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In this paper, we develop a mathematical model to examine the transmission dynamics of curable
malaria, curable mTB and non-curable HIV/AIDS and their co-infection. The size of population has
been taken as varying due to the emigration of susceptible population. The total population is divided
into five subclasses as susceptible, malaria infected, mTB infected, HIV infection and AIDS by
assuming co-infection among them. The model has two basic parts, qualitative and numerical. In
qualitative part, we analyze the transmission dynamics of this co-infection by using equilibrium and
stability analysis. In numerical part, the computational simulation is used to transmission flow of
disease among various classes. The sensitive analysis is also performed.
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1. INTRODUCTION

Despite the development of antibiotics and vaccine,
infectious diseases are still one of the major causes of
human mortality, particularly in developing countries.
The death toll in India from malaria and mTB,
mycobacterium tuberculosis, is still very significant and
the number of HIV infected people is quite high in
India. The HIV, human immunodeficiency virus, leads
to acquired immunodeficiency syndrome (AIDS).
According to global report at Geneva (2004), 40 million
people, worldwide, are infected with HIV, and due to
this disease about 20 million people have died in last
two decades. About 14000 people are newly infected
each day. The disease HIV is untreatable, and only with
the help of the antiretroviral therapy (ART) life span of
an infected person can be increased and can remain
healthy before acquired full-blown AIDS. The risk of
being HIV infected can be reduced by using less risky
behavior like using safety measures in sexual activities
or avoiding sharing of needle for injection drug users. A
good number of adults have adopted safer sexual
behavior in response to the AIDS epidemic [I, 2].

*Corresponding Author Email: atarsingh1968@gmail.com (A.
Singh)

Mathematical models are playing a vital role in
analyzing the spread of infectious diseases among the
people [3, 4] and predicting the timing and extent of
infection [5].

It is observed that in developing countries mTB and
malaria are very common infections occurring among
HIV-positive persons. Co-infection of TB and HIV are
playing leading role in deaths from infectious diseases
[6]. The spread of HIV infection plays vital role in
increasing the mTB infection due to break down of the
immune system. A person infected with mTB may have
latent or active infection. If the infection is latent then
this infection will not take off the form of active disease
due to the strong immune system. It may happen that a
person will remain infected with latent TB for years or
forever. For infectiveness of HIV - related TB, DOTS
strategy has been recommended by WHO to control the
TB (Tuberculosis) [7]. There are other ways to control
the TB cases like reducing HIV infection by some
intervention programmes, providing understanding of
spreading HIV, treating the patients by HAART etc. [8].
When the susceptible individuals who are not infected
with TB, get infection first, they enter into latent
infection class of TB. The latent TB becomes active TB
or TB disease at the rate of 0.001 per year in case of
HIV negative [9-11] and in case of HIV positive latent
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TB progresses TB disease at the rate of 0.1 per year [12-
15]. Persons who are re-infected with TB, only 4.9%
cases of TB leads to active disease for HIV-negatives
and 50% cases of Latent TB progresses to TB disease in
case of HIV- positive infection [16]. The HIV cases in
the population increase more rapidly in the presence of
other diseases particularly mTB; to control the spread of
HIV, the mTB must be treated effectively [17, 18].

The HIV infection also increases risk of developing
severity of malaria [19]. In the area of high malaria
transmission, the HIV infection enhances the mortality
rate among severe malaria cases by 1.6 to 2.5 fold. To
control the impact of HIV on malaria, HAART
technique has been recommended [20]. In area of high
intensity transmission, HIV-1 increases the incidence of
clinical among adults [21]. The effect of HIV-1 on
malaria incidence is more apparent in adults as
compared to children [22]. The impact of HIV-1 on
malaria in sub-Saharan African population was studied
and distribution of CD4 count among HIV infected
persons was modeled [23] studied an age-structured
homogeneous epidemic model. The education
campaigns on HIV/AIDS are much more effective to
slow down the HIV epidemic [24, 25]. There is a recent
literature that addresses the development of various
mathematical models of infectious disease; to slow
down the infection rate the different techniques viz
global stability, explicit series solution, study of
vaccination, bifurcation analysis etc. are used to solve
the different mathematical models [26-34].

Both mTB and malaria enhances “the risk. of
progression of HIV and decrease the survival period of
patients with HIV infection. In view of this it is very
relevant to study the co-infection of malaria-mTB-
HIV/AIDS in the population.

Our model is extended version of ref. no. 18 (co-
infection of mTB-HIV/AIDS), the addition of one
compartment of malaria in the form of co-infection of
malaria-mTB-HIV/AIDS. make the set of equations
complex.

The organization of paper is as follows. In section 2,
description of the model and notations used for
mathematical formulation are given. Section 3 contains
governing equations and their solution in micro-vessel
and tissue region. Section 4 provides equilibrium
analysis. In section 5, the stability analysis is given. The
numerical results are provided in section 6. Finally, in
section 7, conclusions are drawn.

2. THE MATHEMATICAL FORMULATION AND
NOTATIONS

The total population is divided into five classes as
susceptible class of persons, treatable malaria infected
population, mTB infected population, HIV infected
class of persons and class of people with AIDS. Let S

®, I t), I, (t), I3 (t), and A (t) be susceptible
population, malaria infected population, mTB infected
population, HIV infected population and population
with AIDS at time t, respectively.

We assume that susceptible individuals enter into the
population from outside the system with constant
immigration rate Q. The susceptible individuals become
malaria infected at the rate of f,. The susceptible

individuals contact the mTB infected individuals at the
rate of B, and the contacted persons become mTB

infected. The transmission rate per unit time between a
HIV infected individual and susceptible individual is ,

. Some malaria infected individuals get HIV infection
following the contact with HIV infective at the rate 3,

and mTB infected population gets infection following
the contact with HIV infective at the rate f. Let & be

the rate at which the HIV infected individuals’ progress
to AIDS and o Dbe the death rate due to AIDS. Also let
d is the natural death rate from each class. A, and A,

denote the rates at which individual leave the malaria
infected class and mTB infected class respectively, due
to temporary immunity and again become susceptible.
We also consider that there is no co-infection of malaria
and mTB but getting HIV infection, there is a co-
infection of malaria-mTB-HIV/AIDS. The rate of
transition diagram of infectious diseases is shown in
Figure 1.

.
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Figure 1. Graphical depiction of the transmission
dynamics of the disease.
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3. THE GOVERNING EQUATIONS

The transition flow of diseases among various classes is
governed by the system of equations as given below:

ds _ _ BiSL +B,SL + B3 S

®_0 . —dS+ AT, + s, (1)
%:ﬁ%f%uﬁdlﬁul (2)
%:’3%’27%5@7&27@5 (3)
%:%+%1113+%12137d13*813 )
%‘: el, - dA-aA )

The total population at time t is denoted by
N(t) = S(t)+ I, (0 + L6+ I,()+ Ary and Equations (1)-(5)
can be written as:

dN
o =Q-dN-aa (©6)

ﬂ:ﬁl(N7117[27[37A)
dt N

117%11137‘1[171111 (7)

&Zﬁz(N7[|7[27[37A)
dt N

127%12137&2712[2 (8)

dl; _Bs(N-I, -1, -13 - A) Ba Bs
s PN O =l == Py Ps o d el
dt N sy il ol —dlyzels ©)]

dA
g =l da-aa (10)

4. EQUILIBRIUM ANALYSIS

Q-dN-aA=0 (11)

BIN-L, - -5;-4
N

117%11137&177»1[2:0 (12)

ﬁz(N7117[27[37A)
N

127%12137&,/1212:0 (13)

Bs(N-Li =L, -I;=A) . B4 Bs
L+ L1 +—=21,1;—-dl;—€l; =0 14
N sy bt Ll —dh el (14)

el, — dA-aA=0 (15)

4. 1. Theorem 1.
values or points:

There are seven equilibrium

(I) Equilibrium when population is free from the
disease.

P, (Q,O, 0,0, O]
d

The equilibrium point is obtained.

(IT) When the population is malaria infected only. In
this case [, =1 = A=0, as such the equilibrium point is
given by

P{o Q

E’TB,((ﬁ"("”'))’O’O’OJ

It is possible only when g > (d+1,)

(III) When the population is mTB infected only. For
this case; _; _ 42, thus equilibrium point is:

Q. Q
P{E,o,d—ﬁz(ﬁz —<d+xz)),o,o,J

This case exists only'if g, >(d+2,)

(IV): When the population is HI'V infected but free from
malaria and mTB, the equilibrium point is-

P(N,0,0,1,, A
where
1 oe £
N=-|0- I. | A= I
d(o a+d 3} d+a’

ﬂg(dm)(ﬂ;—(dw))

T d(d+a+e)+ae(B, —(d+¢))

3

This case exists only if g > (d+¢)-

(V) When the population is free from mTB but co-
infection of malaria-HIV prevails. The equilibrium
point for this case is:

PN, 1,0, I, A)

where
1 ag £
=-|o- > A= I,
N d(o a+d[~‘] d+a ’
Qs _ ae _ a+d+e
g Bi=d+ ) [—d(dw(ﬁ, (d+a)+ By = /3,]13

I, =

B,

The equilibrium point P4 exists if:

B1 >(d+2'1)’ ﬁz >(d+)’2)’ ﬁ3 >(d+8)’

(8, —<d+s))—%(ﬁ, @+ 1)) 0

1
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By — B, a a+d+e

2 [dm )(/31 (d+A))+ B, + y /31)
d+a+s

[d(dw)(ﬁx (d+e)+ B —— )>0

2 When the population is malaria infection free
but co-infection of mTB-HIV exists. Then the
equilibrium point is:

Pi(N,0, 1, , I, A)

N=4 (Q_a+d 3]’ A=d+a13’
Q oa+d+e
[:g( ~(d+))- [dm (B =@ i) Bt Bsz
’ B,
e—j(ﬁs—(m))%(ﬁ 4d+w)y
ELJ% o o+d+e d+o+e
¢ B [dd )([Hd +1y)H m%ﬁ] [ (ﬁs —~(d+8)+P; +a}

In this case Ps is positive only when,

By >(d+A)s B, >(d+4,)> By>(d+g)s

(8, —<d+s))—¥(ﬂz (d+1))> 0

2

ﬁx ﬁs a a+d+e
5 [d(m (B = 2) Bt = ﬁzj

+d
d+o+e¢
[d(m )(ﬁx (d+e)+ B — J>0
and
Qn a+d+e
5(132 (d+2,))- [d(d (B,— (d+2,))+ B, + y /3)13>0

(VII)  When co-infection of malaria-mTB-HIV exists
In this case also, we consider that malaria infected
population is not immigrated, so that the equilibrium
point is:

RN I, 1}, 1, A')
where
o 1 aE . * € N
N =—|0- II|’A = I’
d(o a+d 3] d+a ’
Qp B.1; —(DR + B,D, + B,)I;
g 1~ Pit2 ™ 1 11 BA 3

B

Q[ ﬁ4ﬁlﬁ3 R‘j i: [R+ﬁ41;|ﬁ3 R3J+D|ﬁ5+ﬁ4 ﬁaglﬁ},;

d 1
ﬁ4_ﬁ5

Qfp _B
F[R? B, R‘)

(DRz +ﬁ2D1 +ﬁ5)7%(DR1 +ﬁ1D1 +ﬁ4)

L=

I =

Where

Rl =ﬁl _(d+)"l)’ Rz :BZ _(d+2'2)’ R3 :ﬁ37(d+8)’

ae and D:d+a+g

" da+d) " a+d

The equilibrium point P4 positive only when

B >(d+2)s By >(d+A)> By >(d+e)

gR _ﬁllgf(DR +ﬁll)l +l34)1.: >0’

%[R;Jrﬁ“éﬁ} Ri)il:D[Ri BAAﬁs R3)+D,ﬁ5+ﬁ4 Bs;}ﬁ41|[;>0

B,

R,-——R, >0

1

And

(DR, + .0, + )~ 2 5 “2(DR + B,D, + B,)>0

1

4. 2. Interpretation

(a) When the population maintains itself at a fixed
level and the equilibrium conditions are satisfied,
then that particular point is called equilibrium
point. When the population is free from disease
then the equilibrium size of population is Q/d. For
other cases of infections, the equilibrium size of
population is reduced. From the equilibrium
analysis, it is found that there are three basal
reproduction numbers viz Rr P, R, = P2 and

d+ A d+2,

R=Po 1f B<d+2), B, <(d+2) and By <(d+e),
od+e’

then the infection of malaria, mTB and HIV
respectively will die out and disease will not
become endemic.

(b) Now we draw some other inferences from
equilibrium values for co-infection of mTB-HIV. In
this case also the population size is reduced from
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Q/d to i(o— ae I;]. The higher contact rate
d a+d -

B, (p,) enhances the infection rate of mTB (HIV).
The effect of mTB recovery rate (;,) is also clear
from the equilibrium values that the higher values
of A,reduces the mTB infection but susceptible
population increases; the effect of conversion rate
(&) from HIV to AIDS is that the higher values of
€ for time being increases the number of AIDS
patients and they will die out by disease-induced
deaths. But ultimately the AIDS cases are reduced
due to reduced cases of HIV.

(¢c) Co-infection of malaria-HIV. In this case also, the
equilibrium population size is reduced from Q/d to
1q[ agd I;]. The infection rate of malaria (HIV)

increases as contact rate g (g, ) increases. From the

equilibrium point, it is noted that higher values of
temporary recovery rate (3, ) decreases the malaria

infection and enhances the population of
susceptible  individuals. On increasing the
susceptible population, the HIV cases increase what
we expect from experience. Thus, we can say that
the temporary recovery rate enhances the HIV
cases. The conversion rate (¢) from HIV to AIDS
has significant effect on AIDS. Death rate increases
as £ increases but HIV cases decreases.

(d) Now we examine the co-infection of malaria-
mTB-HIV. For this case the population size reduces
and all type infection increases as immigration rate
increases. The higher values<of d decrcase the
infection cases in each. The higher contact ratesg ,

p,and g enhances the infection of malaria, mTB
and HIV, respectively. The increase in contact rates
p,and g, also enhances the susceptible population.
It is straightforward that on increasing 2 (), the

infection reduces and = susceptible population
increases. AIDS and HIV cases increase as 2 (2,)
decreases. The effect of conversion parameter (¢ ) is
very significant. On increasing & , the death rate (4
) due to AIDS increases but AIDS and HIV cases
reduce. Thus we conclude that the malaria and

mTB infections have significant effect in fueling
HIV and AIDS.

5. STABILITY ANALYSIS

We discuss the stability analysis of equilibrium points
by taking small perturbations in consideration.

Case I-1V. Equilibrium points when population is
either free from infection or infected only by one

disease. For the case when population is free from
disease, the equilibrium point Py is locally stable when
p<(@+ry (LeR<l), A<@+i)GeR,<D  and

B, <(d+¢&)(i.e R, <1) otherwise unstable. But in case when

population is infected by any single disease, the
equilibrium points Py, P,, and P; are unstable. R; R, and
R; are the basal reproduction numbers for the malaria,
mTB and HIV infection respectively.

Case V. The coefficients of a bigadratic equation give
all roots with negative real part. Routh-Hurwitch
conditions are:, (;=124)> 0 and a,(a,a, — a,) > a’a, - FOT

these conditions the equilibrium P, is locally stable.
o' +a0’+a,0" +a,0+a, =0

Where

a, =2d+a-98,-9,

. o
@y =d(d+a)+8,3 - 2+ )y +5)+ By + (B = BBy + Bo) 1o

a, =8,0,2d+a)-d(d+a)(9, +52)+sﬁ3(2d—a—5,)%

I r

+ (B B+ a)(B, + By) + B, )

N’ N'
a, = d(d +a>[6162 + (B, + BB, - By )— L j

+a(a*d)(51ﬁ3+ﬁ1(ﬁ; oL j”

Where
2[0+ I+ A I
R e
2L+ 1+ A I
=B,—(d+¢)- .337 Bi—; N

otherwise unstable.

Case VI. The coefficients of a biqadratic equation
give all roots with negative real part. Routh-Hurwitch
conditions  are:bi(i=1.2.4)>0 and b,(bb, —b;) > b’b,  For
these conditions the equilibrium is locally stable.

o' +bw’ +b,0* +bw+b, =0

Where

b =2d+a-6,-9,

'

b, :d(d+a)+6364—(2d+a)(63+64)+sﬂ3%

F B BB P

'

b, =6,6,2d+a)-d(d+a)(d;+0,)+ef;(d—a —53)%

I ’

+(Bs - B)((2d + a)(B, + Bs) + B )W%
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b, = d(d +0t)(5354 +(B, + B5)(Bs — B3) L 1 J

N' N'
e

+e(a - d)[53ﬁ3 +B,(B; —

Where
20+ I, + A I
5, =P, —(d+i)-p, 2372 _pg o
=By () = By T B
200+ I+ A I
=B.—(d+¢g)-B. 232" g "2
N e AL

otherwise unstable.

Case VII.
c(i=1345)>0

Routh-Hurwitch conditions are:

and (c,c, —¢;)(c,¢,¢; _032 _clz _01204)> ¢ (¢ c, _cs)z +CICSZ
For these conditions the equilibrium point Py is locally
stable.

o’ +c0' +c,0° + cng +co+cs=0
The coefficients of above equation give all roots with
negative real part, where

¢ =2d+a-y,-7, =7

=d(d+a)+y,(r, +75) - Qd+a)(y, +7, +73)

* *

I I, I
—7Y27s +8ﬂz =+ (B, +B5)(Bs — Bs) Nz* I\;a
=Y, &Y, T,
I Y 11 I
Cp =%~ %2~ (3~ A4~ Xs) B BBy —B3)—x N N N
I L
cs =¢ +¢, —edd; —aed, + B, B,y; N N

where

=(2d+0)(y, (v, +73))— d(d + o) +72+73)— V17273

I
v, =B, +v,)+ B (By— ﬂA - Bid + B,a N

vy =2d+a)(B, + Bs)(Bs —B) IZ I‘a

2= d(d+a)(yl(y2 +}/3)—}/2}/3 +(ﬁ2 +ﬁ5)(ﬁz ﬁs) [2* ]i;aJ

LI
X2 =71(7273 = (B, +Bs)(B; = Bs) N N*J

%o = 4B, +72)+ B, + 4B, (B, —m%

* * *

*+ﬁ1(ﬁ3—ﬁ4)vz’%
N

X4 =V1¥2B3 - 313234

Xs =By, + B (Bs _.BA)I%"'Z.Bz(ﬂs +B5)W2a

¢1=d}'1(d+a)((ﬁz+ﬁs)(ﬁz P> mJ

12 LI

¢2 :(ﬂs _:BA)(:BI:BS .32.34 NN

*

12 I"i I]*

3 =(BiB2(Bs—Bs - BS))*VV Y1v2B3 — ﬁz(ﬁz*ﬁs) 12 13

I
—72B1 (B3 *B4)ﬁ#

¢4:(B3+B4—B5)S ;; 72 ;] +71B2 (B3 — B4) I% 12
+72B1 (B3 —B )5* S*
< -(deay-p TR A L

ro= B (@) p B A

*

21;+1,‘+1;+A‘+ I

Ys=B,—(d+e)—ps N SN N’

6. NUMERICAL ANALYSIS

In previous section, we have presented results of the
existence of equilibrium solutions and local stability of
the equilibrium solutions by linearising the set of
equations analytically, but in this section we shall
explore the behavior of the system and stability of the
endemic equilibrium; to analyze this the analytic tools
are not much convenient. Therefore, Range-Kutta fourth
order method is the convenient one to find numerical
solution of the set of equations with suitable parameters
of the model in MATLAB software. The default
parameter values are:

Q=2000,8, =0.925, B, =0.925, B, =0.285,8, =1.10, 8, =1.15, and
d=0.021, 4, =0.3,4,=0.29,6 =0.2 and a = 1.0
the initial values are:
N(0)=20000, 1,(0)=3000,
A(0)=600
The co-infection equilibrium values are computed as
follows:
N'=33235.00, 1,’=3742.90, 1,’=2105.00, I;*=6647.00,
A’=1302.00

L(0)=4000, 13(0)=4000,

Ay 0.0 0.1 0.2 0.3 0.4 0.5

R, 44.04 7.64 4.18 2.88 2.17 1.77

I, 50102 41072 33207 37424 14328 368.34
A, 0.0 0.1 0.2 0.3 0.4 0.5

R, 45.04 8.64 5.38 2.89 1.99 1.42

I 46102 38243 29563 35549 13427  234.56
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The numerical results are shown graphically in
Figures 2-8. In Figure 2, the distribution of population
with time is shown for different classes without
migration and without recovery rates i. e. Q=0,
A, =1,=0- It is seen that susceptible population

decreases continuously and infected population
increases initially because there is no migration and
recovery. Therefore all infected ultimately develop
AIDS and will ultimately meet the disease induced
deaths. Thus the total population in this case will be
eradicating after some time period. Figure 3 depicts the
variation of population with migration and with
recovery rates. It is noticed in the figure that due to
recovery rates, mTB and malaria infected populations
decrease and susceptible population initially decreases.
After some time, due to migration it tends to be
constant. However, infection is not eradicated and it
persists in the population. Figure 4 shows the variation
of mTB infected population with respect to time for
different recovery rates. We notice that on increasing

recovery rated,, the mTB infected population

decreases, and in turn, the susceptible population
increases. In Figures 5 and 6 we see that the increment
in & the HIV infected population decreases as they
become part of the full blown AIDS population. In
Figure 7 the variation of AIDS population for different
values of disease- induced death rate is shown. It is seen
that with the increase in disease-induced death rate the
AIDS population decreases and ultimately dies away.
The role of migration is shown in Figure 8. We observe
that increasing migration increases the ‘susceptible
population and consequently . increases  AIDS
population. From the above discussion, it is concluded
that if mTB and malaria infections are treated
significantly then acceleration to HIV infection can be
kept under control.

population

0 2 6 10 14 18 22 26 30 34
t

Figure 2. Variation of population in different classes for
Q=0,d=0.021, 2 =0,1,=0,a =1

B, =0.925, 8, =0.925, B, =0.925, B, =0.285, B, =01.10, B, =01.15,

9000 -
8000 -

population
w A OO D
o
o
o

0 2 6 10 14 18 22 26 30 34
t

Figure 3. Variation of population in different classes for
Q=2000d=0.021 2 =.925 4, =.925a =1,

B, =0.925, B, =0925, B, = 0.925, B, =0.285, 8, =01.10, 8, =01.15,

4500 —— =02
4000 - o
3500 4 \ 72=024

3000 | % 22=028

25007 S+ @1 0=03
2000 -
1500 |
1000
500
0 e

TB infected population

Figure 4. Variation of TB infected population for different
values of ;.

8000
7000 +
6000 -
5000 +
4000 -
3000 +
2000 +
1000 -
o+

0 2 6 10141822 26 30 34

t

HIV-TB-M infected population

Figure 5. Variation of HIV-TB-Malaria infected population
for different values of¢
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Figure 6. Variation of AIDS population for different values of
&

1800 - TS

1600 r~a
1400
1200
1000
800 |
600 |
400
200 |

o
0 2 6 1014 18 22 26 30 34

t

—8— g==]

AIDS population

Figure 7. Variation of AIDS population for different values of
o
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Figure 8. Variation of AIDS population for different values of
Q

7. CONCLUSION

In this investigation, we have analyzed the transmission
dynamics of malaria, mTB, HIV and AIDS. Our study
has been devoted to examine the effect of malaria and
mTB infection on transmission of HIV and AIDS by
considering the three threshold parameters R, R, and R;
related to malaria infection, mTB infection and HIV
infection, respectively. R;<l1, R,<l and R;<I then
malaria, mTB and HIV infections die out, respectively
and if R;>1, Ry>1 and R3>1 then all the infections exist.
All the seven equilibrium points have been determined.
The equilibrium point Py is locally asymptotically stable
for the values of R;<I, R,<l and R;<l1, whereas the
equilibrium points Py, P,’and P; are unstable. The point
P4 is locally stable, i.<€., the population maintains itself
at level of equilibrium. whenever co-infection of
malaria-mTB exists.

The co-infection equilibrium points P, (malaria-
HIV), Ps (mTB-HIV) and P¢ (malaria-mTB-HIV) are
always locally stable. Susceptible population enhances
the infection rate. The disease becomes endemic due to
immigration because immigration population is
susceptible population. It is also found that higher
temporary recovery rates increase the population of
susceptible individuals. The infection may be controlled
by reducing the susceptible population. Thus to reduce
susceptible population, the permanent recovery is
essential. The number of HIV infected cases increases
due to the presence of other diseases, particularly
malaria and mTB, separately and altogether. It is
noticed that the HIV infection can be slowed down by
treating malaria and mTB, effectively. For the sake of
validity of our results, it is to be mentioned that on
dropping malaria, our results of equilibrium and
stability solutions are in agreement with the results of
above ref. no. 18 and also ref. no. 22, 26.
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APPENDIX
Proof of theorem 2 is as follows:
Al The population is free from disease

Consider small perturbation about the equilibrium as
N=n+NsI =i+l sL=i+l, =i+, A=a+A. For
equilibrium points Py, L'=L=L=4A=0 g0 that for
linearization and taking only first order quantities the set
of Equations (6)-(10); yield:

9 dn-aa

dt

%:(ﬁl —(d+1))i
% =(B, —(d+ 1)),
% =(B,~(d+o))i

da .
—=c¢,—(d+a)a
a ( )

The stability matrix X is formed from equations and is
given by:

yo[-d 0 0 0 —a
0 B -(d+A) 0 0 0
0 0 B, —(d+2,) 0 0
0 0 0 By—(d+¢) 0
0 0 0 0 —(d%a)

The characteristic equation is |Y—@=Owhere o is
eigen value and I is identity matrix. The eigen values of
Y are: o, =—d, 0, = B, A@EN) w0, = B, —(d +1,),
®, =P, —(d+&), o, =—(d+a)- The first and last eigen

values are always negative:whereas second, third and
fourth ones are negative only when g -(4+2),

B, <(d+1,), B, <(d+g)- Thusiin this case, we conclude
that the matrix is locally stable otherwise unstable.

A.II:  When the population is malaria infected
only.

Consider small perturbation about the equilibrium point
Py by takingN=n+N', [ =i+ I,=i,1I,=i, A=a-
Putting these values in the set of Equations (6)-(10), we
have:

dn
E:fdnfaa (AH~1)

di, 21 . I .
E:(Bl _(d+2q)_Wl,Blj’| _Blﬁlz

_(B] + BA

(AIL2)

I, I I
—L—-p—a-p —n
N b N’ b N’

di , I .

i = (B, =+ )i = By i (AIL3)
di. , I .

=B+ e)is =By~ B (AIL4)
da .

E—at3f(d +a)a (AILS)

All above equations (AIL1)-(AILS) are linearly
dependent; we may leave (AIL.3)-(AIL5) equations.

The stability matrix Y is formed from equations by
(AIL.1)-(AIL.2) and is given by:

y=[-d 0

21
0 Bl_(d+z’l)_ﬁﬁl

The  eigen  values of @ matrix Y  are:
2I i

0 =—d, 0, = B, —(d+ 1)~ N} B, - Both the eigen values

are negative, but the second value contradict the first

case so that we conclude that the matrix is unstable for

small perturbation.

Alll:  When the population is mTB infected
only.

Consider small perturbation about the equilibrium point
P, by takingN=n+N', 1 =i> IL=i+I,1,=i, A=a-
Putting these values in the set of Equations (6)-(10), we
have:

% - dn-aa (ATIL1)
di L.
2= (ﬂ. —(d+2)- B, W] (AIIL2)
%:(.Bz _(d+lz)_ 2[\1; .sziz _:BIIT\;,il
r , (AIIL3)

(B, + Bs ﬁz’; _ﬁza
di L.
Tl: :(,Bs —(d+e)-(B, _Bs)ﬁjlh (AIIL4)
da .
Pl —(d+a)a (AIILS)

All Equations (AIIL1)-(AIILS) are linearly dependent;
we may leave (AIIlL2), (AIIl.4) and (AIIL5) equations.
Then the stability matrix Y is given by:

2
0 d+h)——2
B~d+2,) Nﬁz
The  eigen  values of matrix Y  are:
0 =—d, o, = B, *(d+lz)*2z\% - In this case also the

matrix is unstable for small perturbation.
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A.IV:  When the population is HIV infected but
free from malaria and mTB,

Here also we consider small perturbation about the
equilibrium point P; by takingn=n+ N, I =i>
I, =i, I, =i,+I,, A= A+a. Putting these values in the set
of Equations (6)-(10), we have:

dn

E:—dn—aa (AIV.1)
I A’ r
=[ﬂ, (d+ i) =B, g, j (AIV.2)
L+A 1
:[.Bz_(d"'lz)_ﬂz 3:], .stlz (AIV.3)
di, 2+ A I
E:(ﬁ —(d+¢&)-B; N’ j *(ﬁ3*ﬁ4)vll
(AIV.4)
*(ﬁ;fﬁs)vlzfﬁ3ﬁa
da .
E:a}—(dﬂz)a (AIV.5)

Since  Equations (AIV.1)-(AIV.5) are linearly
dependent, we may leave (AIV.2) -(AIV.3) equations
thus the stability matrix Y is given by:

v= -d 0 " 0
T+
0 B, —(d+e)- B,
0 € —(d+o)

The latent roots of matrix Y are:

o =-d.0, =, ~(d+5)-p, 2502 Mo, - (dray,  The
all latent roots are negative; this is the contradiction
with the first case so that it is unstable.

A.VII: When the population is free from mTB
but co-infection of malaria-HIVprevails.

Consider small perturbation about the equilibrium point
Ps by taking N=n+N, I =i+
L =i, I, =i, +I;, A= A+a. Putting these values in the set
of Equations (6)-(10), we have:

dn
i —dn—aa (AVIL1)
—=[ﬂ,—<d+x,>—ﬂ]W—m ]
I (AVIL2)
_.Bl N’ _(:BI+:B4) 3 :Bl ,a :Bl N’
7:(1337(‘14'8)7%/3 I, ﬁAjZ
(AVIL3)

L. I L. I
(B 7ﬁ4)ﬁ’1 7ﬁ3ﬁ37ﬁ3ﬁ12 7ﬁ3ﬁ"

(AVIL4)

a .
—=¢e,—(d+a)a
a ( )

The stability matrix Y is formed from equations by
(AVII.1)-(AVIL4) and is given by

Y=
[-d 0 0 -a ]
I 21+ I+ A
_ﬁlﬁ] ﬁl_(d+ll)_ﬁl$
I r r
_ﬁAﬁ _(ﬁ1+ﬁ4)i]\]’, _ﬁlT\IJ,
I I 2L+ I+ A
_ﬁsﬁs (ﬁ4_ﬁ3)ﬁs ﬁs_(d'*g)_%ﬁs
I I
+V]ﬁ4 _ﬁsﬁ
L0 0 € -(d+a) |

The characteristic equation of given matrix Y is:
o' +a,0° +a,0 +aw+a, =0
where

a, =2d+a-94,-9,

'

= ) 5,8, ~ (2 @), +6,) e+ (B~ BB+ B

a, =0,0,(2d+a)-d(d+a)(s, +52)+sﬁ3(2d—a—5,)%

F By BN @)+ )+ o) L

2, < d<d+a)[6,5z F(B+ BB - ﬁz)—"—']

e —d)[&ﬁ; +B(By— ) "j 5

where
2+ I+ A I
—(d+1)-p——— Nz, 7ﬁ4ﬁ
20 +1 + A I
5z:ﬁ37(d+8)7ﬁ3% B, N

The coefficients of a biqadratlc equation give all roots
with negative real part. Routh-Hurwitch conditions are:

a,(i=12,4)>0 and a,(a,a, —a,) > a’a, - For these
conditions the equilibrium Py is locally stable.

A.VI: When the population is malaria infection
free but co-infection of mTB-HIV exists.

Here also we consider small perturbation about the
equilibrium point Ps. By substitutingN=n+N',1, =,
I =i,+ 1, I, =i,+I,, A= A+a> in Equations (6)-(10), we
get:

Z—r::—dn -aa (AVLY)
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di. 200+ I+ A I
= (Bz (dmz)—%ﬂ ﬂsjz
I r (AVL2)
—(B, +Bs)—; N’ I3 .Bz ,a B, ’5,”_.32 ’\;,il
dl; (,B‘ (d+8)_W‘B L ‘BSJ
r (AVL3)
_.Bz i+ (Bs — .Bs)ﬁiz _.Bs N _.Bz N
da .
?:313 —(d +a)a (AVL4)

The stability matrix Y is formed from equations by
(AVL.1)-( AVL4) and is given by:

[-d 0 0 “a ]
v By-(d i) gy 2t hr A,
2 2 N 2 2 N 2
-Lp T SE—
N 5 2 S5 Ny 2 N
I I 2+ 1+ A
B BByl pdre)-BER A
I I
3‘*‘?3,55 _ﬁsﬁ
U 0 & —(d+a) |

The characteristic equation of above given matrix Y is:
o' +bo’ +b,0* +bw+b, =0
Where
b =2d+a-8,-5,
I I

by =d(d +0)+838, —(2d +a)(83 ‘*’54)‘*853%‘*(52 +Bs)(Bs — 53)**

by =0,0,2d+a)-d(d+a)d, +0,)+&B,(d—a =0,) I[\;'

r

+(Bs = By)((2d + ) (B, + Bs) + €B, )N, G

b4=d(d+a)[5354+(ﬁz+ﬁs)(ﬁs po e "j

Sy

+e(a - d)(&ﬁ; +Ba(Bs=

where
20+ L+ A I
53 :ﬁzf(d"'lz)*ﬁz%*ﬁsﬁ
2+ + A I
64 :ﬁ3 7(d+8)7ﬁ3%+ﬁ5ﬁ

The coefficients of a bigadratic equation give all roots
with negative real part. Routh-Hurwitch conditions are:
b(i=12.4)>0 and by(bb, ~b,)>b'b, | For these conditions

the equilibrium is locally stable.

A. VIII: When co-infection of malaria-mTB-HIV
exists.

Consider small perturbation about the equilibrium point

P, Now  substituting N=n+N", I =i +1I>

I, =iy+1,, I, =i, + I, A= A +a. in Equations (6)-(10), we

have:

di
Fl: - dn-aa (AVIIL1)
i [/3, (d+a)- @W—mi};
(AVIIL2)
-B N»’ -(B,+Bs) ’z ﬁ]i»a ﬁli"
%:[ﬁz —<d+Az)—7'7+2'5,V+, LAy —'—iﬁs};
. (AVIII3)
ﬁish (ﬁz‘*‘ﬁs) 1 — ﬁz N ﬁz?zsn
d"—[ﬁ; (d+e)- %ﬁﬁiﬁﬁ%ﬁs)a
i (AVIIL4)
*(ﬁ37ﬁ4) xA ﬁxNa Bs= ﬁs) hA ﬁ;ﬁ”
da .
Pl —-(d+wa (AVIILS)

The stability matrix Y is formed from equations by
(AVII.1)-(AVIILS) and by equilibrium points as:

-d 0 0 0 —a
g g @y g LA
bk Bl em i gk
pE gl gy AR,
.y RISTIE T
N
hpetp e
0 0 0 P ~(d+a)

The characteristic equation of given matrix Y is:
o’ +c0' +c,0° + cng +c,0+c,=0

where
¢ =2d+a-y;-Y2-V3

*

e =d(d+a)+v,(y2 +v3) - (2d+a)(y,

[2 [z

+(By+Bs)Bs — Bz)

C =Y, &Y, Y,

I
Cy =1~ A2 83 —%Aa— Xs) z +B)PBs — T\;
L
—BiBr =
N N
I I

cs=¢, +¢, —edp; —agh, + BBy, ﬁv

where
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v, =Qd+a)(y, (v, +7:)) - d(d+a)y, +7, +7:) = V\Va7s L L 12 13

. 43 =(B1B2(B4 B3 - Bs)) N ;]l —B2(Bs3 +B5)

I I
W, = By, +72) + BBy = B = Brd + B,
N N —72B1(Bs ﬂh)vﬂ%

* *

LI
vy =Qd+a)(B, + B)(Bs — .Bz = 1 12 I Il I [2
b4 =(B3+B4 - Bs) 3 V‘Yﬂzﬁs 3 7B (B3 — B4) =
LI

X1 =d(d+a)(yl(yz+73)_7273+(ﬁz+ﬁ5)(ﬁz Bs 2 I\;*J +Y2B1(B3 B4) 13 Il

_ L L A ALAL+A L
X2 =1 V2¥3 = (Ba + Bs)(Bs — Bs NN =B, _(d+ll)_:BlT_IBA 3

I I

1o = dB: (i +72)+ dBy + By (By = ) y2=;32—(d+/12)—/32w_/35 ]
X4 = YleB; BleB4 Iif Iif (ﬁ; Iif YS:ﬂS_(d-FS)_’B‘W ﬁ4 +’BS N

S B (Bs - Ba)1s 1: The coefficients of above equatlon give all roots with

N

negative real part. Routh-Hurwitch conditions are:

I I c(1=1345>0
Xs =By, +Bi(Bs _.Bzx)ﬁ"'z.gz(ﬁs +.35)F2a

and(cc, —c)ge,c,—c —c —cc,)>c(cc, —¢) +¢c -
I I§ For these conditions the equilibrium point P; is locally
b= (d+ ) (B, + BB, ~ o) =7 e, ¥

I; LI
"N N

¢2 :(ﬁs _:BA)(:BI:BS .32.34
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