction A*, **29** (2005), 357-366.
- [7] B. Najafi, A. Tayebi and M. M. Rezaei, On general relatively isotropic mean Landsberg metrics, *Iranian Journal of Science and Technology, Transaction A*, **29** (2005), 497-505.
- [8] S. K. Narasimhamurthy, S. T. Aveesh and P. Kumar, On v-curvature tensor of C3-like conformal Finsler spaces, *Acta Univ. Sapientiae, Mathematica*, **2** (2009), 101-108.
- [9] H.D. Pande, P.N. Tripathi and B.N. Prasad, On a special form of the hv-curvature tensor of Berwald's connection B of Finsler space, *Indian. J. Pure. Appl. Math.*, **25** (1994), 1275-1280.
- [10] C. M. Prasad and O. P. Dube, On T-tensor and v-curvature tensor of C3-like Finsler spaces, *Indian J.Pure. Appl. Math.*, **23** (1992), 791-795.
- [11] B. N. Prasad and J. N. Singh, On C3-like Finsler spaces, *Indian. J. Pure. Appl. Math.*, **19** (1988), 423-428.
- [12] A. Tayebi, E. Azizpour and E. Esrafilian, On a family of connections in Finsler geometry, *Publ. Math. Debrecen*, **72** (2008), 1-15.
- [13] A. Tayebi and B. Najafi, Shen's Process on Finslerian Connections, *Bull. Iran. Math. Society.*, **36**(2), (2010), 57-73.
- [14] A. Tayebi and E. Peyghan, Finsler Metrics with Special Landsberg Curvature, *Iranian Journal of Science and Technology, Trans A2*, *33*(A3), (2009), 241-248.
- [15] A. Tayebi and E. Peyghan, On Ricci tensors of Randers metrics, *Journal of Geometry and Physics.*, **60** (2010), 1665-1670.
- [16] A. Tayebi and E. Peyghan, Special Berwald Metrics, *Symmetry, Integrability and Geometry: Methods and its Applications*, **6** (2010), 008.
- [17] T. Tshikuna-Matamba, Superminimal fibres in an almost contact metric submersion, *Iranian Journal of Mathematical Sciences and Informatics*, **3**(2) (2008), 77-88.

Archive of SID