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Abstract   In recent years, soft computing methods, like fuzzy logic and neural networks have been 
presented and developed for the purpose of mobile robot trajectory tracking. In this paper we will 
present a fuzzy approach to the problem of mobile robot path tracking for the CEDRA rescue robot 
with a complicated kinematical model. After designing the fuzzy tracking controller, the membership 
functions and rule weights will be optimized by genetic algorithm in order to obtain more acceptable 
results. Simulation results have demonstrated significant improvements in controller efficacy. 
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در سالهاي اخير سيستمهاي هوشمند مانند منطق فازي و شبکه هاي عصي به عنوان روشهايي براي ه   كيدچ
در مقاله حاضر رهيافتي مبتني بر منطق فازي . اندارائه شده و رباتهاي سيار توسعه يافته هدف تعقيب مسير در 

. باشد، ارائه شده است که داراي مدل سينماتيکي پيچيده اي مي" سدرا"براي مساله تعقيب مسير ربات امدادگر 
ستيابي به نتايج بهتر، پس از طراحي سيستم کنترل فازي، توابع عضويت و ارزشگذاري قوانين فازي با هدف د

 .نتايج شبيه سازي بهبود بارزي را در کارايي سيستم کنترلي نشان داده است. بهينه شده اند
 
 

 
1. INTRODUCTION 

 
The problem of trajectory tracking for mobile 
robots has been an attractive issue in the robotic 
field during recent years. Our purpose is to control 
a certain high mobility rover for rescue operations 
that have has a complex kinematical model. 
     Path tracking has been widely investigated, 
such as, Dongbing Gu and Huosheng Hu [1] who 
developed a path tracking scheme for a car-like 
mobile robot based on neural predictive control; 
Jacky Baltes and Robin Otte [2] developed a Fuzzy 
Logic Path Controller for path tracking, Jiri Sika 
and Joop Pauwelussen [3] used Look-ahead Virtual 
Point and developed a lateral controller to follow a 
pre-described path. 
     Waneck [4] proposed a fuzzy controller for an 
autonomous boat in absence of a nonlinear 

dynamic model of the vehicle. Sugeno et al. [5] has 
designed a fuzzy controller based on the fuzzy 
modeling of a human operator’s control actions to 
navigate and park a car. Larkin [6] has proposed a 
fuzzy controller for aircraft flight control where the 
fuzzy rules are generated by interrogating an 
experienced pilot and asking him a number of 
highly structured questions. The design of a fuzzy 
logic system (FLS) includes the design of a rule 
base, input scale factors, output scale factors, and 
finally the design of the membership functions. 
Input scale factors transform the real inputs into 
normalized values, and output scale factors 
transform the normalized outputs into real values. 
Some studies have shown that FLS performance is 
more dependent on membership function design 
than rule base design [7]. The tuning of input and 
output scale factors is known as context adaptation. 
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Figure 1. Cedra Rescue Robot. 
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Figure 2. Kinematic Model of the Robot. 

Some researchers have studied genetic algorithms 
for context adaptation [8]. Others have used 
genetic algorithms to design the rule base and the 
scale factors when the normalized membership 
functions are fixed [9]. Some studies used neural 
networks for context adaptation [10]. A genetic 
learning process for the membership function 
design, coupled with a heuristic method for the 
rule base design, has been proposed in [11]. 
     The subject of this paper is restricted to the 
tuning of membership functions. Researchers have 
used many different methods over the past decade 
to optimize fuzzy membership functions. These 
methods include genetic algorithms [12], neural 
networks [13], evolutionary programming [14], 
geometric methods [15], fuzzy equivalence 
relations [16], heuristic methods [17], and gradient 
descent [18]. 
     Design and selection of linguistic variables and 
rules of a fuzzy controller require expert 
knowledge of the under control system. This 
knowledge is usually obtained by trial-and-error or 
by consulting and observing a human operator 
controlling a real system. 
     One of the main factors in the design of 
efficient and robust fuzzy logic controllers is the 
selection of parameters of the membership 
functions. We intended to have a weight to every 
rule and optimize these weights for finding suitable 
rule base. The existing approaches for choosing the 
membership functions are based on trial-and-error 
process, which mostly lack learning and autonomy. 
One method of removing the uncertainty 
associated with the selection of these variables is 
the use of genetic algorithms (GA). In this 
trajectory tracking application, the fitness function 
evaluates the robot’s path, taking into account the 
distance and orientation error from the desired 
path. The optimum membership functions and 
weights of the rules differ from one path to 
another. Therefore a very complicated desired path 
has been chosen in the optimization process, to 
assure the robustness of the optimal fuzzy 
controller. 
 
 
 

2. KINEMATIC MODEL OF 
THE ROBOT 

 
A top view of CEDRA rescue robot (see Figure 1.) 

is shown in Figure 2. This mobile robot consists of 
six wheels. Front and rear ones are steerable and 
the remaining four wheels are mounted beside the 
robot. Robot kinematic Equations derivation can 
be seen in the Equation 1 through 8 and Equations 
9, 10 and 11 depict the final relations. 
 

2/)rVfV(cV

2/)rrfr(cr
rrr

rrr

+=

+=  (1) 

 
]j)csin(i)c[cos(VfV
rrr

θ+φ+θ+φ=  (2) 

www.SID.ir



Arc
hi

ve
 o

f S
ID

IJE Transactions A: Basics Vol. 19, No. 1, November 2006 - 97 

Fc 

x

y d

(xc , yc) 

(xn , yn , Fn)
)

DF 

 
Figure 3. Robot And Path Curve Interaction. 
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Interaction between robot and path curve is shown 
in Figure 3. Xc and Yc give the coordinates of the 
robot geometrical center. The orientation of the 
robot is given by Φc. Coordinates Xn and Yn are the 
coordinates of the closest point to the robot on the 
path. The slope of the path at this point is given by 
Φn. In addition, subscripts r, c and f refer to the 
rear, center and front of the robot respectively. 
     In this application, the control signals are robot 
velocity and steering angle, which are determined 
based on the deviation between the desired and 
actual position and orientation. It should be 
mentioned that environment is completely known 
and path is prescribed and then the optimized fuzzy 
controller will be proposed for tracking this path. 
The control function is defined as a function of 
positional error (d), the orientation error (ΔΦ), and 
the curvature of the path (R). The positional error 
is the distance between points (Xc, Yc) and (Xn, Yn 
). The orientation error is defined as ΔΦ = Φn  - Φc. 
It is assumed that the path is continuous. However, 

the curvature and any derivative of the path may be 
discontinuous. 
 
 
 

3. DESIGN OF THE FUZZY LOGIC 
CONTROLLER 

 
The crux of designing an FLC lies in the selection 
of high-performance membership functions that 
represent the human expert’s interpretation of 
linguistic variables, because different membership 
functions determine the extent to which the rules 
affect the action and hence the performance [19]. 
     The existing iterative approaches for choosing 
the membership functions are basically a manual 
trial-and-error process and lack learning capability 
or autonomy. Therefore, the more efficient and 
systematic genetic algorithm which acts on the 
survival-of-the-fittest has applied to FLC design 
for searching the poorly understood, irregular and 
complex membership function space with 
improved performance. 
     This section describes the design of Fuzzy 
Logic Controller for CEDRA rescue robot. It also 
discusses the heuristic that we apply to determine 
the number of necessary fuzzy input and output 
sets. All of the membership functions used in input 
and output sets are in the form of trapezoid 
function formulated as in Equation 12 [20]. 
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3.1. Fuzzy Input Sets   Fuzzy Logic controller, 
the input to the controller (curvature, position 
error, and orientation error) is converted into a 
series of fuzzy sets via the singleton fuzzifier. The 
number and exact shape of these fuzzy sets 
critically determine the performance of the 
controller. These fuzzy sets describe a qualitative 
situation in which the output of the controller is 
qualitatively different. 
     In other words, whenever the desired behavior 
(e.g., change from going straight to turning left or 
change from fast to medium speed) of the 
controller changes in an input situation, a fuzzy set 
is created to represent this case. 
     Curvature consists of three fuzzy sets; Left 
Curvature, Straight and Right Curvature. The 
fuzzification of the positional error includes five 
sets; NegHighDist (NHD), NegLowDist (NLD), 
ZeroDist (ZD), PosLowDist (PLD) and 
PosHighDist (PHD). Clearly it is desirable that the 
robot be on the line (ZeroDist). Assume that the 
robot is far away from the path, then the desired 
behavior is to turn either right/left towards the 
path, drive straight towards the path, and turn 
left/right to straighten out. Therefore, we require 
two extra sets on each side of the path. 
     Similar reasoning leads to the design of the 
fuzzy sets for the orientation error. A total of five 
sets have been used to describe different cases; 
NegHighAngle (NHA), NegLowAngle (NLA), 
ZeroAngle (ZA), PosLowAngle (PLA) and 
PosHighAngle (PHA). 
 
3.2. Fuzzy Output Sets   There are two outputs 
from fuzzy controller to the robot: (a) speed and 
(b) Steering Angle. There are four membership 
functions for describing the speed heuristic 
variable: Zero, Slow, Medium and Fast. The 
steering Angle is determined by using five 
membership functions; SharpLeft (SL), LowLeft 
(LL), Stright (ST), LowRight (LR) and SharpRight 

(SR). A crisp output value is then computed from 
this fuzzy set. In this research, we used the well-
known centroid defuzzification method, which 
uses the center of gravity as the crisp output value. 
 
3.3. Fuzzy Rule Base   Given these fuzzy input 
sets, a fuzzy controller uses a set of fuzzy rules to 
specify the desired control behavior through the 
minimum inference engine. After the design of the 
fuzzy input and output sets, the design of the fuzzy 
rules is straight forward. There are a total of 
5*5*3=75 possible different input configurations. 
For each of these input configurations, a rule was 
specified to indicate the desired speed and 
directional settings. The controller rule base 
appears in Table 1. 
 
 
 

4. GENETIC ALGORITHM 
 
Algorithms for function optimization are generally 
limited to convex regular functions. However, 
many functions are multi-model, discontinuous, 
and non-differentiable. Genetic algorithms (GAs) 
are a class of stochastic search techniques, loosely 
based on ideas from biological evolution, which 
have been used successfully for a great variety of 
different problems (e.g., [21-23]). 
     The GA searches for an optimal solution from a 
population of candidate solutions according to an 
objective function, which is used to establish the 
fitness of each candidate as a solution. The 
governing process in the search is the application 
of appropriate breeding operators to candidate 
solutions in a given generation to form the 
candidates for the next generation. These operators 
are designed to preserve the most successful 
aspects of candidate fitness until the best possible 
solution is attained.  
     At each generation, a new set of approximations 
is created by the process of selecting individuals 
according to their level of fitness in the problem 
domain and breeding them together using operators 
borrowed from natural genetics. This process leads 
to the evolution of populations of individuals that 
are better suited to their environment than the 
individuals that they were created from, just as in 
natural adaptation. 
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TABLE 1. Fuzzy Rule Base. 
 

Input Output Input Output  
No. Curvature d Δ φ  V Θ No. Curvature d Δ φ  V Θ 

1 StraightLine ZD ZA Fast ST 39 LeftCircle ZD NLA Slow ST 
2 StraightLine ZD PLA Med LL 40 LeftCircle ZD NHA Slow LR 
3 StraightLine ZD PHA Slow SL 41 LeftCircle PHD NHA Slow LR 
4 StraightLine ZD NLA Slow LR 42 LeftCircle PHD NLA Slow ST 
5 StraightLine ZD NHA Slow SR 43 LeftCircle PHD ZA Slow LL 
6 StraightLine PHD NHA Slow ST 44 LeftCircle PHD PLA Zero SL 
7 StraightLine PHD NLA Med LL 45 LeftCircle PHD PHA Zero SL 
8 StraightLine PHD PHA Slow SL 46 LeftCircle PLD NHA Slow LR 
9 StraightLine PHD PLA Slow SL 47 LeftCircle PLD NLA Slow LL 

10 StraightLine PHD ZA Med SL 48 LeftCircle PLD ZA Slow SL 
11 StraightLine PLD NHA Slow LR 49 LeftCircle PLD PLA Slow SL 
12 StraightLine PLD NLA Slow ST 50 LeftCircle PLD PHA Slow SL 
13 StraightLine PLD ZA Slow LL 51 RightCircle NHD NHA Slow LL 
14 StraightLine PLD PLA Slow LL 52 RightCircle NHD NLA Slow ST 
15 StraightLine PLD PHA Slow SL 53 RightCircle NHD ZA Slow LR 
16 StraightLine NHD PHA Slow ST 54 RightCircle NHD PLA Slow SR 
17 StraightLine NHD PLA Slow LR 55 RightCircle NHD PHA Slow SR 
18 StraightLine NHD ZA Med SR 56 RightCircle NLD NHA Slow LL 
19 StraightLine NHD NLA Slow SR 57 RightCircle NLD NLA Slow LR 
20 StraightLine NHD NHA Med SR 58 RightCircle NLD ZA Slow SR 
21 StraightLine NLD PHA Slow LL 59 RightCircle NLD PLA Slow SR 
22 StraightLine NLD PLA Slow ST 60 RightCircle NLD PHA Zero SR 
23 StraightLine NLD ZA Slow LR 61 RightCircle ZD ZA Slow LR 
24 StraightLine NLD NLA Slow LR 62 RightCircle ZD PLA Zero SR 
25 StraightLine NLD NHA Slow SR 63 RightCircle ZD PHA Zero SR 
26 LeftCircle NHD NHA Slow SR 64 RightCircle ZD NLA Slow ST 
27 LeftCircle NHD NLA Slow LR 65 RightCircle ZD NHA Slow LL 
28 LeftCircle NHD ZA Slow ST 66 RightCircle PHD NHA Slow SL 
29 LeftCircle NHD PLA Slow LL 67 RightCircle PHD NLA Slow LL 
30 LeftCircle NHD PHA Slow SL 68 RightCircle PHD ZA Slow ST 
31 LeftCircle NLD NHA Slow SR 69 RightCircle PHD PLA Zero LR 
32 LeftCircle NLD NLA Slow LR 70 RightCircle PHD PHA Zero SR 
33 LeftCircle NLD ZA Slow ST 71 RightCircle PLD NHA Slow SL 
34 LeftCircle NLD PLA Slow LL 72 RightCircle PLD NLA Slow LL 
35 LeftCircle NLD PHA Zero SL 73 RightCircle PLD ZA Slow ST 
36 LeftCircle ZD ZA Slow LL 74 RightCircle PLD PLA Slow LR 
37 LeftCircle ZD PLA Zero SL 75 RightCircle PLD PHA Slow SR 
38 LeftCircle ZD PHA Zero SL       

 

Individuals or current approximation, are encoded 
as strings, chromosomes, composed over some 
alphabet, so that the genotypes (chromosome 
values) are uniquely mapped onto the decision 
variable (phenotypic) domain. 

Reproduction, mutation and crossover are three 
basic operations in evolution. In reproduction 
parents are carried unaltered into the next 
generation. Information is exchanged around a 
randomly generated bit position through crossover, 
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while in mutation a randomly generated bit 
position is altered to a new value. For each 
function, the user must define a probability that 
indicates the effect of that function in the 
evolution. In each section a random number is 
needed for use in the algorithm. The evolution is 
based on the statistical nature of these numbers and 
functions [24]. 
     The following pseudocode gives an abstract 
view of genetic algorithm. 
 
begin GA 

g: = 0 { generation counter } 
Initialize population P (g) 
Evaluate population P (g) 
while not done do 

g: = g+1 
Select P(g) from P (g-1) 
Crossover P(g) 
Mutate P (g) 
Evaluate P (g) 

end while 
end GA 
 
 
 

5. MEMBRESHIP FUNCTION AND 
WEIGHT OPTIMIZATION 

THROUGH GA 
 
From the viewpoint of a genetic search the 
membership functions and weight of the rules can 
be seen as functions, the parameters of which are 
necessary to achieve optimization in general terms 
and independently of sensory application. The goal 
is to achieve the minimum distance and time in 
path tracking. Since some rules may be uncertain, 
the weight of the rules is optimized too. The range 
of membership function parameters is determined 
based on robot and path dimensions. Here the 
range defined for weights is [0. 7, 1]. The objective 
function in mathematical formulation as applied to 
this work is: 
     If penalty function is met 
 

( ) time factor  iDistance  factor obfun 2

imax

1i
1 ×+×= ∑

=

          (13) 

 
Else   2001   obfun =                                                (14) 
 
Where penalty function is failed if (max (Distance 

(i)) > Dmax) or (time > Tmax). 
     The selected values for crossover probability 
and mutation are 0.9 and 14/ Lind, respectively. We 
have assumed that the number of generations or 
analyzed cycles of populations is 1000 and at first 
in every generation all the individuals are 
substituted to the next generation. The result of GA 
optimization for some membership functions have 
been shown in Figure 4. 
 
 
 

6. SIMULATION RESULTS 
 
Simulations are presented using a complicated 
desired path including several break points to show 
the controller performance. Figures 5 and 6 show 
the response of initial and optimized FLC, 
respectively. As can be seen, the deviation from 
the desired path has been extremely reduced. In 
next stage, some noise and delay have been added 
to the controller inputs and outputs in order to 
simulate the practical conditions in a better 
manner. So it is better to concern criteria seen 
frequently in experimental works. At any instant, 
the position and orientation of robot could be 
determined by accelerometer and tilt sensor. The 
amount of uncertainty in input data is in an order 
of 3cm for position, 5cm/s for speed and 1 degree 
for orientation and in the form of white noise. 
Sampling time is considered to be 0.1s. Simulation 
has been repeated considering noise on input and 
output signals and the result is shown in Figure 7. 
Finally Figure 8 illustrates the result of adding a 
0.5s transport delay to the disturbances mentioned 
above. As mentioned earlier, the controller 
response has been optimized for a certain path. 
Because of the complexity and variety of curve 
sections, it is expected that the controller shows an 
acceptable behavior in case of any arbitrary 
trajectory. In order to illustrate this feature, the 
controller has been tested over a different path and 
its response is shown in Figure 9. 
 
 
 

7. CONCLUDING REMARKS 
 
In this paper, a fuzzy logic controller has been 
developed for the path tracking of a rescue robot. 
In order to tune the membership functions and the 
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(a) 

 

 
(b) 

 

 
(c) 

 
Figure 4. Optimum Fuzzy Sets: (A) Distance Error (B) 
Orientation Error And (C) Speed. 

rule weights, (to achieve minimum deviation from 
desired path) we have used Genetic Algorithm 

method. Finally for approaching to the real 
conditions first we exert noise in inputs and 
outputs of the controller. Then we added transport 
delay to the controller. According to the simulation 
results, performance of the optimized controller is 
acceptable even if noise, disturbance and transport 
delay are added to the system. Also the controller 
performance remains acceptable in spite of 
changing the desired path. 
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Figure 5. Robot Path Tracking Before Optimization. 

 

 
 

Figure 6. Robot Path Tracking after Optimization. 
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Figure 7. Robot Path Tracking After Optimization With Noise In Input & In Output Of FLC. 

 
 
 

 
Figure 8. Robot Path Tracking After Optimization With Noise In Input & In Output Of  

Flc With Considering Transport Delay. 
 
 
 

 
Figure 9. Testing The Optimized Robot Path Tracking Controller Over A Different Path. 
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