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Abstract– In this work a considerable number of papers regarding the cracked beam like 
structures in the literature are cited. A new and general governing differential equation for 
eigenvalue analysis of cracked members is derived. Buckling analysis of cracked columns, lateral 
free vibration of cracked beams, axial free vibration of cracked bars, torsion free vibration of 
cracked shafts etc. may be considered as special cases. The proposed standard ordinary differential 
equation is solved and the exact analytical solutions for eigenvalues and mode shapes of these 
members are determined. Through customizing the general solutions for special conditions the 
predefined solutions are obtained and the accuracy and robustness of the present study is verified.          
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1. INTRODUCTION 
 

In many engineering problems involving beam like structures, continuity of the physical and geometrical 
properties can be interrupted by singularities due to the presentation of concentrated cracks. Cracks, in a 
structural element in the form of initial defects within the material or caused by fatigue or stress 
concentration, can reduce the natural frequencies and change vibration mode shapes due to local flexibility 
introduced by the crack. The effects of concentrated cracks have been extensively studied in the literature. 
A crack is modeled by describing the variation of the stiffness of the member in the vicinity of a crack.  
The presence of a crack in a structural member introduces a local compliance that affects its response to 
different loads. The change in characteristics can be measured and lead to identification of structural 
changes, which eventually might lead to the detection of a structural flaw. A wealth of analytical, 
experimental and numerical investigations now exists. In deriving the governing equations and their 
solution for different loadings such as axial, flexure, shear, torsion, etc., quite different styles have been 
used in the literature. There is no unified and general style in the form of the governing equations and in 
the solution of cracked members. Hundreds of papers considering the effect of cracks and other defects on 
the behavior of beam like structures have been published in the last twenty years. From these, some 
typical work in buckling and bending vibration of beams and columns, axial vibration of bars and 
buildings, shear vibration of beams and shear buildings and vibration of shafts are cited here. 

Vibration-based inspection is an area of active research. This task is performed by estimating the 
effects of structural damage on the eigen-parameters of structures. The problem of detecting, locating, and 
quantifying the extent of damage was under study for several decades [1, 2]. In order to investigate the 
prevailing effects of damage present in the structure under examination, a mathematical model of the 
damage must be introduced into the model of the structure at the location of the fault. While focusing on 
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transverse vibrations, a simple stiffness reduction of the damaged region was used in Yuen [3]. 
Dimarogonas [4] introduced a local flexibility model, a rotational massless spring, for analysis of cracked 
beams. This model has been the milestone of most papers since its introduction. Several investigators have 
considered the analysis of vibration of cracked beams. The authors of references [5-7] investigated the 
influence of small cracks on the natural frequencies of slender structures by perturbation method as well as 
by Transfer Matrix Method (TMM). Kikidis and Papadopoulos [8] analyzed the influence of the 
slenderness ratio of a non-rotating cracked shaft on the dynamic characteristics of the structure. Zheng and 
Fan [9] analyzed the free vibration of a non-uniform beam with multiple cracks by using a kind of Fourier 
series. Shifrin and Ruotolo [10] proposed a technique for calculating natural frequencies of a vibrating 
beam with an arbitrary finite number of transverse open cracks. They used a rotational massless spring for 
the crack model. Their paper has a good mathematical foundation. Chondros et al. [11] used a continuous 
cracked beam theory for the prediction of a simply supported beam with a breathing crack. The equation 
of motion and the boundary conditions of the cracked beam, considered as a one-dimensional continuum, 
were used. They tested their method for evaluation of the lowest natural frequency of the lateral vibration 
of beams with a single breathing crack. Khiem and Lien [12] and Lin et al. [13] used the TMM for the 
natural frequency analysis of beams with an arbitrary number of cracks. Li [14] presented an approach for 
free vibration analysis of a non-uniform beam with an arbitrary number of cracks and concentrated 
masses, using the fundamental solutions to obtain the mode shape function of vibration of a non-uniform 
beam. The main advantage of their proposed method is that the eigenvalue equation of the beam can be 
conveniently determined from a second order determinant. Chondros et al. [15] proposed a continuous 
cracked beam vibration theory for the lateral vibration of cracked Euler-Bernoulli beams with single or 
double-edge open cracks. They used the Hu-Washizu-Bar variational formulation to develop the 
differential equation and the boundary conditions of the cracked beam as a one dimensional continuum. 
The displacement field about the crack was used to modify the stress and displacement field throughout 
the bar. Behzad, et al. [16], based on the Hamilton principle, developed the equation of motion and 
corresponding boundary conditions for bending vibration of a beam with an open edge crack. The natural 
frequencies of a uniform Euler-Bernoulli beam have been calculated using the new developed model in 
conjunction with the Galerkin projection method. Patil and Maiti [17] experimentally verified a method 
for the prediction of the location and size of multiple cracks based on the measurement of natural 
frequencies of slender multi-cracked cantilever beams. Vibration of beams with multiple open cracks 
subjected to axial force is studied by Binici [18]. He proposed a method to obtain the eigen-frequencies 
and eigen-modes of beams containing multiple cracks and subjected to axial force. The method uses one 
set of boundary conditions to determine mode shapes. Another set of boundary conditions yields second-
order determinants that needs to be solved for eigenvalues. He considered both the vibration and the 
buckling of the structure. Kisa and Gurel [19] developed a numerical model for the modal analysis of 
multi cracked beams with a circular cross section. Their model divides a beam into a number of parts from 
the crack sections and couples them by flexibility matrices considering the interaction forces that are 
derived from the fracture mechanic theory. The main feature of their work was the possibility of analysis 
of beams with any kind of boundary conditions. Ruotolo and Surace [20] proposed a method for the 
calculation of natural frequencies of a vibrating isotropic bar with an arbitrary finite number of symmetric 
transverse open cracks. The TMM, the finite element method and the smooth function method are 
considered for analysis. A bar with three cracks was analyzed and the results of the three methods were 
compared. Schoefs et al. [21] proposed a new cracked beam finite element with a view to introducing the 
effect of large through-cracks in the structural analysis for framed structures like jacket offshore 
platforms. This cracked beam element, based on strain energy, involves four parameters (two 
eccentricities and two stiffnesses) which represent the loss of stiffness. These parameters have been 
identified on the basis of several joint configurations. The cracked beam element model has been applied 
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on a T-tubular joint. The results were in good agreement with the strength of the material and with the 3D 
finite elements. A simply supported Euler-Bernoulli beam with an open crack is considered in Pakrashi et 
al [22]. A new wavelet-kurtosis based approach has been proposed to identify and calibrate the crack. For 
obtaining the mode shape, crack models of different levels of complexities, i.e. lumped, continuous and 
smeared, have been used. The problem of the integration of the static governing equations of the uniform 
Euler-Bernoulli beam with discontinuities is studied by Biondi and Caddemi [23, 24]. Closed form 
solutions of the governing differential equation, requiring the knowledge of boundary conditions only, are 
proposed. The proposed solution for the case of slope discontinuity is compared with the solution of a 
beam having an internal hinge with a rotational spring reproducing the slope discontinuity. Availability of 
explicit expression of the response functions for beams with discontinuities allows the introduction of such 
beams as frame elements in finite element codes. Wang and Qiao [25] presented a general solution of 
vibration of an Euler-Bernoulli beam with arbitrary type and location of discontinuity. Unlike the 
commonly used approach in the literature, the modal displacement of the whole beam is expressed by a 
single function using the Heaviside’s unit step function to account for discontinuities. The general modal 
displacement function is then solved by using Laplace transform. The presented solution reduced the 
complexity of the vibration of beams with arbitrary discontinuities to the same order of the case without 
discontinuity. The problem of buckling analysis of cracked shells is introduced and its significance is 
clarified by Vafai and Estekamch [26].  The latest work on analysis of cracked members is reported by 
Caddemi and Calio [27]. They used the Dirac’s distribution in the buckling analysis of a Euler-Bernoulli 
column. Their method of analysis is more advanced than the previous work, but their derived governing 
equation is not in a standard form. As a result, special methods were used for their numerical analysis. 
This paper was very helpful in the development of the present work. 

The derivation styles, the governing equation obtained and the method of solutions used are diverse. 
The aim of the present paper is to derive a unified formulation which can be used equally for analysis of 
cracked members under bending moment, axial load, shear force, torque and their combination. The 
proposed governing equation simplifies the analysis of cracked members to the same level as that of the 
intact one. That is, the number of boundary conditions for both cases is the same. The compatibility 
conditions at cracked points are considered in the derivation and no longer need to be considered. 
Moreover, the proposed governing equation paves the way for simple finite element analysis of cracked 
members. This last advantage is not considered here. The paper is organized as follows. The literature 
review and introduction are presented in section 1. The governing equations for eigenvalue analysis of 
cracked members are developed in section 2. In section 3 the exact solution for the developed ordinary 
differential equations is derived. A special verification is included in section 4. The conclusions obtained 
from this study are presented in section 5. 
 

2. THE GOVERNING EQUATION 
 
The governing equation for a typical eigenvalue analysis (buckling, free vibration, etc.) of beam-like 
members is defined as follows: 
 

( )( ) ( ) [ ]LxxBBB
dx
dBVQVk n

n
nnn −∈+==Γ=+±ΓΓ 0,,,0 21

)()()(                       (1)   

 
where k is stiffness, Q is force, B1, and, B2, are unknown coefficients, x is axial coordinate, V is 
displacement, L is length of the member and n is an integer. The parameter n may be 1 or 2. Integrate 
equation 1, n times, to obtain the following equation: 
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( ) ( ) ( ) ( )∫ +=++==±Γ
n

nn BVWBdxBVWQWWk ,,0 3
)2(                              (2)  

in which ( )∫ +
n

dxBV  denotes n times integration of the kernel (V+B). The change of variable from V to 
W is performed in order to pave the way for the innovative formulation of cracked members. The 
boundary conditions for W are determined from that of V using the right side of Eq. (2).  

Cracks introduce stress concentration in the members. This stress concentration reduces the 
eigenvalues of the intact eigen problem. The aim of this paper is to investigate the effect of cracks on the 
eigenvalues and eigen vectors (or mode shapes) of the solution of Eq. (2).  

In fracture mechanics, a crack is modeled by a spring with a specified flexibility. That is, a spring is 
inserted in the member in the position of the crack. The flexibility of the spring is explicitly specified in 
terms of crack depth, member’s cross section height and mechanical properties of the member’s material. 
The introduction of the spring produces a jump in a function of the member’s displacement. The jump in 
this function, at point jxx = , corresponding to Eq. (2) is defined as follows: 
 

( ) ( ) ( ) ( ) ( )jj
n

jcrack
n

j
n

jcrack
n xxHVCVVCV −Γ=Γ→Γ=ΓΔ −− )()1()()1(                     (3)      

 
Where Δ denotes the jump, H is the Heaviside unit step function,  jx  is the crack position coordinate, and  

jC  is the equivalent spring flexibility. Taking derivative from both sides of Eq. (3) (note that ( )j
n V)(Γ  is 

constant) leads to the following equation: 
 

( ) ( ) ( ) ( ) ( )jjj
n

jjcrack
n

j
n

jjcrack
n xxWkCWkVCV −=Γ=Γ→Γ=Γ δδδδ ,)2()2()()(        (4)    

 
In which jδ  is the Dirac’s delta distribution [28].  

Determine ( )Wk n)2(Γ  from Eq. (2). Substitute it into Eq. (4) to obtain the crack contribution as 
follows: 

( ) ( )BWQCWk jjcrack
n +=Γ δm)2(                                                 (5) 

 
The differential operator in the governing differential equation of a cracked member is composed of two 
parts, intact and cracked, as follows: 
 

( ) ( ) ( )crack
n

tactin
nn WkWkWk )2()2()2( Γ+Γ=Γ                                      (6)   

 
Compute the intact contribution from Eq. (6) and substitute it into Eq. (2) to obtain: 

( ) ( ) ( ) 0)2()2( =+±Γ−Γ BWQWkWk crack
nn                                           (7) 

Insert the crack contribution, from Eq. (5), into the Eq. (7) and simplify to obtain the following equation:  

 ( ) ( ) ( ) 01)2( =++±Γ BWQCWk jj
n δ                                                 (8) 

Equation (8) may be extended for multi cracked members as follows: 

( ) ( ) ( ) cjj
n njBWQCWk ,1,01)2( ==++±Γ δ                                          (9) 

 
In Eq. (9) the Einstein’s summation convention is assumed. In this convention, repeated index (j here) 
denotes summation over the index range ( cn here). Equation (9) is the governing equation of cracked 
members. Equation (9) is a standard differential equation. It can be precisely solved by known methods of 
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solution. This elegant specific property of the proposed equation is not available in the related previous 
work in the literature. 
 

3. EXACT SOLUTIONS 
 
In engineering problems the orders 2 and 4 (n=1 and 2) of the governing equation are the most prevalent 
cases. For these two cases the exact solutions are derived.  
 
a) Buckling analysis of multi-cracked columns 
 

The governing equation for buckling analysis of multi-cracked columns is defined as follows: 
 

( )( ) VWPEInjxBBWCW cjj ====++++′′ ,,,1,01 2
21

2 λδλ                            (10)      
 
Take the Laplace transform (LT) [29] from Eq. (10) to obtain the following equation: 

( ) 021
2

2
212

00
2 =+++⎟

⎠
⎞

⎜
⎝
⎛ +++′−− − sx

jjjWW
jexBBWC

s
B

s
B

LWsWLs λλ                   (11) 

The LT of the displacement function is obtained as follows: 

( ) ( ) ( ) ( )
( )

( )22
21

2

222

2
2

22

2
1

22
0

22
0

λ

λ

λ
λ

λ
λ

λλ +

++
−

+
−

+
−

+

′
+

+
=

−

s
exBBWC

ss
B

ss
B

s
W

s
sW

L
sx

jjj
W

j

          (12) 

By taking the inverse of LT the general solution for this case is defined as follows: 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −−−−

′
+=

λ
λλλ

λ
λ xxBxBx

W
xWW sincos1sincos 21

0
0  

 
( ) ( ) ( )jjjjj xxHxxxBBWC −−++− λλ sin21                                      (13)                        

Where Wj is the value of W at the cracked point j, defined as follows: 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−−

′
+=

λ
λ

λλ
λ

λ j
jjjjj

x
xBxBx

W
xWW

sin
cos1sincos 21

0
0                 (14) 

 
b) Axial vibration of multi-cracked bars 
 
For axial free vibration the governing equation is defined, a special case of Eq. (9), as follows: 
 

( ) VWmEAnjWCW cjj =′===++′′ ,,,1,01 222 ωλδλ                               (15)                         
Set B1 and B2 in Eqs. (13) equal to zero to obtain the solution for this case as follows: 

( ) ( )jjjj xxHxxWCx
W

xWW −−−
′

+= λλλ
λ

λ sinsincos 0
0                          (16) 

 Where 

jjj x
W

xWW λ
λ

λ sincos 0
0

′
+=                                                         (17) 
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The equations of this section are equally valid for the shear vibration of beams and the torsional vibration 
of shafts.  
 
c) Lateral vibration of multi-cracked beams 
 

The governing equation for lateral vibration of multi-cracked beams is given by the following 
equation: 

( ) 244 ,,,,1,01 ωλδλ mEIVWBVdxWnjWCW cjj
IV ==′′+===+− ∫∫           (18)                         

The LT of this equation is written as follows: 

044
000

2
0

34 =−−′′′−″−′−− − sx
jjWW

jeWCLWsWWsWsLs λλ                       (19) 
 
And the LT of the displacement function is obtained as follows: 
 

44
4

044044044

2

044

3 1
λ

λ
λλλλ −

+′′′
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+″
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+′
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+
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=
−

s
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j
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Or 

⎥⎦
⎤
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The function W is obtained by inverse LT of equation 21. The resulted W and its derivatives are defined by 
the following equation: 
 

( ) ( ) ( )
( )

( ) ( ) ( ) cjjnk
ni

jj
nii

nik
n njixxHxxFWCWFxW ,1,3,0,,3

1
0, ==−−+= +++− λλ        (22) 

 
In this equation summation convention is assumed on i and j. The (n) and (i) denote derivatives with 
respect to x, the superscript without brace denotes power and the subscript k is the element of a matrix. 
The matrix k and the parameter Wj are defined as follows: 
 

( )[ ] ( ) ( ) ( )
c

nii
jnikj njiWbFWnik ,1,3,0,,

30123
23012
12301
01230

, 0, ===

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

= +−λ             (23)   

 
The functions 3,0, =kFk  are defined as follows: 

( ) ( )xxFxxF λλλλ sinsinh,coscosh 10 +=+=                                     (24)                        
And 

( ) ( )xxFxxF λλλλ sinsinh,coscosh 32 −=−=                                    (25) 

Equation (14) of Wang and Qiao [25] is included as follows: 
 

44
2

044044044

2

044

3 1
λλλλλ −

′Δ+′′′
−

+″
−

+′
−

+
−

=
−

s
esVV

s
V

s
sV

s
sV

s
sL

sx

jV

j

               (26) 
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The first four terms of Eq. (26) are the same as that of Eq. (20) except in the name of parameters. The 
parameter V is the lateral displacement while W is an integral of V as defined in Eq. (2).  The fifth term in 
the first, ( )2sV j′Δ , is different from that in the second, ( )jjWC4λ . As a result, the solution based on 
equation (26) needs the discontinuity in the slopes to be known. Otherwise, it needs the relation 

VCV jj ′′=′Δ  to be inserted into the equation. The final solution based on equation (20) is relatively 
simpler than that of Wang and Qiao.  
 

4. VERIFICATION 
 
In order to verify the formulation and its implementation, three examples are included in this section. 
 
Example 1: Buckling of simply supported multi-cracked columns 
The boundary conditions for this case are defined as follows: 
 

( ) ( ) 0,00 21 ==== BBLWW                                                 (27) 
 
For simply supported case the general displacement is defined as follows: 
 

( ) ( )jjjj xxHxxWCx
W

W −−−
′

= λλλ
λ

sinsin0                                     (28)  

And 

jjj xx
W

W λλ
λ

sinsin0 ≡
′

=                                                    (29)    
 
Substitute the ( ) 0=LW  boundary condition to obtain: 
 

( ) ( ) 0sinsin =−−= jjj xLWCLLW λλλ                                        (30) 
 
From this equation the eigenvalues may be determined. 

The mode shapes corresponding to this case are defined as follows: 
 

( ) ( )jjjj xxHxxWCxW −−−= λλλ sinsin                                      (31) 
 
Note that for a member with a single crack, the eigenvalue equation is defined as follows: 
 

 ( ) 0sinsinsin 111 =−− xLxCL λλλλ                                           (32) 
 
This is a well known equation which may be found in the literature [18]. Equation (32) is solved by the 
Newton-Raphson method [29]. The effect of crack depth and crack position on the buckling capacity 
ratio ucrP PPR = , where crP  and uP  are cracked and intact buckling loads, respectively, is shown in Fig. 
1. For a crack at the middle of the column the effect of slenderness ratio ( )Lh  on the buckling load for 
different crack depth ratios is shown in Fig. 2. In these figures, Lxbetahax ji === ,ξ  and a are 
crack depth ratio, crack position ratio and crack depth respectively. The coefficient is defined as follows 
[30]. 

( ) 432
1 375.1695.3862.1(346.5 ξξξ +−= hC  

8765 1729.12681.76226.37 ξξξξ +−+−                                        (33) 
                                                           )56.6697.143 109 ξξ −−  
 
For the cases of axial, shear and torsion free vibration the governing equation is the same. A typical axial 
problem is presented for completeness.  
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Fig. 1. The effect of crack depth and position on the buckling load 

  
Fig. 2. The effect of slenderness ratio on the buckling load 

 
Example 2: Free vibration of a fixed-free multi-cracked bar 
Determine the dynamic characteristics of a fixed-free bar with two cracks at 1x  and 2x . Denote the 
corresponding springs’ flexibilities as 1C  and 2C  respectively. 
Solution: 

The boundary conditions are defined as follows: 
 

( ) ( ) ( ) ( ) 0,000 00 =′′=′=′= LWLVWV                                                (34) 
 
Substitution of the first boundary condition leads to the solution as follows: 

( ) ( ) 2,1,sincos =−−−= jxxHxxWCxW jjjj λλλ                               (35)  
 
And substitution of the second boundary condition leads to the following equation for computation of . 
 

( ) ( ) 2,1,0sincos0 ==−−→=′′ jxLWCLLW jjj λλλ                                 (36) 
Where 

2,1,cos == jxW jj λ                                                            (37)                         

Equations 35 and 34 are used for determination of λ and W respectively. The mode shape and its 
derivative are determined as follows: 
 

( ) ( )jjjj xxHxxWCxV −−+= λλλ cossin                                         (38) 
And 

 ( ) ( )[ ]jjjj xxHxxWCxV −−−=′ λλλλ sincos                                      (39) 
 
Variation of λ versus ( ) 10,5.0,2.0,1,50 21122 ==== LLxLxCCC pp  for the first mode is shown in 
Fig. 3. The first mode shape for 11 =C  and 22 =C  is shown in Fig. 4. 
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Fig. 3. Variation of λ versus C2 for 11 =C  

 

  
Fig. 4. Variation of V versus x 

    
The variation of V ′  is also shown in this figure. From this figure the relation VCVcrack ′=Δ  is 

accurately checked at two cracked points. This observation verifies the accuracy of the proposed method, 
its derivation and its implementation. Note that the other modes may be computed in the same way. 
 
Example 3: Free vibration of a fixed-free multi-cracked beam 
Determine the dynamic characteristics of a fixed-free beam of mL 8.0=  and square cross-section 

mhb 02.0==  . The material properties are assumed as Young’s modulus 211101.2 mNE ×= , Poisson’s 
ratio 35.0=ν  and mass density 37800 mkg=ρ . The beam has two cracks at mmawithmb 212.0 11 ==  
and mmawithmb 34.0 22 ==  respectively. 
 
Solution: 
The boundary conditions are defined as follows: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 00,00,00,000 =′→′′′=→′′=→′′=′′→ WLVWLVLWVWV             (40)      
 
The general solution from Eq. (22) is written as follows: 
 

( ) ( ) ( ) xWWxWWxWWW λλλλλλλ sinhcoscosh2 3
0

1
0

2
00

2
00

−−−− ′′′+′+′′−+′′+=  
( ) ( ) ( )( ) ( )jjjjj bxHbxbxWCxWW −−−−+′′′−′+ −− λλλλλλ sinsinhsin3

0
1

0                (41) 
 
Substitution of boundary conditions into the above equation leads to the following characteristics 
equation. 

 
012212211 =− TTTT                                                                (42) 

Where 
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( ) ( ) ( ) ( )( )[ ]jjjjj bLbLbbCLLT −−−+++= λλλλλλλ sinsinhcoscoshcoscosh211  

( ) ( ) ( ) ( )( )[ ]jjjjj bLbLbbCLLT −−−+++= λλλλλλλ sinsinhsinsinhsinsinh212   

( ) ( ) ( ) ( )( )[ ]jjjjj bLbLbbCLLT −−−++−= λλλλλλλ coscoshcoscoshsinsinh221  

( ) ( ) ( ) ( )( )[ ]jjjjj bLbLbbCLLT −−−+++= λλλλλλλ coscoshsinsinhcoscosh222  
 

The natural frequencies (Hz) determined from Eq. (42) (ANAL) are compared with that of Shifrin and 
Ruotolo in Table 1. The results are in excellent agreement. 
 

Table 1. Comparison of natural frequencies for a beam with two cracks 
 

 Frequency 
 

        
ANAL 26.095 163.320 459.601 895.132 1486.443 2247.501 3101.997 3828.458 

Ref.[10] 26.095 163.322 459.601 - - - - - 
Diff. % 0.000 0.001 0.000 - - - - - 

 
By customizing the general solution for special conditions (e.g. for single crack and specified boundary 
conditions), the well known solutions are obtained. This special agreement of the results may well be 
considered as a verification of the derived governing equations and the proposed exact solutions. 
 

5. CONCLUSION 
 
From this research the following conclusions may be obtained. 
a. A general governing differential equation for eigenvalue analysis of multi-cracked beam like 

structures is derived. 
b. The derived governing equation is a standard ordinary differential equation. 
c. With the help of Laplace Transform a general exact solution is proposed. 
d. Through customizing the general solution for special cases with well known solutions, the accuracy 

and robustness of the proposed solutions are verified. 
To the best of the author’s knowledge, there is no such simple and general formulation in the literature to 
date. This work is a satisfactory ending to the ongoing eigenvalue analysis of multi-cracked beam like 
structures.  
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