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Abstract 

 
This paper presents a numerical method for finding the solution of time-delay systems using 

triangular functions. We present the properties of the triangular functions. The operational 

matrices of integration and delay are utilized to reduce the solution of time-delay systems to the 

solution of algebraic equations. Illustrative examples are included to demonstrate the validity 

and applicability of the technique. 
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1  Introduction 

 

Analysis, identification and optimal control of systems with time-delay has been of 

considerable concern. Delays occur frequently in biological, chemical, transportation, 

electronic, communication, manufacturing and power systems [7]. Time-delay and 

multi-delay systems are therefore very important classes of systems whose control and 

optimization have been of interest to many investigators [1]. 

The available sets of orthogonal functions can be divided into three classes. The first 

includes set of piecewise constant basis functions (PCBFs) (e.g., Walsh, block-pulse, 

etc.). The second consists of a set of orthogonal polynomials (e.g., Laguerre, Legendre, 

Chebyshev, etc.). The third is the widely used set of sine–cosine functions in Fourier 

series. While orthogonal polynomials and sine–cosine functions together form a class of 

continuous basis functions, PCBFs have inherent discontinuities or jumps. It is worth 

mentioning that approximating a continuous function with PCBFs results in an 

approximation that is piecewise constant. On the other hand, if a discontinuous function 

is approximated by continuous basis functions, the discontinuities are not properly 

modeled. Signals frequently have mixed features of continuity and jumps. These signals 

are continuous over certain segments of time, with discontinuities or jump occurring at 

the transitions of the segments. In such situations, neither the continuous basis functions 

nor PCBFs taken alone would form an efficient basis in the representation of such 

signals.  

Much progress has been made towards the solution of delay systems by using 

orthogonal functions. The approach is to convert the delay-differential equation to an 

algebraic form through the use of operational matrices of integration and delay. These 
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matrices can be uniquely determined based on the particular choices of basis functions. 

Special attention has been given to applications of Walsh functions [2], block pulse 

functions [15], Laguerre polynomials [9], Legendre polynomials [11], Chebyshev 

polynomials [14], Haar wavelets [6] and Fourier series [5].  In general, the computed 

response of the delay systems via orthogonal functions is not in good agreement with 

the exact response of the system [3]. The superiority of the chosen orthogonal function 

approach depends on the nature of signals to be dealt with, as certain class of orthogonal 

functions fit certain signals more accurately than others [13]. Moreover, Marzban and 

Razzaghi [12] used hybrid functions of block-pulse and Legendre polynomials and 

obtained an excellent results for the solution of delay systems for the cases where the 

exact solution are of the form of polynomials in different intervals. 

In the present paper, we introduce a new direct computational method to solve time-

delay systems. The method consists of reducing the delay problem to a set of algebraic 

equations by first expanding the candidate function as a triangular functions with 

unknown coefficients. These triangular functions, which evolved from a simple 

dissection of block pulse functions are first introduced. The operational matrices of 

integration and delay are given. These matrices are then used to evaluate the coefficients 

of the triangular functions for the solution of delay systems.  

The paper is organized as follows: in Section 2, we describe the basic properties of the 

block pulse functions and triangular functions required for our subsequent development. 

In this section, we drive the delay operational matrix of the triangular functions. Section 

3 is devoted to the formulation of linear time-delay systems. In Section 4, we apply the 

proposed numerical method to delay systems, and in Section 5, we report our numerical 

finding and demonstrate the accuracy of the proposed scheme by considering numerical 

examples.  

 

2 Review of Block Pulse Functions and The Triangular Functions 

A set of block pulse functions )(tΨ containing m component functions in the 

interval ),0[ ft  is given by [8]  

[ ] ,)(,),(),()( 110

T

m tttt −=Ψ ψψψ K   

where [ ]TK denotes transpose and 
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The block pulse functions are orthogonal in the interval ),0[ ft  and we have 

[ )
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( ) ( ) , 0, ,
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i j ij f
t t dt h t tψ ψ δ= ∈∫   

where ijδ  is the Kronecker delta and 
m

t
h

f
= . A square integrable time function )(tf  of 

Lebesgue measure may 

be expanded into an m -term block pulse functions series in ),0[ ftt ∈  as 
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m Ψ=Ψ≈ −K  (1) 
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where 
 ( 1)

 

1
( ) ,

i h

i
ih

c f t dt
h

+

= ∫  (2) 

The operational matrix for integration of block pulse functions, has been derived as 

following upper triangular matrix [8] 

,

1000

2100

2210

2221

2























=

L

MOMMM

L

L

L

h
P  (3) 

where P is a mm×  matrix and performs as an integrator in the block pulse functions 

domain and it is pivotal in any block pulse functions domain analysis. Thus, 

approximate integration of a function )(tf  using Eqs. (1) and (3) is 

 
 

 0
( ) ( ).

t
T

f s ds C P t≈ Ψ∫   

 

Though block pulse functions are effective for analysis and synthesis of various 

control systems, it is not a baseless hunch to think that a staircase solution provided by 

the block pulse functions domain analysis may introduce relatively more error than an 

equivalent piecewise linear solution. 

Now, we demonstrate the construction of triangular functions according to [4] 
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For the whole set of block pulse function, )(tΨ , we can thus generate two sets of 

orthogonal triangular functions, namely )(tT1  and )(tT2  such that 

 

).()()( ttt T2T1 +=Ψ   

 

It could be said that these two sets are complementary to each other as far as block pulse 

functions are considered. For convenience, we call )(tT1  the left-handed triangular 

function (LHTF) vector and )(tT2  the right-handed triangular function (RHTF) vector 

[4]. 
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A square integrable time function )(tf  of lebesgue measure may be expanded into an 

m -term triangular functions  series ),0[ ftt ∈  as [4] 

 

[ ] [ ]0 1 1 0 1 1( ) , , ,  ( ) , , , ( )

) ( ),

m m

T T

f t c c c t d d d t

C t D t

− −≈ +

= +

T1 T2

T1( T2

K K
 

(4) 

 

 

where the constant coefficient ic 's and id 's are given by 

 

).)1((),( hifdihfc ii +==  (5) 

The following relation between the coefficients are also noted 

 

.1,,1,0,1 −==+ midc ii K   

The advantage of choosing the coefficients as different samples of )(tf  for obtaining a 

piecewise linear solution, instead of conventional integration formula, is obvious. It is 

apparent from Eqs. (2) and (5) that unlike block pulse functions, the triangular functions  

representation does not need any integration to evaluate the coefficients, thereby 

reducing a lot of computational burden. 

The orthogonality of LHTF  set  (similarly RHTF set) is resulted from mutually 

disjointness of LHTF  (and RHTF), i. e. for ,1,,1,0, −= mji K  [4] 
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The operational matrix for integration can be obtained as [4] 
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we call the matrices 1P  and 2P , the operational matrices for integration in triangular 

functions domain. Where 1P  and 2P  are mm×  matrices and performs as an integrator in 

the triangular functions domain. Thus approximation integration of a function )(tf  

using Eqs. (4), (6) and (7) is 

 
 

1 2
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It is easy to see that 
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2.1  The Delay Operational Matrix of Triangular Functions  

 

The delay functions )( τ−tT1  and )( τ−tT2  are the shift of the functions )(tT1  and 

)(tT2 . The general expression is given by 
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where D  is the delay operational matrices of triangular functions. We now derive the 

delay operational matrix as follows: 
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).(2)(2 tTtT kii +=−τ   

 

Therefor we have 
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where the first 1 on the first row is in the )1( +k th column. But in other cases of τ  we 

choose N  in the following manner [12] 
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where (11) denotes greatest integer value. furthermore, first by using Eq. (11) we 

determine N . Thus we have different intervals given by 

 

[ ] [ ] [ ],,)1(2,,0 τττττ NN −L   

 

where ftN ≥τ . Then we choose m  to be 

 

K,2,1== kkNm  (12) 

so 

.
m

N
k

τ
τ =   

Therefore D  can be computed as Eq. (10). 

 

3 Problem Statement 

consider the following linear time--delay system 
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where FEtUtX ql ,,)(,)( ℜ∈ℜ∈  and G  are constant matrices of appropriate 

dimensions, 0X  is a constant specified vector, and )(tφ  is an arbitrary known function. 

The problem is to find ftttX <≤0),( , satisfying Eqs. (13) – (15). 

 

 

4 Approximation  Using  Triangular  Functions 

we approximate Eq. (13) as follows: 

 Let 

[ ]
 

1

 

1
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( ) ( ), , ( ) ,
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where lI  and qI  are the −l  and −q dimensional identity matrices and ⊗  denotes 

Kronecker product [10]. )(1ˆ tT and )(2ˆ tT  are llm×  matrices and )(1ˆ tB  and )(2ˆ tB  are 

qqm×  matrices. By using Eq. (4) each of )(txi  and each of 

qjlitu j ,,2,1,,,2,1),( KK == can be written in terms of triangular functions as  
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Then from Eqs. (16) and (17) we get 
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Similarly we have 
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We can also write )( τ−tX  in terms of triangular functions as 
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where 

 

,ˆ DID l ⊗=   

 

and D  is delay operational matrix given in Eq. (10). Moreover 
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(29) 

where 

 

,ˆ,ˆ
2211 PIPPIP LL ⊗=⊗=   

and 1P  and 2P  are operational matrices of integration given in Eqs.(6) -- (7) and 
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 0  0

ˆ ˆ ˆ ˆ1( ) 1( ), 2( ) 2( ),T t dt Z T t T t dt Z T t
τ τ

= =∫ ∫  (30) 

where 1Z  and 2Z  are constant matrices of order lmlm × . 

By integrating Eq.(13) from 0  to t  and using Eqs. (16) -- (30) we have 
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(31) 

 

 by solving the set of linear algebraic equations, Eq. (31) we obtain the coefficients 

vectors 1X  and 2X . 

 Furthermore, first by using Eq. (11) we determine N . Then we choose m , using Eq. 

(12). When selecting k  we first choose an arbitrary number depending on the problem. 

We evaluate the results for two consecutive k  for different t  in ),0[ ft  until the results 

are similar up to a required number of decimal places. 

 

5 Illustrative Examples 

In this section three examples are given to demonstrate the applicability and 

accuracy of the method. 

 

Example 5.1  

 

Consider the delay system described by [4] 
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 The exact solution is [4] 
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Here, we solve the delay problem by using the triangular functions. Since 
4

1
=τ , by 

using Eq. (11) we select ,4=N  also we choose 1=k . 

 Let 

 

),()()( 21 tXtXtx TT T2T1 +=  (35) 

  

where )(tT1  and )(tT2  are LHTF vector and RHTF vector,  respectively. 

By expanding )0(x  in terms of triangular functions we get 

 

[ ] [ ] ),()()(1,1,1,1)(1,1,1,1)0( 21 tdtdttx TT T2T1T2T1 +=+=  (36) 

 

Using Eqs. (8), (9) and (35) we get 
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where D  is the delay operational matrix given by 
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Integrating Eq. (32) from 0  to t  and using Eqs. (33) – (37) we get 
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 where 1P  and 2P  are the operational matrices of integration. In table 1 a comparison is 

made between the exact solution and the approximation solution of )(tx  for 10 ≤≤ t . 

The approximation value of )(tx  on )
2

1
,0[  is the same as the exact solution. The results 

obtained via block pulse functions [3] is much inferior to that shown in Table 1. The 

results obtained via Walsh functions are exactly identical with those given in table 1. 

This is not surprising as block-pulse functions and Walsh functions have a one to one 

correspondence  and they produce the same results if the number of basis functions is 

the same in both the cases [3]. The response )(tx  obtained via Chebyshev polynomials 

of the first kind (TP1) by [5] is inferior to that shown in table 1. With 8=m , the 

response )(tx  obtained via Chebyshev and Legendre polynomials (LeP) by [16] are 

much inferior to those given in table 1. The Laguerre approach even with higher values 

for m could not produce acceptable results in this example. This fact was also 

confirmed by [16]. It can be noted that, with a large value of m , the response )(tx  in 

each case, except for Laguerre polynomials (LaP) can be very much improved [3]. 

 

 
Table 1 

Estimated and exact value of x(t) 

t LaP TP1 m=8 LeP m=8 BPFs m=4 TFs k=1 Exact 

0 

0.25 

0.50 

0.75 

1 

1 

1 

0.70578 

-3.87165 

-7.03743 

1 

1 

1.76 

3.14667 

5.49333 

1 

1 

1.76493 

3.14683 

5.47503 

1 

1.5 

2.75 

4.875 

4.875 

1 

1 

2 

3.5 

6.25 

1 

1 

2 

3.5 

6.1666667 

 

Example 5.2 

Consider the following delay system with delay in both control and state 
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(38) 

 

(39) 

(40) 

 

 

Although the above system has a delay in control, the method described here can be 

used. The exact solution is [4] 
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Here, we solve the same problem by using the triangular functions. Since 
4

1
=τ , by 

using Eq. (11) we select  4=N .  Let 

 

),()()( 21 tXtXtx TT T2T1 +=  (41) 
 

 

where )(tT1  and )(tT2  are LHTF vector and RHTF vector, respectively.  By expanding 

)(tu  in terms of triangular functions we get 

 

),()()( 21 tUtUtu TT T2T1 +=  (42) 

 

Using Eqs. (8) – (9) and (41) – (42) we get 
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(43) 

 

(44) 

  

 where D  is the delay operational matrix. 

  Integrating Eq. (38) from 0  to t  and using Eqs. (39) – (44) we get 

 

( ) ( ) ( )
( ) ( ) ( )




+++−+−=

+++−+−=

,22

,22

2212212212

1211211211

DPUUDPXXPXXX

DPUUDPXXPXXX
TTTTTTT

TTTTTTT

  

 

where 1P  and 2P  are the operational matrices of integration. In table 2 a comparison is 

made between the exact solution and the approximation solution of )(tx  for 1=k  

and 4=k . The approximation value of )(tx  on ]
4

1
,0[  is the same as the exact solution. 

The results obtained via Laguerre polynomials [3] and Hermit polynomials [3] are to 

that shown in Table 2. The computational results for )(tx  using the present method for 

2,4 == kN and 4,4 == kN , together with the exact solution of )(tx  are given in Fig. 

1.  It is noted that by increasing the value of k , the acceptable convergence would be 

achieved. 
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Figure 1 

Computational results of )(tx  obtained for  2,4 == kN  and 4,4 == kN  . 

 

              
 

Table 2  

Estimated and exact value of x(t) 

t LaP [3] HeP [3] TFs k=2 TFs k=4 Exact 

0 

0.125 

0.25 

0.375 

0.50 

0.625 

0.75 

0.875 

1 

0 

0 

0 

0.23486 

0.40827 

0.54855 

0.65916 

0.74333 

0.80414 

0 

0 

0 

0.59456 

1.6414 

2.2788 

2.387 

1.8849 

0.74092 

0 

0 

0 

0.23529 

0.44291 

0.59841 

0.68352 

0.71589 

0.71615 

0 

0 

0 

0.23508 

0.44253 

0.59710 

0.68158 

0.71292 

0.71284 

0 

0 

0 

0.23501 

0.44240 

0.59666 

0.68094 

0.71194 

0.71174 

 

Example 5.3 

Consider the time-delay system described by 

 

( )





≤≤−

<≤+−
=

<≤−=

=

≤≤+−=

,21,05.1

,10,05.11.2
)(

,01,1)(

,1)0(

,10),(14)(

t

tt
tu

ttx

x

ttutxtx&

 

(45) 

 

(46) 

(47) 

 

(48) 

 

The exact solution is [3] 





≤≤+−+−

<≤+−
=

,21,175.0075.1575.125.0

,10,525.01.11
)(

32

2

tttt

ttt
tx   

 

 Since 1=τ , by using Eq. (11) we select 2=N . 

      Let 

 

),()()( 21 tXtXtx TT T2T1 +=&  (49) 

where )(tT1  and )(tT2  are LHTF vector and RHTF vector, respectively. Then we have 

 

( )( ) ( )( ) ),()()( 22211121 tdPXXtdPXXtx TTTTTT T2T1 +++++=  (50) 

 

By expanding )(),( tutx  and )1( −tφ  in terms of triangular functions we get 
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),()()1(

),()()(

),()()0(

21

21

21

tRtRt

tUtUtu

tdtdx

TT

TT

TT

T2T1

T2T1

T2T1

+=−

+=

+=

φ

 

(51) 

 

(52) 

 

(53) 

 

Using Eqs. (8), (9) and (50) we get 

( )( )
( )( )












<≤
++

+++

<≤+

=−

,21
),(2

)(

,10),()(

)1(

221

1121

21

t
tDdPXX

tDdPXX

ttRtR

tx

TTT

TTT

TT

T2

T1

T2T1

 (54) 

   

  where D  is the delay operational matrix. Using Eqs. (46) – (54) we get 

 

( )( )
( )( )




++++=−

++++=−

,

,

22221222

11121111

TTTTTTT

TTTTTTT

UDdPXXRdX

UDdPXXRdX
 (55) 

 

By solving set of equations (55), the derivative coefficient vectors 1X  and 2X  can be 

obtained. Using Eq. (49) we have 

 

),()()( 21 tXtXtx TT T2T1 +=&   

 

Here, we apply the procedure described above for obtaining )(tx . The approximation 

value of )(tx  on [0,1] is the same as the exact solution. We choose 4=k . In Table 3 a 

comparison is made between the exact solution and the approximation solution of )(tx  

for 20 ≤≤ t . The estimated )(tx , obtained via block pulse functions by [3] is inferior to 

that shown in Table 3.  The computational results for )(tx  using the present method for 

4,2 == kN , together with estimated solution via block pulse functions and the exact 

solution of )(tx  are given in Fig. 2. It is noted that by increasing the value of k , the 

acceptable convergence for 21 ≤≤ t  would be achieved. 

 
Table 3 

Estimated and exact value of x(t) 

 
t TFs k=4 Exact 

0 

0.25 

0.5 

0.75 

1.0 

1.25 

1.5 

1.75 

2.0 

1 

0.757812 

0.581250 

0.470312 

0.425000 

0.382226 

0.287109 

0.156054 

0.005468 

1 

0.757812 

0.581250 

0.470312 

0.425000 

0.380859 

0.284375 

0.151953 

0 
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Figure 2 

Computational results of )(tx  obtained for 4,2 == kN . 

 

 

 

6 Conclusions 

The block-pulse functions  and triangular functions and the associated operational 

matrices of  integration and delay are applied to solve the linear time-delay systems. 

The method is computationally very attractive, at the same time keeping the accuracy of 

the solution. It is also shown that the triangular functions provide an exact solution in 

first subintervals for Examples (1), (2) and (3). Also in Examples (1) and (2) a 

comparison is made between our method and the results obtained via other numerical 

methods using orthogonal polynomials.  The presented method reduces delay systems to 

the solution of algebraic equations, and so the calculation is straightforward. We are 

fully confident of the future development for the triangular functions, since this set is 

very simple in structure and calculating the coefficients for expanding an arbitrary 

function. 
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