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Abstract. In this paper, we study the class of of C3-like Finsler metrics

which contains the class of semi-C-reducible Finsler metric. We find a

condition on C3-like metrics under which the notions of Landsberg cur-

vature and mean Landsberg curvature are equivalent.
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1. Introduction

Various interesting special forms of Cartan and Landsberg tensors have

been obtained by some Finslerians [3][5][14][16]. The Finsler spaces having

such special forms have been called C-reducible, P-reducible, general relatively

isotropic Landsberg, and etc [6][7]. In [5], Matsumoto introduced the notion of

C-reducible Finsler metrics and proved that any Randers metric is C-reducible.

Later on, Matsumoto-Hōjō proves that the converse is true too [2]. A Randers

metric F = α+ β is just a Riemannian metric α perturbated by a one form β,

which has important applications both in mathematics and physics [15].

Let us remark some important curvatures in Finsler geometry. Let (M,F )

be a Finsler manifold. The second derivatives of 1
2F

2
x at y ∈ TxM0 is an inner

product gy on TxM . The third order derivatives of 1
2F

2
x at y ∈ TxM0 is a

symmetric trilinear forms Cy on TxM . We call gy and Cy the fundamental
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form and the Cartan torsion, respectively. The rate of change of Cy along

geodesics is the Landsberg curvature Ly on TxM for any y ∈ TxM0. F is said

to be Landsbergian if L = 0.

In [11], Prasad-Singh introduced a new class of Finsler spaces named by

C3-like spaces which contains the class of semi-C-reducible spaces, as special

case (see [8], [9], [10]). A Finsler metric F is called C3-like if its Cartan tensor

is given by

(1) Cijk = {aihjk + ajhki + akhij}+ {biIjIk + IibjIk + IiIjbk},
where ai = ai(x, y) and bi = bi(x, y) are homogeneous scalar functions on TM

of degree -1 and 1, respectively. We have some special cases as follows: (i) if

ai = 0, then we have Cijk = {biIjIk + IibjIk + IiIjbk}, contracting it with gij

implies that bi = 1/(3C2)Ii. Then F is a C2-like metric; (ii) if bi = 0, then

we have Cijk = {aihjk + ajhki + akhij}, contracting it with gij implies that

ai = 1/(n + 1)Ii. Then F is a C-reducible metric; (iii) if ai = p/(n + 1)Ii
and bi = q/(3C2)Ii, where p = p(x, y) and q = q(x, y) are scalar functions

on TM , then F is a semi-C-reducible metric. It is remarkable that, in [3]

Matsumoto-Shibata introduced the notion of semi-C-reducibility and proved

that every non-Riemannian (α, β)-metric on a manifold M of dimension n ≥ 3

is semi-C-reducible. Therefore the study of the class of C3-like Finsler spaces

will enhance our understanding of the geometric meaning of (α, β)-metrics.

In this paper, we study C3-like metrics and find a condition on C3-like

metrics under which the notions of Landsberg curvature and mean Landsberg

curvature are equivalent. More precisely, we prove the following.

Theorem 1.1. Let (M,F ) be a C3-like Finsler manifold. Suppose that bi =

bi(x, y) is constant along Finslerian geodesics. Then F is a weakly Landsberg

metric if and only if it is a Landsberg metric.

There are many connections in Finsler geometry [12][13]. In this paper, we

use the Berwald connection and the h- and v- covariant derivatives of a Finsler

tensor field are denoted by “ | ” and “, ” respectively.

2. Preliminaries

Let M be a n-dimensional C∞ manifold. Denote by TxM the tangent space

at x ∈ M , and by TM = ∪x∈MTxM the tangent bundle of M .

A Finsler metric onM is a function F : TM → [0,∞) which has the following

properties:

(i) F is C∞ on TM0 := TM \ {0};
(ii) F is positively 1-homogeneous on the fibers of tangent bundle TM ,

(iii) for each y ∈ TxM , the following quadratic form gy on TxM is positive

definite,

gy(u, v) :=
1

2

[
F 2(y + su+ tv)

] |s,t=0, u, v ∈ TxM.
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Let x ∈ M and Fx := F |TxM . To measure the non-Euclidean feature of Fx,

define Cy : TxM ⊗ TxM ⊗ TxM → R by

Cy(u, v, w) :=
1

2

d

dt

[
gy+tw(u, v)

] |t=0, u, v, w ∈ TxM.

The family C := {Cy}y∈TM0 is called the Cartan torsion. It is well known

that C=0 if and only if F is Riemannian. For y ∈ TxM0, define mean Cartan

torsion Iy by Iy(u) := Ii(y)u
i, where Ii := gjkCijk and u = ui ∂

∂xi |x. By Diecke

Theorem, F is Riemannian if and only if Iy = 0.

For y ∈ TxM0, define the Matsumoto torsion My : TxM ⊗TxM ⊗TxM → R

by My(u, v, w) := Mijk(y)u
ivjwk where

Mijk := Cijk − 1

n+ 1
{Iihjk + Ijhik + Ikhij},

and hij := FFyiyj = gij − 1
F 2 gipy

pgjqy
q is the angular metric. A Finsler

metric F is said to be C-reducible if My = 0. This quantity is introduced

by Matsumoto [5]. Matsumoto proves that every Randers metric satisfies that

My = 0. A Randers metric F = α+ β on a manifold M is just a Riemannian

metric α =
√
aijyiyj perturbated by a one form β = bi(x)y

i on M such that

‖β‖α < 1. Later on, Matsumoto-Hōjō proves that the converse is true too.

Lemma 2.1. ([2]) A Finsler metric F on a manifold of dimension n ≥ 3 is a

Randers metric if and only if My = 0, ∀y ∈ TM0.

A Finsler metric is called semi-C-reducible if its Cartan tensor is given by

Cijk =
p

1 + n
{hijIk + hjkIi + hkiIj}+ q

C2
IiIjIk,

where p = p(x, y) and q = q(x, y) are scalar function on TM and C2 = IiIi.

Multiplying the definition of semi-C-reducibility with gjk shows that p and q

must satisfy p + q = 1. If p = 0, then F is called C2-like metric. In [3],

Matsumoto and Shibata proved that every (α, β)-metric is semi-C-reducible.

Let us remark that an (α, β)-metric is a Finsler metric on M defined by F :=

αφ(s), where s = β/α, φ = φ(s) is a C∞ function on the (−b0, b0) with certain

regularity, α is a Riemannian metric and β is a 1-form on M [4].

Theorem 2.2. ([3][4]) Let F = φ(βα )α be a non-Riemannian (α, β)-metric on

a manifold M of dimension n ≥ 3. Then F is semi-C-reducible.

The horizontal covariant derivatives of C along geodesics give rise to the

Landsberg curvature Ly : TxM ⊗ TxM ⊗ TxM → R defined by

Ly(u, v, w) := Lijk(y)u
ivjwk,

where Lijk := Cijk|sys, u = ui ∂
∂xi |x, v = vi ∂

∂xi |x and w = wi ∂
∂xi |x. The family

L := {Ly}y∈TM0 is called the Landsberg curvature. A Finsler metric is called

a Landsberg metric if L = 0.
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3. Proof of Theorem 1.1

In this section, we are going to prove the Theorem 1.1.

Proof of Theorem 1.1: F is C3-like metric

(2) Cijk = {aihjk + ajhki + akhij}+ {biIjIk + IibjIk + IiIjbk},
where ai = ai(x, y) and bi = bi(x, y) are scalar functions on TM . Multiplying

(2) with gij implies that

(3) ai =
1

n+ 1
{(1− 2Imbm)Ii − C2bi},

where C2 = ImIm. By plugging (3) in (2), we get

Cijk =
1

n+ 1
{Iihjk + Ijhki + Ikhij} − 2Imbm

n+ 1
{Iihjk + Ijhki + Ikhij}

− C2

n+ 1
{bihjk + bjhki + bkhij}+ {biIjIk + IibjIk + IiIjbk},(4)

or equivalently

Mijk = −2Imbm
n+ 1

{Iihjk + Ijhki + Ikhij} − C2

n+ 1
{bihjk + bjhki + bkhij}

+ {biIjIk + IibjIk + IiIjbk}.(5)

By taking a horizontal derivation of (5), we have

M̃ijk = − 2

n+ 1
(Jmbm + Imb′m){Iihjk + Ijhki + Ikhij}

− 2Imbm
n+ 1

{Jihjk + Jjhki + Jkhij} − C2

n+ 1
{b′ihjk + b′jhki + b′khij}

− 1

n+ 1
(JmIm + ImJm){bihjk + bjhki + bkhij}

+ {biJjIk + biIjJk + bjJiIk + bjIiJk + bkJiIj + bkIiJj}
+ {b′iIjIk + b′jIiIk + b′kIiIj},(6)

where b′i = bi|sys and

M̃ijk = Lijk − 1

n+ 1
{Jihjk + Jjhki + Jkhij}.

Let F be a weakly Landsberg metric. Since bi is constant along geodesics, i.e.,

b′i = 0, then (6) reduces to following

(7) Lijk =
1

n+ 1
{Jihjk + Jjhki + Jkhij} = 0.

This means that F is a Landsberg metric. �

Corollary 3.1. Let (M,F ) be a weakly Landsberg C3-like Finsler manifold.

Suppose that q = q(x, y) is constant along Finslerian geodesics. Then F is a

Landsberg metric.
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Proof. Since F is weakly Landsberg, then (6) reduces to following

(8) Lijk = − C2

n+ 1
{b′ihjk + b′jhki + b′khij}+ {b′iIjIk + b′jIiIk + b′kIiIj}.

It is obvious that if q = q(x, y) is constant along Finslerian geodesics, i.e.,

q′ = 0 then F is a Landsberg metric. �

Corollary 3.2. Let (M,F ) be a semi-C-reducible Finsler manifold. Suppose

that q = q(x, y) is constant along Finslerian geodesics. Then F is a weakly

Landsberg metric if and only if it is a Landsberg metric.

Proof. According to Theorem 1.1, a weakly Landsberg semi-C-reducible metric

is a Landsberg metric if and only if the following holds

0 = b′i =
q′

3C2
Ii +

q

3C2
Ji − q

3C4
(ImJm + JmIm)Ii

=
q′

3C2
Ii(9)

Thus b′i = 0 if and only if q′ = 0. �
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