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Abstract. F. Shakeri and M. Dehghan presented the variational iter-

ation method for solving the model describing biological species living

together. Here we suggest the differential transform (DT) method for

finding the numerical solution of this problem.

To this end, we give some preliminary results of the DT and by proving

some theorems, we show that the DT method can be easily applied to

mentioned problem. Finally several test problems are solved and com-

pared with variational iteration method.
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1. Introduction

The DT method is a numerical method for solving differential, integral and

integro-differential equations. The concept of DT was first introduced by Zhou

[15] in 1986 for solving linear and nonlinear initial value problems in electric

analysis (see also [5]).

Up to now, the differential transform method has been developed for solving

various types of differential and integral equations. In [2, 3], an extension of

the DT method has been presented for solving system of differential equations
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64 The DT method for solving the model describing biological species living together

and differential-algebraic equations. In [4, 5], this method has been applied for

partial differential equations and in [1, 11], for one dimensional Voltrra integral

and integro-differential equations. In [12], the generalized form of DT method

has been applied to differential equations of fractional order and in [7], to multi

order fractional differential equations. Also in [14], the DT method has been

developed for solving the two dimensional Volterra integral equations.

The subject of presented paper is to apply the DT method for solving the sys-

tem of nonlinear Volterra integro-differential equations which obtain in mod-

eling the problem of biological species living together. This system has the

following form

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dn1

dt = n1(t)
[
k1 − γ1n2(t)−

∫ t

t−T0
f1(t− τ)n2(τ)dτ

]
+ g1(t)

, k1, γ1 > 0, 0 ≤ t ≤ l

dn2

dt = n2(t)
[
−k2 + γ2n1(t) +

∫ t

t−T0
f2(t− τ)n1(τ)dτ

]
+ g2(t)

, k2, γ2 > 0, 0 ≤ t ≤ l

(1.1)

with the supplementary conditions

n1(0) = α1, n2(0) = α2, (1.2)

where f1, f2, g1 and g2 are given functions while n1 and n2 are unknown

functions, and T0εR. This system is obtained from mathematical modeling of

the problem of biological species living together (for more information see [9]).

The rest of this paper organized as follows. In Section 2, we introduce the

DT and give some preliminary results of this method. In Section 3, we prove

some theorems for developing the DT for (1.1), then we describe the method.

In Section 4, we give some numerical examples to present a clear overview of

discussion. In Section 5, a conclusion of this paper is given.

2. Preliminary results of the differential transform

The basic definition of DT and corresponding fundamental theorems can

be found in [1-5], [11] and [15], however for convenience of the reader, in this

section we present a review of the DT. We define differential transform of the

function f(x) (see [11]) in x0 = α as

Fα(n) =
1

n!

[
dnf(x)

dxn

]
x=α

(2.1)

then its inverse transform is defined as

f(x) =
∞∑

n=0

Fα(n)(x − α)n. (2.2)
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The relations (2.1) and (2.2) imply that

f(x) =

∞∑
n=0

1

n!

[
dnf(x)

dxn

]
x=α

(x − α)n (2.3)

which is the Taylor series of function f(x).

In the following theorem, we summarize some fundamental properties of the

differential transform (see [11]).

Theorem 2.1. If F0(n), U0(n) and V0(n) are the differential transforms of

functions f(x), u(x) and v(x) in x0 = 0 respectively, then

a. If f(x) = u(x)± v(x) then

F0(n) = U0(n)± V0(n).

b. If f(x) = au(x) then

F0(n) = aU0(n).

c. If f(x) = u(x)v(x) then

F0(n) =

n∑
k=0

U0(k)V0(n− k).

d. If f(x) = xk then

F0(n) = δn,k.

e. If f(x) = sin(ax+ b) then

F0(n) =
an

n!
sin(

nπ

2
+ b).

f. If f(x) = cos(ax+ b) then

F0(n) =
an

n!
cos(

nπ

2
+ b).

g. If f(x) = eax then

F0(n) =
an

n!
. �

We also recall the following theorem from [4] to apply the DT method for

the differential parts of (1.1).

Theorem 2.2. If F0(n), U0(n) and V0(n) are the differential transforms of

functions f(x), u(x) and v(x) in x0 = 0 respectively, then

a. If f(x) = dru(x)
dxr , r = 1, 2, · · · then

F0(n) = (n+ 1)(n+ 2) · · · (n+ r)U0(n+ r)

b. If f(x) = du(x)
dx

dv(x)
dx then

F0(n) =

n∑
k=0

(k + 1)(n− k + 1)U0(k + 1)V0(n− k + 1) �
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66 The DT method for solving the model describing biological species living together

3. Main results

In this section, we prove some theorems for extension of the DT to the

system (1.1).

Theorem 3.1. If Fα(m) is the differential transform of function f(x) in x0 =

α, then the differential transform of f(x) in x0 = 0 is

F0(m) =
∞∑

k=m

Fα(k)

(
k

m

)
(−α)k−m (3.1)

Proof. Since

f(x) =

∞∑
m=0

Fα(m)(x− α)m.

Therefore

f(x) =

∞∑
m=0

Fα(m)

[
m∑

k=0

(
m

k

)
xk(−α)m−k

]

=
∞∑

m=0

[ ∞∑
k=m

Fα(k)

(
k

m

)
(−α)k−m

]
xm

and (3.1) is obtained. �

Theorem 3.2. If F0(m) is the differential transform of function f(x) in x0 =

0, then the differential transform of f(x) in x0 = α is

Fα(m) =

∞∑
k=m

F0(k)

(
k

m

)
αk−m (3.2)

Proof. We have

f(x) =

∞∑
m=0

F0(m)xm =

∞∑
m=0

F0(m)((x − α) + α)m

and similar to the previous theorem, the result can be obtained. �

Theorem 3.3. If h(t) =
∫ t

0
f(t− τ)n(τ)dτ then for the differential transform

of h(t) in x0 = 0, we have

H0(0) = 0

H0(k) =

k−1∑
l=0

l!(k − l− 1)!

k!
F0(l)N0(k − l − 1), k = 1, 2, . . . (3.3)

where F0 and N0 are the differential transforms of functions f(x) and n(x) in

x0 = 0, respectively.
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Proof. We have

h(0) = 0 ⇒ H0(0) = 0

and

h(k)(t) =

∫ t

0

f (k)(t− τ)n(τ)dτ +

k−1∑
l=0

f (l)(0)n(k−l−1)(t), k = 1, 2, . . .

therefore

H0(k) =
1

k!
h(k)(0) =

1

k!

k−1∑
l=0

f (l)(0)n(k−l−1)(0)

=
1

k!

k−1∑
l=0

[
l!F0(l)

] [
(k − l − 1)!N0(k − l − 1)

]

=

k−1∑
l=0

l!(k − l − 1)!

k!
F0(l)N0(k − l− 1), k = 1, 2, . . .

so the proof is completed. �

Theorem 3.4. If h(t) =
∫ t−T0

0
f(t − τ)n(τ)dτ then the differential transform

of h(t) in x0 = 0, is of the form

H0(0) =

∞∑
m=1

m−1∑
r=0

∞∑
l=r

l!(m− r − 1)!

m!(l − r)!
F0(l)N0(m− r − 1)T l−r

0 (−T0)
m (3.4)

and

H0(k) =
∞∑

m=k

m−1∑
r=0

∞∑
l=r

l!(m− r − 1)!

k!(m− k)!(l − r)!
F0(l)N0(m− r − 1)T l−r

0 (−T0)
m−k

(3.5)

for k = 1, 2, . . . .

Proof. By definition of h(t) we have

h(T0) = 0 ⇒ HT0(0) = 0 (3.6)

and

h(m)(t) =

∫ t−T0

0

f (m)(t−τ)n(τ)dτ+

m−1∑
r=0

f (r)(T0)n
(m−r−1)(t−T0), m = 1, 2, . . .

therefore

HT0(m) =
1

m!
h(m)(T0) =

1

m!

m−1∑
r=0

f (r)(T0)n
(m−r−1)(0)

=
1

m!

m−1∑
r=0

[
r!FT0 (r)

] [
(m− r − 1)!N0(m− r − 1)

]
, m = 1, 2, . . .
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and by substituting FT0(r) of (3.2)

HT0(m) =
1

m!

m−1∑
r=0

r!(m − r − 1)!

[ ∞∑
l=r

F0(l)

(
l

r

)
T l−r
0

]
N0(m− r − 1) (3.7)

for m = 1, 2, . . . .

Therefore by theorem 3.1 we have

H0(k) =

∞∑
m=k

HT0(m)

(
m

k

)
(−T0)

m−k

=

∞∑
m=k

m−1∑
r=0

∞∑
l=r

r!(m− r − 1)!

m!

(
m

k

)(
l

r

)
F0(l)N0(m− r − 1)T l−r

0 (−T0)
m−k

=

∞∑
m=k

m−1∑
r=0

∞∑
l=r

l!(m− r − 1)!

k!(m− k)!(l − r)!
F0(l)N0(m−r−1)T l−r

0 (−T0)
m−k, k = 1, 2, ....

Also note that for k = 0 by substituting from (3.6) into (3.1) we can write

H0(0) =

∞∑
m=1

HT0(m)(−T0)
m

and by substituting from (3.7), the relation (3.4) is obtained. �

Now we can obtain the differential transform of the system (1.1) in x0 =

0. First note that in the remaining part of this paper we assume that all

differential transforms are in x0 = 0, hence for the sake of simplicity, we denote

all differential transforms without the zero index.

For simplicity, we also set

h1(t) =

∫ t

0

f1(t− τ)n2(τ)dτ, h2(t) =

∫ t−T0

0

f1(t− τ)n2(τ)dτ

and

h3(t) =

∫ t

0

f2(t− τ)n1(τ)dτ, h4(t) =

∫ t−T0

0

f2(t− τ)n1(τ)dτ

so ∫ t

t−T0

f1(t− τ)n2(τ)dτ = h1(t)− h2(t)

∫ t

t−T0

f2(t− τ)n1(τ)dτ = h3(t)− h4(t)

therefore the system (1.1) can be written as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dn1

dt = k1n1(t)− γ1n1(t)n2(t)− n1(t)h1(t) + n1(t)h2(t) + g1(t)

, k1, γ1 > 0, 0 ≤ t ≤ l

dn2

dt = −k2n2(t) + γ2n1(t)n2(t) + n2(t)h3(t)− n2(t)h4(t) + g2(t)

, k2, γ2 > 0, 0 ≤ t ≤ l
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and by theorems 2.1 and 2.2 the differential transform of it is⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(n+ 1)N1(n+ 1) = k1N1(n)− γ1
∑n

k=0 N1(k)N2(n− k)

−∑n
k=0 H1(k)N1(n− k) +

∑n
k=0 H2(k)N1(n− k) +G1(n)

(n+ 1)N2(n+ 1) = −k2N2(n) + γ2
∑n

k=0 N1(k)N2(n− k)

+
∑n

k=0 H3(k)N2(n− k)−∑n
k=0 H4(k)N2(n− k) +G2(n)

where N1, N2, H1, H2, H3, H4, G1 and G2 denote the differential transforms of

functions n1, n2, h1, h2, h3, h4, g1 and g2 in x0 = 0, respectively.

By substituting H1(k) and H3(k) from theorem 3.3 and H2(k) and H4(k) from

theorem 3.4 we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(n+ 1)N1(n+ 1)− k1N1(n) + γ1
∑n

k=0 N1(k)N2(n− k) +
∑n

k=0

∑k−1
l=0(

l!(k−l−1)!
k! F1(l)N2(k − l − 1)N1(n− k)

)
−∑n

k=0

∑∞
m=k

∑m−1
r=0

∑∞
l=r

(
l!(m−r−1)!

k!(m−k)!(l−r)!F1(l)N1(n− k)N2(m− r − 1)T l−r
0 (−T0)

m−k

)
−G1(n) = 0

(n+ 1)N2(n+ 1) + k2N2(n)− γ2
∑n

k=0 N1(k)N2(n− k)−∑n
k=0

∑k−1
l=0(

l!(k−l−1)!
k! F2(l)N1(k − l − 1)N2(n− k)

)
+
∑n

k=0

∑∞
m=k

∑m−1
r=0

∑∞
l=r

(
l!(m−r−1)!

k!(m−k)!(l−r)!F2(l)N1(m− r − 1)N2(n− k)T l−r
0 (−T0)

m−k

)
−G2(n) = 0

(3.8)

for n = 0, 1, ..., N − 1.

We also have from initial conditions

N1(0) = α1, N2(0) = α2.

If we set N instead of ∞, a nonlinear algebraic system of equations is obtained

and by solving this system, the unknownsN1(1), N1(2), ..., N1(N), N2(1), N2(2), ..., N2(N)

are obtained.

Finally we use the truncated form

ni(t) =

N∑
n=0

Ni(n)t
n, i = 1, 2 (3.9)

to get approximate solution of (1.1) and (1.2).
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4. Numerical Examples

In this section, we give some examples of [13] to clarify accuracy of the

presented method. The results also are compared with variational iteration

method of [13].

All computations were done by programming in Maple software.

Example 4.1. Consider the system of integro-differential equations (1.1) and

(1.2) with

f1(t) = 1, f2(t) = t−1

k1 = 1, k2 = 2

γ1 =
1

3
, γ2 = 1

T0 =
1

2

α1 = 1, α2 = 0

g1(t) = −5

2
t3+

49

12
t2+

17

12
t−23

6

and

g2(t) =
15

8
t3−1

4
t2+

3

8
t−1,

with the exact solution as n1(t) = −3t+ 1 and n2(t) = t2 − t.

By solving the system (3.8) with this data for N = 3, we obtain approximate

solution as

n1(t) = 1−3t+0.166963×10−19t2−0.656782×10−20t3

n2(t) = −t+t2−0.571352×10−21t3

which is indeed the exact solution of the problem.

For comparing, we give the results obtained in [13] by variational iteration

method in Table 1. This table shows the absolute errors(A.E.) for n1(t) and
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n2(t) in some points.

Table 1: Numerical results of [13] for example 4.1.

t A.E.(n1) A.E.(n2)

0.1 0.315188e− 3 0.334119e− 4

0.2 0.427289e− 3 0.854529e− 4

0.3 0.472313e− 3 0.133352e− 3

0.4 0.485540e− 3 0.179896e− 3

0.5 0.474363e− 3 0.222780e− 3

0.6 0.445981e− 3 0.237116e− 3

0.7 0.436823e− 3 0.162689e− 3

0.8 0.535814e− 3 0.107083e− 3

0.9 0.910002e− 3 0.731024e− 3

1.0 0.182947e− 2 0.190776e− 2

Note that the solution obtained by the differential transform method (DTM)

at all of the above points is exact (errors are equal to zero). �

Example 4.2. As second example, consider the system (1.1) and (1.2) with

f1(t) = 2t−3, f2(t) = t

k1 = 2, k2 = 2

γ1 = 1, γ2 = 1

T0 =
1

3

α1 = 0, α2 = 0

g1(t) = t2
(
2− 3te−t − 7

2
e−t +

13

6
te

1
3−t +

22

8
e

1
3−t

)
−2t

and

g2(t) =
1

648
e−t

(
342t3 − 8t2 + 325t+ 324

)
with the exact solution n1(t) = −t2 and n2(t) =

1
2 te

−t. Table 2 shows the

absolute errors(A.E.) for n1(t) and n2(t) by the DTM and variational iterative

method (VIM) from [13].
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Table 2: Numerical results of example 4.2.

t A.E.n1(V IM) A.E.n1(DTM) A.E.n2(V IM) A.E.n2(DTM)

0.1 0.450227e − 9 0.394175e − 9 0.980983e − 7 0.162746e − 11

0.2 0.407215e − 8 0.370379e − 8 0.693367e − 7 0.638333e − 10

0.3 0.472344e − 7 0.159002e − 7 0.269708e − 6 0.319748e − 9

0.4 0.364798e − 6 0.494973e − 7 0.355407e − 6 0.105576e − 8

0.5 0.203596e − 5 0.127306e − 6 0.249470e − 5 0.287591e − 8

0.6 0.880599e − 5 0.286453e − 6 0.108724e − 4 0.699789e − 8

0.7 0.312110e − 4 0.582449e − 6 0.385228e − 4 0.159106e − 7

0.8 0.944467e − 4 0.109259e − 5 0.114881e − 3 0.350059e − 7

0.9 0.251619e − 3 0.191171e − 5 0.300927e − 3 0.765393e − 7

1.0 0.604002e − 3 0.317562e − 5 0.711284e − 3 0.168549e − 6

The results show the high accuracy of DTM. �

Example 4.3. We consider the third case of system (1.1) and (1.2) with

f1(t) = 1, f2(t) = e−t

k1 =
1

3
, k2 =

1

2

γ1 = 2, γ2 = 1

T0 =
3

10

α1 = 0, α2 = 0

g1(t) =
1

4
cost−1

4
sint

(
1

3
+

1

2
sint− 1

4
cost+

1

4
cos(t− 3

10
)

)
and

g2(t) = −1

4
cost+

1

4
sint

(
−1

2
+

3

8
sint − 1

8
cost+

1

8
e−

3
10

(
cos(t− 3

10
)− sin(t− 3

10
)

))
.

The exact solution of this problem is n1(t) =
1
4sint and n2(t) = − 1

4sint.

Table 3 shows the absolute errors in points

x = (0.1)i, i = 1, 2, · · · 10.
for DTM and VIM.

Table 3: Numerical results of example 4.3.

t A.E.n1(V IM) A.E.n1(DTM) A.E.n2(V IM) A.E.n2(DTM)

0.1 0.522144e − 9 0.105188e − 9 0.463282e − 9 0.712377e − 10

0.2 0.623816e − 8 0.216504e − 8 0.288070e − 8 0.149437e − 8

0.3 0.152983e − 6 0.911417e − 8 0.752128e − 7 0.610308e − 8

0.4 0.124549e − 5 0.251960e − 7 0.609076e − 6 0.158714e − 7

0.5 0.612075e − 5 0.582985e − 7 0.297314e − 5 0.331595e − 7

0.6 0.220311e − 4 0.124355e − 6 0.106280e − 4 0.613616e − 7

0.7 0.639936e − 4 0.254473e − 6 0.306475e − 4 0.106237e − 6

0.8 0.158733e − 3 0.505411e − 6 0.754263e − 4 0.178142e − 6

0.9 0.348563e − 3 0.973945e − 6 0.164226e − 3 0.295292e − 6

1.0 0.694383e − 3 0.181554e − 5 0.324140e − 3 0.488066e − 6

Comparing the results show high accuracy of the DTM in this example too.�
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Example 4.4. Finally consider the system (1.1) and (1.2) with

f1(t) = t, f2(t) = t+1

k1 = 1, k2 = 1

γ1 =
1

2
, γ2 = 3

T0 =
1

4

α1 = 0, α2 = −1

g1(t) = 2t−1−(t2−t)

(
1 +

11

18
e−3t − 1

36
e

3
4−3t

)
and

g2(t) =
1

3072
e−3t

(
10080t2 − 10304t+ 6275

)
and exact solution n1(t) = t2 − t and n2(t) = −e−3t.

Table 4 shows the results.

Table 4: Numerical results of example 4.4.

t A.E.n1(V IM) A.E.n1(DTM) A.E.n2(V IM) A.E.n2(DTM)

0.1 0.359861e − 6 0.200346e − 7 0.109370e − 4 0.923480e − 8

0.2 0.266169e − 6 0.279956e − 6 0.155271e − 4 0.424967e − 8

0.3 0.466523e − 6 0.101643e − 5 0.822708e − 5 0.258151e − 7

0.4 0.164191e − 4 0.240353e − 5 0.926457e − 4 0.889430e − 7

0.5 0.693119e − 4 0.456668e − 5 0.395232e − 3 0.174112e − 6

0.6 0.173602e − 3 0.754251e − 5 0.937210e − 3 0.242934e − 6

0.7 0.323762e − 3 0.110685e − 4 0.162796e − 2 0.187246e − 6

0.8 0.492632e − 3 0.139459e − 4 0.226796e − 2 0.331710e − 6

0.9 0.641424e − 3 0.125358e − 4 0.263143e − 2 0.238148e − 5

1.0 0.737216e − 3 0.222504e − 4 0.257459e − 2 0.913622e − 5

The above results show the high accuracy of the DTM with respect to VIM. �

5. Conclusion

Differential transform method has been successfully applied for solving a

nonlinear system of Volterra integro-differential equations which describe bio-

logical species living together. As examples show the presented method has a

high accuracy and a simple structure. Therefore this method is recommended

for solving similar problems in applied science and engineering. For example

the Schrodinger equation [8], the Fisher-like equation [6] and the Burgers’ equa-

tion [10] can be solved by DTM.
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