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ON bD-SETS AND ASSOCIATED SEPARATION
AXIOMSH

A. KESKIN* AND T. NOIRI

ABSTRACT. Here, first we introduce and investigate bD-sets by us-
ing the notion of b-open sets to obtain some weak separation axioms.
Second, we introduce the notion of gb-closed sets and then investi-
gate some relations of between b-closed and gh-closed sets. We also
give a characterization of b-T7/, spaces via gb-closed sets. We in-
troduce two new weak homeomorphisms which are important keys
between General Topology and Algebra. Using the notion of mx-
structures, we give a characterization theorem of mx-Ts spaces.
Finally, we give some examples related to the digital line.

1. Introduction

It is known that open sets play a very important role in General
Topology. In [38], Tong introduced the notion of D-sets by using open
sets and used the notion to define some separation axioms. Later, the
modifications of these notions for a-open (resp. semi-open, preopen, 6-
semi-open) sets are introduced and some of their properties investigated
in [6] (resp.[4], [20], [7] ) and [20], respectively. The notion of b-open sets
were introduced by Andrijevié¢ [3]. The set was named as y-open and
sp-open by El-Atik [17] and Doncthev and Przemski [13], respectively.
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The notion of b-open sets is stronger than the notion of 3-open sets and
is weaker than the notions of semi-open sets and preopen sets. Since
then, these notions has been extensively investigated in the literature
(see [32], (33, [36], [14], [11], [37), [8], [9], [15]).

Here, first we introduce the notion of bD-sets as the difference sets of
b-open sets. Second, we introduce the notion of gb-closed sets and inves-
tigate some relations between b-closed and gb-closed sets. We also give a
characterization of b-T /5 spaces via gb-closed sets. Then, we investigate
some preservation theorems. We must state that we introduce new two
weak homeomorphisms. It is well-known that the notion of homeomor-
phisms is an important key between General Topology and Algebra. By
using the notion of mx-structures, we give a characterization theorem
of mx-T5 spaces. Finally, we give some examples. Some applications of
our results may relate to the digital line.

2. Preliminaries

Through out the paper, by (X, 7) and (Y, ¢) (or X and Y') we always
mean topological spaces on which no separation axioms are assumed,
unless otherwise mentioned. Let A C X. Then A is called b-open [3]
if A C Cl(Int(A)) U Int(Cl(A)), where CI(A) and Int(A) denote the
closure and interior of A in (X, 7), respectively. The complement A¢ of
a b-open set A is called b-closed [3] and the b-closure of a set A, denoted
by bCl(A), is defined by the intersection of all b-closed sets containing
A. The b-interior of a set A, denoted by bInt(A), is the union of all
b-open sets contained in A. The symbols bCI(A) and bInt(A) were first
used by Andrijevié [3]. The family of all b-open (resp. b-closed) sets in
(X, 7) will be denoted by BO(X, 1) (resp. BC(X, 7)) as in [3]. The
family of all b-open sets containing = of X will be denoted by BO(X, x)
as in [37]. It was shown that [3, Proposition 2.3(a)] the union of any
family of b-open sets is a b-open set.

We recall some definitions used in the sequel.

Definition 2.1. A subset A of a space (X, 7) is said to be
(a) a-open [34] if A C Int(Cl(Int(A))),
(b) semi-open [27] if A C Cl(Int(A)),
(c) preopen [30] if A C Int(Cl(A)),
(d) B-open [1] if A C Cl(Int(CI(A))).
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Through out the paper, the family of all a-open (resp. semi-open,
preopen) sets in a topological space (X, 7) is denoted by a(X) (resp.
SO(X,r), PO(X,1)).

Definition 2.2. A subset S of a topological space X is called
(a) a D-set [38] if there are U, V' € 7 such that U # X and S = U\V,
(b) an aD-set [6] if there are U, V € «(X) such that U # X and

S=U\V,
(c) a sD-set [4] if there are U, V € SO(X,7) such that U # X and
S=U\V,

(d) a pD-set [21] if there are U, V € PO(X,7) such that U # X and
S=U\V.

Observe that every open (resp. «-open, semi-open, preopen) set U
different from X is a D-set (resp. an aD-set, a sD-set, a pD-set) if S = U
and V = @. Furthermore, since every open set is a-open, then every
a-open set is semi-open and preopen. We have the following properties.

Proposition 2.3. (a) Every D-set is an aD-set,
(b) every aD-set is an sD-set, and
(c¢) every aD-set is a pD-set.

In [6], Caldas et al. showed that the converses of (b) and (c) need not
be true, in general. One can see related examples [4, Example 3.1] and
[4 , Example 3.2]. Since the notions of semi-open sets and preopen sets
are independent, then one can easily obtain that the notions of sD-sets
and pD-sets are independent of each other.

3. bD-sets and associated separation axioms

Definition 3.1. A subset S of a topological space X is called a bD-set
if there are U, V € BO(X,7) such that U # X and S=U \ V.

It is true that every b-open set U different from X is a bD-set if S = U
and V = @. So, we can observe the following.

Remark 3.2. Every proper b-open set is a bD-set. But, the converse
is false as the next example shows.
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Example 3.3. Let X={a,b,c,d} and 7={X,2,{a},{a,d},{a,b,d},{a,c,d}}.
Then, {b} is a bD-set but it is not a b-open. In really, since
BO(X,7)={X,2,{a} {a,b}.{a,c} {a,d} {a,b,c}{ab,d} {acd}}, then
U={a,b}# X and V={a,c} are b-open sets in X. For U and V, since
S = U\V={a,b}\{a,c}={b}, then we have S={b} is a bD-set but it is
not b-open.

We have diagram I below.
preopen — b-open

/o a
open— a-open |— semi-open |
| | l | l
| | pD-set—| bD-set
! I/ e

D-set— aD-set— sD-set

Diagram I

Definition 3.4. A topological space (X, 7) is called b-Dg [10] (resp.
b-D1 [10]) if for any pair of distinct points & and y of X there exists
a bD-set of X containing x but not y or (resp. and) a bD-set of X
containing y but not x.

Definition 3.5. A topological space (X, 7) is called b-Dy [10] if for
any pair of distinct points « and y of X there exist disjoint bD-sets G
and E of X containing x and y, respectively.

Definition 3.6. A space X is called b-Ty [10] if for every pair of distinct
points  and y of X, there exists a b-open set of X containing x but not
y or a b-open set of X containing y but not .

We recall that a topological space (X, 7) is called b-77 ([2], [8], [10])
if for each pair of distinct points x and y of X, there exist b-open sets
U and V containinig x and y, respectively, such that y ¢ U and = ¢ V.
Additionally, in [37], Park introduced the notion of b-T5 spaces as follows:
A topological space (X, 7) is called b-T5 if for any pair of distinct points
x and y in X, there exist U € BO(X,z) and V € BO(X,y) such that
unv=g.
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The following remark and theorem are due to [10].

Remark 3.7. (i) For a topological space (X, 7), the following properties

hold:

(i-1) (Caldas and Jafari [10]) (a) If (X, 7) is b-T;, then it is b-D;, i=0,1,2.
(b) If (X, 7) is b-D;, then it is b-D;_1, i=1,2.
(c) If (X, 7) is b-T;, then it is b-T;_1, i=1,2.

(i-2) (Caldas and Jafari [10]) (a) If (X, 7) is b-Dy if and only if it is b-Tp.
(b) If (X, 7) is b-Dy if and only if it is b-Da.

(ii) In [10], the authors proved that every topological space is b-Tp.

(iii) Using Remark 3.7 (i-1)(a) or (i-2)(a) above, every topological space
is b-Dg. The Sierpinski space is not b-D;.

Definition 3.8. A subset A of a topological space (X, 7) is called
a generalized b-closed (briefly gb-closed) set if bCI1(A) C U, whenever
A CU and U is b-open in (X, 7).

The following notion is due to [2].

A topological space (X, 7) is called a B-T) 5 space if each singleton
is either b-open or b-closed. The authors proved that “every topological
space is B-Ty 5" [2]. Here, we define the concept of “b-T} J2-spaces”.

Definition 3.9. A topological space (X, 7) is called b-T' /5 if every
gb-closed set is b-closed.

It is obvious that every b-closed is gb-closed (Definition 3.7). Recall
that a topological space (X, 7) is called:

a) b-symmetric [15] if for each z and y in X, 2 € bCI({y}) implies
y € bC1({z});

b) b-Ry [15] if its every b-open set contains the b-closure of each sin-
gleton.

Theorem 3.10. For a topological space (X, T) , the following properties
hold:

(i) (Abd El-Monsef, El-Atik and Sharkasy [2] ) Let z be a point of (X,
7). Then, {z} is b-open or b-closed.

(ii) A space (X, 7) is b-Ty/ if and only if each singleton is b-open or
b-closed in (X, 7).
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(iii) Every topological space is a b-Tj2-space, i.e., a subset A is gb-closed
in (X, 7)if and only if A is b-closed.

(iv) For a space (X, ), the following properties are equivalent:
(1) (X, 7) is b-symmetric; (2) (X, 7) is b-T1 ;(3) (X, 7) is b-Ry .

(v) For each pair of distinct points x,y of X, bCl({x}) # bCl({y}).

Proof. (i) This is obtained in [2; the proof of Lemma 2.3], but here
we will give an alternative proof. By [22; Lemma 2|, for every point z
of any topological space (X, 7), {z} is preopen or nowhere dense (i.e.,
Int(Cl({z})) = @) and so {z} is preopen or semi-closed. Therefore, {z}
is b-open or b-closed.

(ii) Necessity : Let x € X. When {z}¢ BC(X, 1), X\{z}¢ BO(X,
7), then for any b-open set U satisfying a property X \{z}C U, we have
U = X only and so bCl(X\{z}) C U. This shows that X\{z} is gb-
closed and, by assumption, the singleton {z} is b-open.

Suf ficiency : Let A be a gb-closed set of (X, 7). In order to prove
bCI(A) = A, let x € bCI(A). When {z} is b-open, {z} N A # @ and
so x € A. When {z} is b-closed, X\{z}€ BO(X, 7). For this case,
suppose that ¢ A. Since A C X\{z} and A is a gb-closed, we have
that z € bCl(A) C X\{z} and hence x € X\{z}. This contradiction
shows that x € A for a point satisfying x € bCI(A) and A € BC(X, 7).
Therefore, every gb-closed set is b-closed in (X, 7).

(iii) It follows from (i) and (ii) that every topological space is b-T} 5.

(iv) (1) = (2). Let x € X. We claim that bCl({z}) C {z}. Let
y € bCl({x}). Then, by (i), z € bCI({y}) holds. If {z} is b-open, then
{z} Nn{y} # @ and so y € {z}. If {x} is b-closed, y € bCI({z}) = {z}
and so y € {z}. By using (i), the claim is proved. Therefore, (X, 7) is
b-T1 .

(2) = (3). Let G € BO(X, 7). For a point =z € G, bCl({z}) = {z} C
G. Thus, (X, 7) is b-Ry .

(3) = (1). It is similar to [15].

(v) Suppose that there exists a pair of distinct points = and y such that
bCl({z}) = bCl({y}). Then, by using (i), {z} is b-open or b-closed.

If {z}is b-open, then {z} N{y} # &, because x € bCI({y}). Thus, we
have x = y.
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If {x}is b-closed, {x} = bCl({z}) = bCl({y}) and so {z} = {y}. For
both cases, we have contradiction. O

For a subset A of a topological space (X,7) and a family mx of
subsets of (X, 7) satisfying properties @, X € my, the following subset
A (A) is defined in [11]: A, (A) = N{U | A C U,U € mx}. Such a
family mx is called an mx-structure on X [35]. For mx = 7 (resp.
SO(X, 1), PO(X,7), BO(X,T)), the set A,,,(A) is denoted by A(A) [28]
(resp. As(4) (5], Ap(4) [19], Ap(A) [14]).

Corollary 3.11. Let A be a subset of a topological space (X, T).
(i) Ap(A) C As(A) N AL(A) and As(A) UAL(A) C A(A) hold.

(i) (a) Assume that BO(X,T) is a topology of X. If Apy({x}) # X for a
point x € X, then {z} is a bD-set of (X, 7).
(b) If a singleton {x} is a bD-set of (X,T), then Ap({z}) # X.

iii) If A({z}) # X for a point x € X, then {z} is a bD-set of (X, 7).

(iif)
(iv) For a topological space (X,T) with at least two points, (X, T) is a
b-D1-space if and only if Ay({z}) # X holds for every point x € X.

(v) Let X be a set with at least two points. If there exists a point © € X
such that Ap({x}) = X , then (X, 7) is not b-D1 ( thus, it is not b-Ds).

Proof. (i) According to [3], since 7 C SO(X,7) N PO(X,7) and
SO(X,T)UPO(X,7) C BO(X, ), then we have Ay(A) C Ag(A), Ap(A)
C Ap(A), As(A) € A(A) and Ap(A) C A(A). This shows that we have
the required implications.

(ii) (a) Since Ap({x}) # X for a point = € X, then there exists a subset
U € BO(X, ) such that {z} C U and U # X. Using Theorem 3.10(i)
for the point x, then {x} is b-open or b-closed in (X,7). When the
singleton {x} is b-open, {x} is a bD-set of (X, 7). When the singleton
{z} is b-closed, then ({z})¢ is b-open in (X, 7). Put Uy = U and Uy =
Un{z})¢. Then, {z} = Ui\Usz, Uy € BO(X, ) and U; # X. It follows
from the hypothesis that Uy € BO(X, 7) and so {z} is a bD-set.

(b) Since {z} is a bD-set of (X,7), then there exist two subsets U; €
BO(X,7) and Uy € BO(X, 1) such that {z} = U;\Us, {2} C U; and
U # X. Thus, we have that Ap({z}) C Uy # X and so Ap({z}) # X.
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(iii) Since A({z}) # X, then there exists a subset U € 7 such that
{z} ¢ U and U # X. Using Theorem 3.10(i) for the point =, {z} is
b-open or b-closed in (X, 7). When the singleton {z} is b-open, then {z}
is a bD-set of (X, 7). When the singleton {x} is b-closed, then ({z}) is
b-open in (X, 7). Put Uy = U and Uy = U N ({z})¢. By [3, Proposition
2.3(b)], the set Us is b-open. Therefore, {z} = U;\Uz and {z} is a
bD-set, because U; € BO(X,7) and U; # X.

(iv) Necessity: Let x € X. For a point y # z, there exists a bD-set U
such that x € U and y ¢ U. Say U = U;\Us, where U; € BO(X, 1) for
each i € {1,2} and U; # X. Thus, for the point x, we have a b-open set
Uy such that {z} C Uy and U; # X. Hence, Ap({z}) # X.

Sufficiency: Let x and y be a pair of distinct points of X. We prove that
there exist bD-sets A and B containing x and y, respectively, such that
y ¢ A and x ¢ B. Using Theorem 3.10(i), we can take the subsets A
and B for the following four cases for two points x and y.

Casel. {z} is b-open and {y} is b-closed in (X, 7). Since Ay({y}) # X,
then there exists a b-open set V such that y € V and V # X. Put
A ={z} and B = {y}. Since B =V, then {y}¢, V is a b-open set with
V # X and {y}¢ is b-open, and B is a required bD-set containing y such
that x ¢ B. Obviously, A is a required bD-set containing = such that
y ¢ A

Case 2. {x} is b-closed and {y} is b-open in (X, 7). The proof is
similar to Case 1.

Case 3. {z} and {y} are b-open in (X, 7). Put A = {z} and B = {y}.

Case 4. {z} and {y} are b-closed in (X,7). Put A = {y}¢ and
B = {x}°.

For each case above, the subsets A and B are the required bD-sets.
Therefore, (X, 7) is a b-D;-space.

(v) By (iv) and Remark 3.7 (i-2)(b), (v) is obtained. O

Remark 3.12. (i) The converse of Corollary 3.11(iii) is not true, in
general. Let (X,7) be a topological space such that X = {a,b,c} and
T ={X,d,{a},{b},{a,b}}. Then, Ap({c}) = {c} # X and the singleton
{c} = {b,c}\{b}is a bD-set; A({c}) = X holds.

(ii) It follows from Corollary 3.11 (i) that for a point =z € X, Ap({z}) # X
if A({z}) # X: A({z}) = X if Ay({e}) = X.
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4. Preservation theorems

Here, first we recall some definitions. Then, we will give several preser-
vation theorems.

Definition 4.1. A function f: (X,7) — (Y, ) is said to be

(a) a-continuous [31] if f=(V) is a-open in (X, 7), for every open set
Voof (Y, ),

(b) a-open [31] if f(U) is a-open in (Y, ), for every open set U of
(X7 7_)7

(c) v-irresolute [14] if f=1(V) is y-open in X, for every vy-open set V
of Y,

(d) y-continuous [17] if f~1(V) is y-open in (X, 7), for every open set
V of (Y, ¢).

We note that since the notion of b-open sets and the notion of ~-
open sets are the same, then here we will use the term of b-irresolute
(resp. b-continuous) functions instead of -irresolute (resp. «y-continuous)
functions. In [10; Definition 6] the authors used the term of b-continuous

functions instead of v-irresolute functions.

Theorem 4.2. If f : (X,7) — (Y,¢) is a b-continuous (resp. b-
irresolute) surjective function and S is a D-set (resp. bD-set) of (Y,
©), then f~1(S) is a bD-set of (X, 7).

Proof. Let S = O;\Oz be a D-set (resp. bD-set) of (Y, ¢), where
O; € ¢ (resp. O; € BO(Y, ¢)), for each i € {1,2} and O; # Y. We
have that f~1(0;) € BO(X, ), for each i € {1,2} and f~1(0;) # X.
Hence, f1(S) = f71(O1) N(X\f71(02)). Therefore, f~1(S) is a bD-
set. 4

Theorem 4.3. If (Y,¢) is a D; space ( resp. b-Di space ) and f :
(X,7) — (Y, ) is a b-continuous ( resp. b-irresolute ) bijective func-
tion, then (X, 7) is a b-D space.

Proof. Suppose that Y is a D space (resp. b-D; space). Let x and y be
any pair of distinct points in X. Since f is injective and Y is Dy (resp. b-
Dy ), then there exist D-sets (resp. bD-sets) S, and Sy of Y containing
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f(x) and f(y), respectively, such that f(z) ¢ Sy and f(y) ¢ S.. By
Theorem 4.2, f~1(S;) and f~1(S,) are bD-sets in X containing x and
y, respectively, such that = ¢ f~1(S,) and y ¢ f~1(S;). This implies
that X is a b-D; space. O

Theorem 4.4. A topological space (X, 7) is b-Dy if for each pair of
distinct points x, y €X, there exists a b-continuous (resp. b-irresolute)
surjective function f : (X, 7) — (Y, @), where (Y, p)is a D1 space (resp.
b-D1 space) such that f(z) and f(y) are distinct.

Proof. Let z and y be any pair of distinct points in X. By hypothesis,
there exists a b-continuous (resp. b-irresolute) surjective function f of a
space (X, 7) onto a D1 space (resp. b-Dj space) (Y, ¢) such that f(x) #
f(y). It follows from Theorem 4.2 of [37] (resp. Remark 3.7(i-2)(b)) that
Dy = Dy (resp. b-D; = b-Dy ). Hence, there exist disjoint D-sets (resp.
bD-sets) S, and Sy in Y such that f(z) € S, and f(y) € Sy. Since f is b-
continuous (resp. b-irresolute) and surjective, by Theorem 4.2, f~1(S,)
and f *1(Sy) are disjoint bD-sets in X containing x and y, respectively.
So, the space (X, 7) is b-D; . d

The following notion is due to Hatir and Noiri [20].

A filterbase B is called D-convergent to a point x € X if for any D-set
A containing x, there exists By € B such that B; C A.

Definition 4.5. Let (X, 7) be a topological space. A filter base B is
called bD-convergent to a point x € X, if for any bD-set A containing
x, there exists B1 € B such that B; C A.

Theorem 4.6. If a function f : (X,7) — (Y, ) is b-continuous
(resp.b-irresolute) and surjective, then for each point x € X and each
filterbase B on (X, 7), bD-converging to x, the filterbase f(B) is D-
convergent (resp. bD-convergent) to f(x).

Proof. Let x € X and B be any filterbase bD-converging to x. Since
f is a b-continuous (resp. b-irresolute) surjection, by Theorem 4.2, for
each D-set (resp. bD-set) V C Y containing f(z), f~(V) C X is a
bD-set containing z. Since B is bD-converging to x, then there exists
By € B such that By C f71(V) and hence f(B;) C V. It follows that
f(B) is D-convergent (resp. bD-convergent) to f(z). O
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Recall that a topological space (X, 7) is said to be D-compact [20] if
every cover of X by D-sets has a finite subcover.

Definition 4.7. A topological space (X, 7) is said to be bD-compact if
every cover of X by bD-sets has a finite subcover.

Theorem 4.8. Let a function f : (X,7) — (Y,¢) be b-continuous
(resp.b-irresolute) and surjective. If (X, 7) is bD-compact, then (Y, ¢)
is D-compact (resp. bD-compact).

Proof. It is proved by using Theorem 4.2. O

Recall that a topological space (X, 7) is said to be D-connected [20]
if (X, 7) cannot be expressed as the union of two disjoint nonempty
D-sets.

Definition 4.9. A topological space (X, 7) is said to be bD-connected
if (X, 7) cannot be expressed as the union of two disjoint nonempty
bD-sets.

Theorem 4.10. If f : (X,7) — (Y, @) is a b-continuous (resp. b-
irresolute) surjection and (X, 7) is bD-connected, then (Y, ) is D-
connected (resp.bD-connected).

Proof. It is proved by using Theorem 4.2. O

Remark 4.11. Theorems 4.2, 4.3, 4.4, 4.6, 4.8 and 4.10 are true for an
a-continuous and a-open function f instead of a b-irresolute function f.
For an a-continuous and a-open function f, the inverse image f~1(9)
of each b-open set S is b-open (see El-Atik [17]).

It is well known that the notion of homeomorphisms is very important
in General Topology. The following definition provides two new weak
forms of homeomorphisms.

Definition 4.12. A function f : (X,7) — (Y,¢) is called a
br-homeomorphism (resp. b-homeomorphism) if f is a b-irresolute bi-
jection (resp. b-continuous bijection) and f~! : (Y,¢) — (X,7) is a
b-irresolute (resp. b-continuous).
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Now, we can give the following definition by taking the space (X, 7),
instead of the space (Y, ¢).

Definition 4.13. For a topological space (X, 7), we define the following
two collections of functions:
br-h(X,7) ={f | f: (X,7) — (X,7) is a b-irresolute bijection,
71 (X,7) — (X, 7) is b-irresolute};
b h(X )=A{f1]f:(X,7) — (X,7) is a b-continuous bijection,
(X, 1) — (X, 7) is b—continuous}.

Theorem 4.14. For a topological space (X, T), the following properties
hold:
(i) h(X,7) Cbr-h(X,7) C b-h(X,T), where (X, 7) ={f | f: (X,7) —

(X, 7) is a homeomorphism }.

(ii) The collection br-h(X,T) forms a group under the composition of
functions.

(iii) The group h(X,T) of all homeomorphisms on (X, T) is a subgroup
of br-h(X,T).

Proof. (i) First we show that every homeomorphism f : (X,7) —
(Y, ) is a br-homeomorphism. Indeed, for a subset A € BO(Y, ),
F7HA) € f[THCUInt(A))UInt(CU(A))) = CUInt(f~H(A)UInt(CL(f~1(A)))
and so f~1(A) € BO(X,7). Thus, f is b-irresolute. In a similar way,
it is shown that f~! is b-irresolute. Hence, we have that h(X,7) C br-
h(X,T).

Finally, it is obvious that br-h(X,7) C b-h(X,7), because every b-
irresolute function is b-continuous.

(i) If f : (X,7) — (Y,p) and g : (Y,p) — (Z,n) are
br-homeomorphisms, then their composition go f : (X,7) — (Z,n) is a
br-homeomorphism. It is obvious that for a bijective br-homeomorphism
f:(X, 1) — (Y,9), f1:(Y,0) — (X,7)is also a br-homeomorphism
and the identity 1: (X,7) — (X, 7) is a br-homeomorphism. A binary
operation « : br-h(X, 1) x br-h(X,7) — br-h(X, 7) is well defined by
a(a,b) = boa, where a,b € br-h(X,7) and b o a is the composition of a
and b. By using the above properties, the set br-h(X, ) forms a group
under composition of functions.
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(iii) For any a,b € h(X,7), we have a(a,b™!) = b loa € h(X,7) and
1x € h(X,7) # @. Thus, using (i) and (%), it is obvious that the group
h(X,T) is a subgroup of br-h(X, 7). O

For a topological space (X,7), we can construct a new group
br-h(X,T) satisfying the property: if there exists a homeomorhism
(X,7) 2 (Y, p), then there exists a group isomorphism br-h(X, 1) = br-
hY, ).

Corollary 4.15. Let f: (X,7) — (Y,¢) and g : (Y,) — (Z,n) be
two functions between topological spaces.

(i) For a br-homeomorphism f : (X,7) — (Y, @), there exists an
isomorphism, say fi : br-h(X,7) — br-h(Y,p), defined by fi(a) =
foao f71, for any element a € br-h(X, 7).

(ii) For two br-homeomorphisms [ : (X,7) — (Y, ) and g : (Y, p)
— (Z,m), (go f)x = gxo fu: br-h(X,T) — br-h(Z,n) holds.

(iii) For the identity function 1x : (X,7) — (X,7), (1x)s = 1 :
br-h(X,7) —br-h(X,7) holds, where 1 denotes the identity isomor-
phism.

Proof. Straightforward. O

Remark 4.16. (i) The following example shows that (X, 7) is a proper
subgroup of br-h(X, 7). Let (X, 7) be a topological space, where

X =A{a,b,c} and 7 = {@,{a},{a, b}, X}. We note that BO(X, 1) =
{2,{a},{a,b},{a,c}, X}. It is shown that h(X,7) = {1x} and br-
h(X,7) ={lx, hqs}, where 1x is the identity on (X, 7) and h, : (X,7) —
(X, 7) is a bijection defined by h,(a) = a, he(b) = ¢ and hy(c) = 0.

(

ii) The following example shows that br-h(X,7) is a proper subset of
b-h(X, 7). Let (X,7) be a topological space, where X = {a,b,c} and
T = {9,{a,b},X}. Then, BO(X,7) = P(X)\{{c}}. There exists an
element hy € b-h(X,7) such thath, ¢ br-h(X, ), where hy : (X, 7) —
(X, 7) is a bijection defined by hy(b) = b, hy(a) = ¢ and hy(c) = a.

(iii) The converse of Corollary 4.15(i) is not always true. Let X =
Y = {a.bc}, 7 = {2, {a,b}, X} and ¢ = {2, {a}, {a,b},Y}. Let f :
(X,7) — (Y, ) be a bijection between topological spaces defined by
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f(a) = b, f(b) = ¢ and f(c¢) = a. Then, it is shown that f. : br-
h(X,7) — br-h(Y, ) is an isomorphism and the function f is not a
br-homeomorphism. Indeed, BO(X,7) = P(X)\{{c}}, BO(Y,p) =
{9, {a},{a,b},{a,c}, Y}, br-h(X,7) = {1x, hp}, br-h(Y, @) = {1y, ha} ,
where hy (resp. hg) is defined in (ii) (resp. (i)). Moreover, f.(hy) = hq
holds and for a set {a} € BO(Y, ), f~'({a}) = {c} ¢ BO(X, ) and so

f is not a br-homeomorphism.

5. Some properties of b-Trspaces

Since the notion of b-open sets and the notion of y-open sets are the
same, then in this paper we will use the term of b-open functions instead
of y-open functions. Recall that a function is called y-open [14] if the
image of every ~-open set is y-open.

In the following theorems, for a non-empty topological space (Y, ¢),
we consider a family my of subsets of (Y, ) such that
my € {SO(Y, ¢), PO(Y, ), BO(Y,¢)}. Namely, the family my is only
one element of {SO(Y, ¢), PO(Y, ¢), BO(Y, ¢)}. Werecall that (Y, my )
is called my -T5 [36] if for each pair of distinct points z,y € Y, there
exist U,V € my containing x and y, respectively, such that UNV = &.
A topological space (Y, ) is called semi-T5 [29] (resp. pre-T3 [23], b-
Ty [37]) if (Y, my ) is my -Ts , where my = SO(Y,¢) (resp. PO(Y, ¢),
BO(Y,¢)). A function f: (X,mx) — (Y, my ) is called M-open [11],
if for each setA € mx, f(A) € my . For topological spaces (X, ),
(Y, ¢) with mx-structure and my-structure, respectively, here we call,
a function f: (X,7) — (Y, ) to be (mx,my)-open if f : (X, mx) —
(Y,my ) is M-open in the sense of [11] given above.

Theorem 5.1. Let R be an equivalance relation, R C X x X, in
a topological space (X,7) and (X/R,¥) an identification space. Let
(mx,mx/r) = (SO(X,7),SO(X/R,V)) (resp. (PO(X,7), PO(X/R,V¥)),
(BO(X, 1), BO(X/R,¥))).
Assume that:

(a) the identification function p : (X, 7) — (X/R, V) is (mx, mx/g)-
open, and

(b) for each point (z,y) € (X x X)\R , there exist subsets Uy, U, €
mx such thatx € Uy, y € Uy and Uy xU, C (XxX)\R.
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Then, (X/R,mx/g) is mx/r-Ts .

Proof. Let p(z) and p(y) be distinct members of X/R. Since z and
y are not equivalent, then (z,y) € (X x X)\R. By assumption, there
exists two subsets U, € my, U, € myx such that x € U,, y € U, and
Uy x Uy C (X x X)\R. Then, we have that U, N U, = &, because
{(#2,2) € X x X | z = 2} C R. By the further assumption, p(U,) and
p(Uy) are the required subsets containing p(x) and p(y), respectively,
ie., p(Usz),p(Uy) € mx, g and p(Uz) N p(Uy) = 9. O

Theorem 5.2. For a topological space (X,T) and each family mx €
{SO(X,1),PO(X,T), BO(X,T)}, the following properties are equivalent:

(1) (X, mX) 18 mX-T2 .

(2) For distinct points x and y € X, there exists a subset U € mx
such that x € U, y ¢ mx -ClL(U), where mx -Cl(U) is defined by N{F |
UcFX\Femy ).

(8) For each x € X, N{mx -Cl(U) |U € mx , x € U} = {x}.

(4) For each pair (z,y) € (X x X)\A, there ezist two subsets Uy, V,
€ mx such that x € Uy, y € V; and U, x V,, C (X x X)\A, where
A={(z,x)|ze X}

Proof. (1) = (2). Let 2,y € X with  # y. Then, there exist two
subsets U,V € mx such that z €¢ U,y € Vand UNV = @. It is
obvious that y ¢ V¢ mx -Cl(U) C mx -Cl(V¢) = V¢ and therefore
y ¢ mx -Cl(U).

(2) = (3). Assume that y ¢ {z}. There exists a subset U € mx
such that x € U and y ¢ mx -Cl(U). So, we have that y ¢ N{mx -
Cl(U) |U e mx, ze€U}.

(3) = (4). Let (x,y) € (X x X)\A. Since y ¢ N{mx -Cl(U) |
U € mx, x € U}, then there exists a subset U € mx such that z € U,
y € (mx -Cl(U))¢ and (mx -Cl(U))¢ € mx ([36, Lemma 3.2, Lemma
3.1(6), Remark 3.1(2)]). Set U, = U and U, = (my -Cl(U)). Then,
it is shown that x € U, , y € U, and U, U, € mx. Besides, we have
that (Up x Uy)N A = &, because U, N U, = &. Therefore, we have
Uy x Uy C (X x X)\A.

(4) = (1). Let z # y. Then (z,y) € (X x X)\A, and by (4) there
exist two subsets Uy, U, € mx such that (z,y) € U, xU, C (X x X)\A.
Hence, we have that (U, x Uy)N A =g, ie., U, NU, = @. O
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6. Applications

Here, we are able to apply Theorems 5.1 and 5.2 to investigate prop-
erties on the digital line using alternative construction [26; p. 908] of
digital lines. In Example 6.2 (a)-(d), we use Theorem 5.1 to prove the
b-Thness of the digital line. Morever, in Example 6.3, we use Theo-
rem 5.2 to observe an alternative proof on the non-pre-Toness of the
digital line. We recall the Khalimsky line or so called the digital line
(Z,rk) is the set of the integers Z with the topology k having
S = {{2m — 1,2m,2m + 1} | m € Z} as a subbase ([24],[25],[26];
eg.,[12],[18],[17]). In (Z, k), for examples, each singleton {2m + 1} is
open and each singleton {2m} is closed, where m € Z. A subset U is
open in (Z, ) if and only if whenever x € U and x is an even integer,
then z — 1, x +1 € U. A subset {2m — 1,2m,2m + 1} is the smallest
open set containing 2m, where m € Z. It is shown directly that (Z, k)
is semi-T» ([17; Theorem 2.3]) and so it is b-75 . However, it is not
pre-T5 ([17; Theorem 4.8(ii)]) and so it is not T , because k = PO(Z, k)
holds([18; Theorem 2.1(i)(a)]).

Example 6.1. Let (R, €) be the Euclidan line and ¢ : (R,¢) — (Z,k) a
function defined by ¢(z) = 2n+1 for every point x with 2n < z < 2n+2,
q¢(2n) = 2n, where n € Z([26; p. 908]). Let R be an equivalence
relation in (R,¢) defined by R = (U{V(2n,2n + 2) x V(2n,2n + 2) |
n € Z}) U (U{(2n,2n) | n € Z}), where V(2n,2n +2) = {t € R |
2n < t < 2n + 2}. For points ¢ and = of R, ¢ is equivalent to x if
and only if (¢,2) € R. We denote the set of all equivalence classes by
R/R = {[t] | t € R}, where [t]| = {z € R | (z,t) € R} is an equivalence
class including ¢. Then, the projection p : (R,e) — (R/R,¥) is well
defined by p(t) = [t], for every t € R; ¥ is the identification topology
induced by the function p; a subset U; of R/R is open in (R/R, V)
(i.e., Uy € ¥) if and only if p~1(Uy) is open in (R,€). It is shown that
p(t) = [q(t)], for every t € R

(a) The digital line (Z, k) and (R/R,¥) are homeomorphic.

(b) For mrp = SO(R,€) (resp. (BO(R,€)) and R above, one of the
assumptions in Theorem 5.1, i.e., (b), holds.

(c) The function p : (R,e) — (R/R, V) is (SO(R,¢), SO(R/R, ¥))-
open, (PO(R,¢€), PO(R/R,¥))-open and (BO(R, €), BO(R/R, ¥))-open.

(d) The digital line (Z, k) is semi-T» and also b-T .
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Proof. (a) A continuous bijection f : (Z, k) — (R/R, ¥) is well defined
by f(q(z)) = p(x). Then, foq = p and the inverse f~! is continuous.

(b) In Theorem 5.1, let (X,7) = (R,¢€) and R = (U{V(2n,2n + 2) x
V(2n,2n+2) | n € Z}) U{(2n,2n) | n € Z}). We need the following
notations: V(2n,+o00) = {z € R | 2n < z}, V[2n,+00) = {z € R |
2n <z}, V(—00,2n) = {z € R | 2 < 2n} and V(—o00,2n] = {z € R |
x < 2n}, where n € Z. It is shown that R? \R = [U{(V[2n, +00) X
V(—00,2n)) U (V(2n,400) x V(—00,2n]) | n € Z}] U [U{(V(—o0, 2n] X
V(2n,4+00)) U (V(—00,2n) x V[2n,+00)) | n € Z}]. Let(z,y) € R? \R.
Then, there exist subsets such that (z,y) € V[2n,+00) x V(—0o0,2n),
(x,y) € V(2n,+00) x V(—00,2n], (z,y) € V(—00,2n] x V(2n,+00)
or (z,y) € V(—00,2n) x V[2n,+00). Since V|[2n,+o0), V(—o0,2n),
then V' (2n, +00) and V(—o0, 2n| are semi-open and also b-open in (R, ¢€),
the condition (b) of Theorem 5.1 holds for mr = SO(R,€) and also
mr = BO(R, 6).

(c) It is obvious that the function ¢ : (R,e) — (Z, k) is open and
continuous and f o ¢ = p holds. First, let A € SO(R,¢€). Then, there
exists an open subset U such that U C A C CI(U). Using f in the proof
of (a) above, f(g(U) € ¥ and [(g(U7) C fla(A)) C F(CUlq(U))) =
Cl(f(q(U))). Thus, we have that p(U) € ¥ and p(U) C p(4) C C[(
p(U)), i.e., p(A) € SO(R/R, V).

Second, let B € PO(R,¢€). Then, there exists an open subset V such
that B C V C CI(B). It is shown similarly as above that p(V') € ¥ and
p(B) C p(V) C Cl(p(B)). Namely, p(B) € PO(R/R, ).

Finally, let S € BO(R,¢). It is well known that S = sInt(S)UpInt(S)
holds [3; Proposition 2.1]. Since sInt(S) € SO(R,e) and pInt(S)
PO(R,¢), we have that p(sInt(S)) € SO(R/R,¥) and p(pInt(S))
PO(R/R, ).

Then, we have that p(S) = p(sInt(S))Up(pInt(S)) C Cl(Int(p(sInt(S))))
UInt(Cl(p(pInt(S)))) C Cl(Int(p(S)))UInt(Cl(p(S))). Namely, p(S) €
BO(R/R, ).

(d) By (b) and (c), all assumptions of Theorem 5.1 are satisfied
for mp = SO(R,¢€) (resp. mg = BO(R,¢)). Thus, (R/R, V) is semi-
T (resp.

b-T»). Since f : (Z,x) — (R/R, V) is a homeomorphism, then we prove
that
(Z, k) is semi-Ty (resp. b-Tv). O

S
S
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Example 6.2. (a) The digital line is not pre-T5 ([17; Theorem 4.8(ii)]).
Using Theorem 5.2 (3), we have an alternative proof of the property
above. Let (X,7) = (Z,k) and mx = PO(Z, k) in Theorem 5.2. Then,
the condition (3) of Theorem 5.2 is not satisfied. Indeed, let a point
x = 2n € Z for some integer n, and U, be any preopen set (Z, k)
such that z € U,. By using [17; Lemma 3.3], it is shown that {2n —
1,z,2n+ 1} C Up. Thus, we have that N{pCIl(U) | U € PO(Z,k), x €
U} D pCl({2n—1,z,2n+1}) D {2n—1,z,2n+1} # {z}. Therefore, by
Theorem 5.2, (Z, PO(Z, k)) is not PO(Z, k)-T> . Namely, the digital line
is not pre-T5 .

(b) Using Theorem 5.2 (3), for mx = SO(Z, k), we have an alterna-
tive proof of (d) in Example 6.2 above. Let z = 2n and y = 2m + 1 for
some integers n and m. Then, {z,2n+1},{2n—1,2} and {y} are semi-
open sets of (Z, k) (e.g., [18]). Since sCl({z,2n+1}) = {z,2n+1}, then
sCl({2n — 1,2}) = {2n — 1,z}, N{sCIl(U) | U € SO(Z,k), z € U} C
sCl({x,2n+1})NsCl({2n—1,z}) = {z,2n+1}N{2n—1,2} = {x}. Mor-
ever, \({sCl(U) |U € SO(Z,k),y € U} C sCl({y}) = {y} holds. There-
fore, we conclude that N{sCIl(U) | U € SO(Z,k), z € U} = {z} holds
for any point z € Z. By Theorem 5.2, it is obtained that (Z, SO(Z, k))
is SO(Z, k)-Ty . Namely, the digital line is semi-T5 and also it is b-T5 .
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