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Abstract– Wire erosion discharge machining (WEDM) is a modification of electro discharge 
machining (EDM) and has been widely used for a long time for cutting punches and dies, shaped 
pockets and other machine parts on conductive work materials. The surface finish of the machined 
surface mainly depends on the pulse duration, open voltage, wire speed and dielectric flushing 
pressure. In the present work, two of the techniques, namely factorial design and neural network 
(NN) were used for modeling and predicting the surface roughness of AISI 4340 steel. Surface 
roughness was taken as a response variable measured after WEDM and pulse duration, open 
voltage, wire speed and dielectric flushing pressure were taken as input parameters. Relationships 
between surface roughness and WEDM cutting parameters have been investigated. The level of 
importance of the WEDM cutting parameters on the surface roughness was determined by using 
the analysis of variance method (ANOVA). The mathematical relation between the workpiece 
surface roughness and WEDM cutting parameters were established by regression analysis method. 
This mathematical model may be used in estimating the surface roughness without performing any 
experiments. Finally, predicted values of surface roughness by techniques, NN and regression 
analysis, were compared with the experimental values and their closeness with the experimental 
values determined. Results show that, NN is a good alternative to empirical modeling based on full 
factorial design.           
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1. INTRODUCTION 
 

Electrical discharge wire cutting, more commonly known as WEDM, is a spark erosion process used to 
produce complex two and three dimensional shapes through electrically conductive workpieces by using a 
wire electrode. The sparks are generated between the workpiece and a wire electrode flushed with or 
immersed in a dielectric fluid [1]. The wire, which unwinds from a spool, feeds through the workpiece. A 
power supply delivers high frequency pulses of electricity to the wire and the workpiece. The gap between 
the wire and workpiece is flooded with a localized stream of deionized water which acts as the dielectric. 
Workpiece material is eroded ahead of transporting the wire by spark discharges, which are identical with 
those in conventional EDM [2]. 

When each pulse of electricity is delivered from the power supply, the insulating properties of the 
dielectric fluid are momentarily broken down. This allows a small spark to jump the shortest distance 
between the wire and workpiece. A small pool of molten metal is formed on the workpiece and the wire at the 
point of the spark. A gas bubble forms around the spark and the molten pools. As the pulse of electricity 
ceases and the spark disappears, the gas bubble collapses. The on-rush of cool dielectric causes the molten 
metal to be ejected from the workpiece and the wire, leaving small craters. This action is repeated hundreds 
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of thousands of times each second during WEDM processing. This removes material from the workpiece 
in shapes opposite to that of wire [2, 3]. 

The degree of accuracy of the workpiece dimensions are obtainable and the fine surface finishes 
make WEDM particularly valuable for applications involving the manufacture of stamping dies, extrusion 
dies and prototype parts. Without WEDM the fabrication of precision workpieces requires many hours of 
manual grinding and polishing [1,4]. 

The most important performance measures in WEDM are cutting speed, workpiece surface roughness 
and cutting width. Discharge current, discharge capacitance, pulse duration, pulse frequency, wire speed, 
wire tension, average working voltage and dielectric flushing conditions are the machining parameters 
which affect the performance measures [1]. 

Tosun et al. [1] determined the effect of machining parameters on the cutting width and material 
removal rate based on the Taguchi method. Tosun and Cogun [2] investigated, experimentally, the effect 
of cutting parameters on wire electrode wear. Tosun et al. [3] investigated the effect of the cutting 
parameters on the size of erosion craters (diameter and depth) on wire electrode experimentally and 
theoretically. Cogun and Savsar [5] investigated the random behaviour of the time-lag durations of 
discharge pulses using a statistical model for different pulse durations, pulse pause durations, and 
discharge currents in EDM. 

 Scott et al. [6] have developed formulas for the solution of a multi-objective optimization problem to 
select the best parameter settings on a WEDM machine. They used a factorial design model to predict the 
measures of performances as a function of a variety of machining parameters. Wang and Rajurkar [7] have 
developed a WEDM frequency monitoring system to detect on-line the thermal load on the wire to prevent 
the wire from rupture. Spur and Schoenbeck [8] have investigated a finite element model and have 
explained the impact of a discharge on the anode as a heat source on a semi-infinite solid whose size and 
intensity are time-dependent in WEDM. Tarng et al. [9] developed a neural network system to determine 
settings of pulse duration, pulse interval, peak current, open circuit voltage, servo reference voltage, 
electric capacitance and wire speed for the estimation of cutting speed and surface finish. Spedding and 
Wang [10] presented a parametric combination by using artificial neural networks and they also 
characterized the roughness and waviness of the workpiece surface and cutting speed. Liao et al. [11] 
performed an experimental study to determine the variation of the machining parameters on the MRR, gap 
width and surface roughness. They have determined the level of importance of the machining parameters 
on the metal removal rate (MRR). Lok and Lee [12] compared the machining performance in terms of 
MRR and surface finish by the processing of two advanced ceramics under different cutting conditions 
using WEDM. Ramakrishnan and Karunamoorthy [13] developed an artificial neural network with 
Taguchi parameter design. Tsai et al. [14] found relationships between the heterogeneous second phase 
and the machinability evaluation of the ferritic SG cast irons in the WEDM process. Sarkar et al. [15] 
studied the features of trim cutting operation of wire electrical discharge machining of  -titanium 
aluminide. Caydas et al. [16] developed an adaptive neuro-fuzzy inference system (ANFIS) for modeling 
the surface roughness in the WEDM process.  

The previous works show that the research works are focused on the effect of machining parameters, 
discharge energy, theory and experimental verification crater formation on the wire electrode. The present 
study focused on the modeling and prediction techniques to determine the direct effect of the WEDM 
parameters on the surface roughness. 
 

2. EXPERIMENTAL SET UP AND PROCEDURE 
 

The experimental studies were performed on an Acutex WEDM machine tool. Different settings of pulse 
duration (t), open circuit voltage (V), wire speed (S) and dielectric flushing pressure (p) were used in the 

www.SID.ir



Arc
hi

ve
 o

f S
ID

Prediction of surface roughness in wire electrical… 
 

June 2009                                                                                 Iranian Journal of Science & Technology, Volume 33, Number B3 

233

experiments. Table feed rate (8.2 mm/dak), pulse interval time (18 s ), and wire tension (1800 g) are kept 
constant during the experiments.  

AISI 4340 steel plate was used as a workpiece material with 150x150x10 mm dimensions. CuZn37 
Suncut brass wire with 0.25 mm diameter and 900 N/mm2 tensile strength was used in the experiments. 
Workpiece average surface roughness (Ra) measurements were made by using Phynix TR–100 portable 
surface roughness tester. Cut-off length ( ) and traversing length ( l ) were set as 0.3 and 5 mm, 
respectively. Pulse duration, open circuit voltage, wire speed and dielectric flushing pressure were selected 
as the input parameters and surface roughness was selected as the output parameter.  Four measurements 
were made and their average was taken as Ra value for a machined work surface. Two level factorial design 
and NN techniques were carried out to predict surface roughness. The level of the factorial design used in 
the present study is shown in Table 1. Two levels of factors are referred to as low (-1) and high (+1).  

 
Table 1. Factors and levels for factorial design 

 

WEDM parameters 
Low level 

(-1) 
Base level 

(0) 
High level 

(+1) 
Pulse duration, t (ns) 200 550 900 
Open circuit voltage, V (V) 60 180 300 
Wire speed, S (m/min) 4 8 12 
Dielectric flushing pressure, p (kg/cm2) 6 11 16 

 
Modeling surface roughness with neural networks is composed of two phases: training and testing of the 
neural networks with experimental data.  Pulse duration, open circuit voltage, wire speed and dielectric 
flushing pressure have been used as the input layer, while surface roughness was used as the output layer. 
A regression equation obtained from a full factorial design was used by the Design-Expert software and 
NN modeling was developed by using Qwiknet software. 
 

3. PREDICTION TECHNIQUES 
 

a) Design of experiments 
 

A scientific approach to planning experiments must be incorporated in order to perform an experiment 
most effectively. Statistical design of experiments is the process of planning the experiments so that 
appropriate data can be collected which may be analyzed by statistical methods resulting in valid and 
objective conclusions [17]. 

Factorial design is widely used in experiments involving several factors where it is necessary to 
investigate the joint effects of the factors on a response variable. A very important special case of the 
factorial design is that where each of the k factors of interest has only two levels. Full factorial design is 
often used to fit a first order response surface model and to generate the factor effect estimates. Factorial 
design has been employed to determine the minimum number of experiments to obtain an adequate model 
for the responses.  

If surface roughness is represented by Ra, the linear regression equation for these experiments could 
be written as; 

4310429328

417316215443322110

xxaxxaxxa

xxaxxaxxaxaxaxaxaaRa




          (1) 

 
where a0 is the response variable of surface roughness at the base level; a1, a2, a3, a4 are coefficients 
associated with each variable, a5, a6, a7, a8, a9, a10 are interaction coefficients, :1x  pulse duration, :2x  
open circuit voltage, :3x  wire speed, and :4x  dielectric flushing pressure at two levels are used to arrive 
at a full two level factorial experiment or 2k number of experiments.                   
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b) Neural network (NN) 
 

Neural networks (NN) are biologically inspired, that is, they are composed of elements that perform 
in a manner that is analogous to the most elementary functions of the biological neurons. A neural network 
has a parallel-distributed architecture with a large number of neurons and connections. Each connection 
points from one node to another and is associated with a weight [18].  

There are several applications of neural networks such as a back-propagation network (BPN) and a 
general regression neural network (GRNN). In general, BPN seems to be the most utilized neural network. 
The development of the back propagation network (BPN) [19] represents a landmark in the history of 
neural networks in the way that it provides a computationally efficient method for the training of the 
multi-layer perceptron. A multi-layer perceptron trained with the back propagation algorithm may be 
viewed as a practical way of performing a non-linear input–output mapping of a general nature. In the 
current application, the objective was to use the network to learn mapping between input and output 
patterns. The components of the input pattern consisted of the control variables of the machining operation 
(pulse duration, open circuit voltage, wire speed and dielectric flushing pressure), whereas the output 
pattern components represented the measured factors (surface roughness). The nodes in the hidden layer 
were necessary to implement the nonlinear mapping between the input and output patterns. In the present 
work, a 4-input, 5-hidden layer, 1 output layer back propagation neural network has been used. The most 
popular learning algorithm for multilayer networks is the back-propagation algorithm and its variants 
[20].The ANN is trained by a learning algorithm that performs the adaptation of weights of the network 
iteratively until the error between target vectors and the output of the ANN is less than an error goal [20-
21].  The algorithm used in this study is shown in Fig. 1. 

 

  
Fig. 1. BPN network used for modeling 

 
There are different learning strategies in a neural network such as supervised learning reinforcement 

learning and unsupervised learning. The learning set consists of the inputs and the outputs used in training 
the network. In our case, we have used supervised learning approach.  
 

4. RESULTS AND DISCUSSION 
 

The experiments were carried out under different process conditions. Table 2 shows the full factorial 
design matrix and training set used for NN analysis. 
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Table 2. Full factorial design matrix and NN training set 
 

Process parameters Response 

Run 
t 

(ns) 
V 

(V) 
S 

(mm/min) 
p 

(kg/cm2) 
Ra 

( m ) 

1 200 300 12 16 2.12 
2 200 60 4 16 1.13 
3 900 60 4 6 2.14 
4 200 60 12 16 1.24 
5 200 300 12 6 2.32 
6 200 300 4 16 1.98 
7 900 60 12 16 2.15 
8 900 300 12 6 3.85 
9 200 300 4 6 2.1 

10 900 300 4 16 3.24 
11 900 60 12 6 2.26 
12 900 300 12 16 3.65 
13 900 60 4 16 2.01 
14 200 60 4 6 1.18 
15 900 300 4 6 3.55 
16 200 60 12 6 1.24 

 
The regression equation obtained from regression analysis based on experiments of the training set can be 
expressed in Eq. (2). After calculating each of the coefficients of Eq. (1) and substituting the coded values 
of the variables for any experimental condition the linear regression equation for surface roughness can be 
obtained in actual factors as given in Eq. (2).  

 
Ra = 0.73775 + 0.00116t + 0.003242V -   0.0058S + 0.001089p + 0.00000298tV + 

                0.0000196tS - 0.000014tp + 0.0000833VS - 0.000056Vp + 0.000313Sp                               (2) 
 

This equation indicates that wire speed has the most significant effect on surface roughness. The 
coefficients of the pulse duration, open circuit voltage, and dielectric flushing pressure are positive, while 
wire speed is negative. Surface roughness increases with increasing pulse duration, open circuit voltage, 
and dielectric flushing pressure and decreases with increasing wire speed. Figures 2-4 show the response 
surface plots of the WEDM parameters which affect the surface roughness. 

 

  

(a) (b) 

Fig. 2. a) The effect of open circuit voltage and pulse duration on surface roughness, 
b)  The effect of wire speed and pulse duration on surface roughness 
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(a) (b) 

Fig. 3. a) The effect of flushing pressure and pulse duration on surface roughness, 
b) The effect of wire speed and open circuit voltage on surface roughness 

 

  

(a) (b) 

Fig. 4. a) The effect of flushing pressure and open circuit voltage on surface roughness, 
b) The effect of flushing pressure and wire speed on surface roughness 

 

It is clear from the response surface of Figs. 3, 4 and 5 that, increasing the pulse duration increased 

the surface roughness due to the larger energy of spark, increasing the open circuit voltage increased the 

surface roughness due to the higher spark energy discharge, increasing wire speed increased the surface 

roughness due to the increasing material removal rate, increasing the flushing pressure decreased surface 

roughness due to the cooling effect of the flushing pressure. Testing validity of the regression analysis and 

NN results was made using the input parameters according to the design matrix given in Table 3.  

These comparisons have been depicted in terms of percentage error in Fig. 5 for validation of the set 

of experiments. From Table 3 it is evident that for our set of data the neural network predicts a surface 

roughness that is nearer to the experimental values than the regression analysis. In the prediction of 

surface roughness values the average errors for regression and NN are found to be 7.17 % and 4.90 % 

respectively. 
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Table 3. Validation set used for regression and NN analysis 
 

Regression NN 
Exp. no 

Pulse 
duration 

(ns) 

Open 
circuit 
voltage 

(V) 

Wire speed 
(mm/min) 

Flushing 
pressure 
(kg/cm2) 

Surface 
roughness 

( m ) Predicted
Error 

% 
Predicted 

Error 
% 

 1 300 80 4 6 1.30 1.41 -8.46 1.26 3.07 
 2 400 90 5 8 1.50 1.58 -5.33 1.36 9.33 
 3 500 150 6 10 2.08 2.00 3.84 2.02 2.40 
 4 700 250 10 14 3.18 2.90 8.80 3.48 -9.43 
 5 350 60 12 16 1.29 1.42 -9.15 1.24 3.87 
 6 450 70 5 16 1.58 1.50 5.06 1.53 3.16 
 7 550 100 8 11 2.08 1.86 10.57 2.02 2.88 
8 750 180 4 6 2.92 2.58 11.60 3.11 -6.50 
9 850 200 10 8 3.27 3.00 8.25 3.47 -6.11 

10 200 300 12 8 2.23 2.28 -2.24 2.37 -6.27 
11 250 300 4 10 1.96 2.14 -9.18 2.00 -2.04 
12 300 250 6 20 1.89 1.94 -2.64 1.81 4.23 

 
     

Average error:  
7.17% 

Average error: 
4.94% 

 

 
Fig. 5. Comparison of errors in prediction of the surface roughness 

 
The results of analysis of variance analysis (ANOVA) for the WEDM process are presented in Table 

4. Statistically, F-test provides a decision at some confidence level as to whether these estimates are 
significantly different or not. Larger F-value indicates that the variation of the process parameter makes a 
big change on the performance characteristics of the surface roughness. According to Table 4, pulse 
duration and open circuit voltage were found to be the major factor affecting the surface roughness 
(contribution of 48.5% and 47.66% respectively), whereas wire speed and dielectric flushing pressure 
were found to be the second ranking factor (contribution of 0.66% and 0.46% respectively).  

The analysis results for surface roughness are as follows: The value of the multiple coefficient of R2 is 
obtained as 0.99, which means that the explanatory variables explain 99% of the variability in the response 
variable. With the adjusted R-square (Adj R2), a value closer to 1 indicates a better fit. It is generally the 
best indicator of the fit quality and it was obtained as 0.99. Predicted R2 value was also obtained as 0.99. 
The statistical analysis showed that the regression model fits well to the observations. 

Figure 6 represents the comparison of predicted (both NN and regression) and actual results. Both 
regression and NN results showed that the predicted values were very close to the experimental values. 
Because the fitted line is very close to the experimental results with the R2 values of 0.98 and 0.93 for NN 
and regression analysis respectively. 
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Table 4. ANOVA analysis of WEDM parameters 
 

Parameter 
Process 

parameters 
Degree of 
freedom 

Sum of 
square 

Variance F 
Contribution 

percentage (%) 
A Pulse duration 1 5.69 5.69 660.11 

48.50 
B Open circuit voltage 1 5.59 5.59 3177.78 47.66 
C Wire speed 1 0.078 0.078 3124.71 0.66 
D Flushing pressure 1 0.054 0.054 78.56 0.46 

AB Interaction 1 0.250 0.250 43.80 2.11 
AC Interaction 1 0.012 0.012 139.66 0.10 
AD Interaction 1 0.009 0.009 6.76 0.08 
BC Interaction 1 0.026 0.026 5.04 0.22 
BD Interaction 1 0.018 0.018 14.30 0.15 
CD Interaction 1 0.0006 0.0006 10.18 0.01 

Error  5 0.0017 0.00034 - 0.01 
Total  15 11.829 - - 100 

 
 

 

Fig. 6. Graphical representation of comparison of predicted and actual results   
 

After determining the regression equation the response variable, and also training the neural network 
program, the predictions by both the techniques were found. The learning behavior of this particular 
network is shown in Fig. 7. Training the neural network was performed with an allowable error of 0.01 
(sum of squared error over the output neurons). 

 

 
Fig. 7. Learning behavior of the constructed neural network  
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Once the network was trained such that the maximum error for any of the training data was less than 
the allowable error, the weights and the threshold values were automatically saved by the program. As the 
input values from the validation experiments were given to the NN program, the program predicted the 
required output. 

During the training process, initially all patterns in the training set were presented to the network and 
the corresponding error parameter was found for each of them. Then the pattern with the maximum error 
was found and used for changing the synaptic weights. Once the weights were changed, all the training 
patterns were again fed to the network and the pattern with the maximum error was then found. This 
process was continued until the maximum error in the training set became less than the allowable error 
specified by the user. 

The predicted values for regression equations were obtained by substituting the experimental 
conditions given in Table 3 in Eq. (2). The predicted values of the response, by both of the prediction 
methods (i.e. regression analysis and neural network), were compared with the experimental values for the 
validation set of experiments as indicated in Table 3. 
 

5. CONCLUSION 
 

The prediction of optimal machining conditions for the required surface finish and dimensional accuracy 
plays a very important role in the process planning of the wire erosion discharge machining process. The 
following results can be drawn as conclusions from this study: 
 Predictions of the response variables were made using the factorial design and the neural network 

techniques and the values obtained by both of the methods were compared with the experimental 
values of the response variables to decide about the nearness of the predictions with the experimental 
values.  

 Increasing pulse duration, open circuit voltage and wire speed increased the surface roughness, 
whereas increasing the flushing pressure decreased the surface roughness. 

 Within the range of input variables for the present case (pulse duration t= 200 to 900 ns, open circuit 
voltage V= 60 to 300 V, wire speed S= 4 to 12 mm/min and flushing pressure p= 6 to 16 kg/cm2), the 
results showed that the neural network comes ahead of regression analysis in nearness of the 
predictions to the experimental values of surface roughness as the average errors in the surface 
roughness in the case of the neural network are less than those obtained using regression analysis 
(average error is 4.78% for NN as compared to 7.17% in the case of regression predictions).  
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