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Steering Control of an Underwater Vehicle

Fazal-ur-Rehman

Abstract—This paper presents a simple and systematic
approach to steer an underwater vehicle model by considering
two different cases: (i) when all actuators are functional, and
(ii) when one actuator is not working. In first case, the model
of an underwater vehicle is steered by employing a Lie
bracket extension of the original system and the resulting
feedback law is as a composition of a standard stabilizing
feedback control for the extended system and a periodic
continuation of a parameterized solution to an open loop,
finite horizon control problem stated in the logarithmic
coordinates of flows. In second case (which represents a
physical example where second level Lie bracket is necessary
for controllability), the original system is decomposed into two
subsystems; one subsystem, which is fifth dimensional, steered
by a similar approach used in case (i) and the second
subsystem, which is one dimensional, steered by using
sinusoidal inputs. The mixture of both type of control is
utilized to steer the actual system. The synthesis method is
general, in that it applies to a large class of drift free,
completely controllable systems, for which the associated
controllability Lie algebra is locally nilpotent.

Index Terms—Feedback stabilization, systems with drift,
nonholonomic systems, nilpotent Lie algebra, locally
nilpotent, Lyapunov function.

1. INTRODUCTION

THIS PAPER presents a simple solution to the steering
problem for an underwater vehicle which represents-a
nonholonomic control system. Also an underwater vehicle
model presents a physical example where second level Lie
brackets are necessary for controllability. This type of
vehicle is expected to perform a key role in automation of
underwater missions for oceanographic. observations, and
in oil and mineral explorations, which> motivates our
interest.

A kinematics model of an underwater vehicle, as
described by [1], involves six configuration variables and
four inputs (velocities), of .which three are the angular
velocity components, and the fourth represents the forward
velocity of the vehicle. If the body-fixed translational y
and z velocities are assumed to be un-actuated, the vehicle
exhibits nonholonomic behavior, for details see [2].

Feedback control of the underwater vehicle with this
type of nonholonomic constraint was studied in [1]-[3]. In
[4], Yoerger and Slotine applied sliding modes to trajectory
control of such a vehicle. Due to the presence of the
nonholonomic constraint, the kinematics model of the
vehicle belongs to the class of systems which cannot be
stabilized by continuous static feedback, see [5]. As
demonstrated in [6], for this class of systems, the
dependence of the stabilizing control law on time is
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essential. Synthesis approaches have been presented in [7],
[8] but rely heavily on the existence of suitable time-
varying Lyapunov functions, which are often difficult to
find.

In this article we present a simple and systematic
approach for steering an underwater vehicle model by
considering two different cases: (i) when all actuators are
functional, and (ii) one actuator is not working. In case (i),
the model of an underwater vehicle is steered by employing
a Lie bracket extension of the original system (see [9],
[10]) and an arbitrary. Lyapunov function is used to
construct a closed loop steering control for the extended
system. This classical static feedback is then combined
with a periodic continuation of a parameterized solution to
an open.loop steering problem for the comparison of flows
of the original and extended systems. Since the
controllability Lie algebra associated with this system is
locally nilpotent, the latter can be recast as an open loop
control problem for a finite set of the logarithmic
coordinates of flows, see [3], [11]. In combination with the
static, time invariant feedback for the extended system, the
solution to this open loop problem delivers a time varying
control which provides for periodic intersection of the
trajectories of the controlled extended system and the
original system. For steering the original system, the
extended system trajectory serves as a reference.

In case (ii), the original system is decomposed into two
subsystems. One subsystem, which is fifth dimensional,
steered by a similar approach as used in case (i) and the
second subsystem, which is one dimensional, is steered by
using sinusoidal inputs, which are similar as given in [12].
The mixture of both type of control is used to steer the
original system. The synthesis method is general, in that it
applies to a large class of drift free, completely controllable
systems, for which the associated controllability Lie
algebra is locally nilpotent. The approach does not
necessitate the conversion of the system model into a
“chained form”, and thus does not rely on any special
transformation techniques. By introducing approximate
models often permits significant simplification of the
differential equations describing the evolution of the
logarithmic coordinates in the open-loop problem
formulation (which are wusually difficult to solve
analytically).

II. A KINEMATICS MODEL OF UNDERWATER VEHICLE

In the derivation of the model of the underwater vehicle,
two frames of reference are considered, as shown in Fig. 1
(for detail see [1]). The o - xvz is the inertial frame, while
the local frame, c-xyz, is attached to the vehicle at its
center of mass c¢. Six coordinates are used to describe the
orientation. The Z—-Y - X Euler angles are denoted by
(¢,9,y). When the angles are small, ¢ corresponds to
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Fig. 1. Model of an underwater vehicle.

what is commonly called the roll motion, while 8 and vy
correspond to the pitch and yaw motions, respectively.

As given in [1], it is assumed that the vehicle is moving
with velocity v, whose direction is the ¢—x axis in the
local frame, so the components of this velocity along the
x,y,and z axes are given by

b v cosy cosH
y|=| vsiny cosO €))
z —vsin®

The relation between the time rate of the Euler angles
and the angular velocity in the local frame,
0=(,0, w,)", is given by, (see [1]):

) 1 sin¢ tan® cos¢ tanb |,
0 =0  cosd —sing | o, )
i 0 sin¢g sec® cosd secO ||,

Combining (1) and (2), and introducing a new set of
state and control variables:

(219223233Z4a25926):(x9ya Z,(I),e,\l/)
(ulau29u3>u4):(v9('0xa('0 ,,(Dz) )
Y

yields a kinematics model for the vehicle :
Sl z2=Z(Duf+Zy(2)uy +Z5(2)us +Z,(2)uy,  (3)

where
[coszg coszs | (0]
sinzg coszs 0
def|  —sinzs def| )
Zy(2) = 0 s Zy(2) = ik
0 0
(. 0 - _O_
~ 0 N - 0 -
0 0
def 0 def 0
Z3(2) =| . , Zy(2) =
Sinz, tanzg Ccoszytanzg
€08z, —sinz,
| sinz, seczs | | cosz,seczs |

A. The Control Problem

Given a desired set point z,, € R®, construct a
feedback  strategy in terms of the controls
u; ‘R® 5 R,i=1,2,..,4 such that the desired set point
Zg 18 an attractive set for (3), so that there exists an
€ >0, such that z(¢; ¢y, zy) = 24, as t—oo for any
initial condition (¢, zy) € R™ x B(z,,:€).

Without the loss of generality, it is assumed that
Z4 =0, which can be achieved by a suitable translation of
the coordinate system.

B. Properties of the Kinematics Model (When All
Actuators Are Functional)

The kinematics model of an underwater vehicle is given
by (3) when all actuators are working and has the following
important properties:

e [P1] The vector fields z,,z,,z, & z, are real analytic,

and it can be shown that solutions to (3) exist for all
times.

e [P2] The system .defined by (3) is completely
controllable on the manifold

def 6 T
M={z=(z,.n.,25)eR :|25| <—} as it satisfies the
LARC (Lie algebraic rank condition) for
controllability on A, in that the Lie algebra,
L(Z,,Z,,Z5,Z4) spans R® at each point ze M .

e [P3] The Lie algebra 1(Z,,Z,,Z,,2,), generated by
the vector fields Z,, Z,, Z; and Z,, is not nilpotent.
To verify property P2, it is sufficient to calculate the
following Lie brackets:

[sinz coszg cosz, +sinzgsinz, |
Sinzg sinzg cosz, —COSzy Sinzy
COSZ5COSZy
0
0

0

def
Z5(2) =[2,,Z51(2) =

—sinzg coszg sin z, +sin z; cos z, |
—8inz4 sinzs sinz, — oSz COSzy
—coszgsinzy
0
0
0

def
Zs(2) =[Z1,24](2) =

It is then a straightforward task to verify that, if the
motion of the system is restricted to the manifold M , then
{2,,2,,25,24,Z5,Z4} are linearly independent, which
demonstrates the satisfaction of the LARC condition, in
that:

span{Z,(z), ., Zg(z)} =R® VzeM “4)
The Lie  bracket multiplication  table  for
L(Z,,Z,,Z5,Z,)"

Z,.2,]1=0 [Z,,Z,1=2, [Z,,Z,]1=—-Z,
[Z5.241=2, [Z,,Z5]1=12,,Z;]=0
(Z,,Z5)=Z; [Z,,Z4]=-Z5 [Z,,Z5]=Z2,
(25, Zs]1=[24,Z5]1=24,Zs]1=12Z5, Zs]=0
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shows that the Controllability Lie algebra 1( Z,Zy,75,Z,)
is finite dimensional but not nilpotent i.e. we cannot find an
integer m such that

L(Z,.,2,,2,,2,)=L,,(Z,,2,,2+5,Z,)>

where L,(Z,,Z,,Z,7 4)is Lie algebra containing all Lie
brackets of level less than or equal to m .

The Lie algebra z,z,,72,,72,) is called the locally
nilpotent if [(Y,,Y,,Y;,Y,) is nilpotent, where Y, is
linearized form of the vector field Z,, for i=1,...4.

III. APPROXIMATE MODEL

An approximation to system S1 is considered which
gives nilpotent Controllability Lie algebra. Such an
approximation is obtained as follows:

Linearize the nonlinear terms in the expression of the
vector field 7z, by using truncated Taylor series of order
one i.e. substituting sinz =z and cosz=1.

Linearize the nonlinear terms in the expression of the
vector fields 7z, and Z, by using truncated Taylor series of
order zero i.e. each term is evaluated at zero or substituting
sinz~0 and cosz=1

A

Sl: 2=3Y.(2)u,(z), zeR )
i=1

1

def| — z, def|

g def
Yl(z) = ’ YZ(Z) =

def|
, K(2) = =

&Y, (2)

S O = O O O
-_ o O O O

0

r
I'-‘OOOOO

The approximate system S1 is controllable since the
LARC condition is satisfied as:

span{Y,(z), ..., Ys(z)} = R® ,V z e R® (6)
where the vector fields Y;(z) and Y (z)are given by
o1 o]
0 -1
def 1 def 0
Y5(2) =, Bl@=] o1 Ye@) =, HlE) =|
0 0
_0_ L 0 -

The Lie brackets multiplication table for L(Y;,Y,,Y;,Y,)is
given by:

1, 131=Y; [V, Yy ]=Ys

[Y,,,]=0, j=1..4

Y, Ys1=[Y;, ¥%1=0,=1,..,6

so that [(Y,Y,,Y%;,Y,) is nilpotent and hence

L(Z,,Z,,Z,,Z,) is locally nilpotent.

A. Extended Systems of S1 and S1

The extended system of the system S1 as defined in [9],
[10] is:

37
- 6 6
=37,V (2)+ X Z,(2)v,(2), zeR (7
i=1 i=5
where, 7z, =56 are the Lie brackets involve in

L(Z,,Z,,7,,Z,)- Similarly the extended system of
approximate system S1is defined as:

.2 6 6
z=2Y.(2v,(2)+ XY, (z2)v;(2),zeR )]
i=1 i=5
where, Y, =56 are Lie brackets involve in

LYY, Y5,Y,) -

THEOREM 1:

The extended system (8) can be made (locally)
asymptotically stable by introducing the following
feedback control:

def
vi(2) ==Ly V(2)si=1,..... 6 ©)

Proof: Let V2R® — R be any smooth, positive definite,
decrescent and radially /unbounded function with the
origin as aunique stationary point. One simple choice is:
V(z) = _i 22> then along the controlled extended system

trajectories we have

6 6
Ly )= ;LY, V() v(z) = —Zl {Ly V() <0 for 2#0

iV(z) =0 for z=0
dx

which is due to the fact that span{¥;,Y,,.... ¥} = R . This
completes the proof.

The discretization of the above control in time, with
sufficiently high sampling frequency (I/T), does not
prejudice stabilization in that if the feedback control (9) is
substituted by the descretized control:

v (z(t))difviT (z(nT)), te[nT,(n+DT], (10)
n=0,1,. i=1,.,6

then the latter also stabilizes the system if 7' is small
enough. This leads to a parameterized, asymptotically
stable, controlled extended system:

Z‘:

Mo

Y,(2)q, an
1

def
where a, = v/ (z(t)), i=1,....6 are constant over each

interval[nT,(n+1)T).

1

THEOREM 2:

Suppose the controlled extended system (8) is
exponentially stable. Then, for any compact region R c M
which contains the origin, there exists a constant 7' >0
such that the descretized controlled extended system (11) is
exponentially stable with region of attraction R (see [13]).

IV. THE TRAJECTORY INTERCEPTION PROBLEM
Find control functions m, (a,t), i=1,2,3,4,in the class
def

of functions which are continuous in a =[a,, a,, .....as]
and piece-wise continuous and locally bounded in ¢, such
that for any initial condition z(0)=z,the trajectory
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z%(t; z,, 0) of the extended, parameterized system (11)
intersects the trajectory z™ (¢; z,, 0) of the approximate
system (5) with controls m,, i=1,2,3,4 i.e.

z':iYi(x) m;(a,t) (12)
i=1

precisely at time 7', so that
zUT; 25,0 ) = z"(T; 2,,0) (13)

This problem will be hereafter referred to as TIP
problem.

THEOREM 3:

Suppose that a solution to the TIP problem can be found.
Then, there exists an admissible time horizon 7, and a
neighborhood of the origin R such that for any 7<7  °~
the time-varying feedback controls (see [13]):

def def
u[(t) = mi(VT(X),t), l:L 2’ 35 4’ VT :[v]Ta‘”'av({]

are asymptotically stabilizing the approximate system (6)
with the region of attraction R.

A. The TIP in Logarithmic Coordinates of Flows

To solve the TIP; as the algebra [(Y,,Y,,Y;,Y,)is
nilpotent, it is possible to employ the formalism of [11] and
consider a formal equation for the evolution of flows for
the approximate model (6):

U@t)=U(t) iY,. w, UWO)=1 (14)
i=1

where the solution of (14) is known to represent the flow.of
the dynamic system

6
HN)=2Y, w,
i=1

whose controllability Lie algebra [(¥},Y,,..,Y,) is
nilpotent. Such solution can be expressed locally as (see

[11]):
U) zﬁevmm (15)

i=1
where the functions vy Liel,2,..,6 are the logarithmic
coordinates for this flow and can be computed as follows.

Equation (15) is first substituted into (14) which yields:
Yia, +Y,a, +...+ Ya, =7, 1) 1y, (e )y,
+ Y N (enale eyzade )Y3
+7, (evdel V20412 gy3adYs Y, (16)
+Ys (evladY1 g244Y2 evsadY3 eV 4adls )Ys

. d! dY; dY; dY; dYs
+.Y6(6Yla 1724 26“{3‘1 3 ¥4 4eY5" S)Y()

def def
where (¢“¥)Y = e*Y e and (adX)Y =[X,Y].
Employing the Campbell-Baker-Hausdorff formula:

(@Y =Y e =Y +[X,Y]+[X,[X, Y]]/ 24......
which gives
()Y, =My, e =Y, + (1, /ID]Y,, Y]
+@ /2L =T,

(17)

Similarly

(e*/ladyl enadyz )Y3 _ eYladY] (evzade}g) (18)
=M (V) =Y, +y,[Y,, Y5 ]=Ys +7,Ys

(emale o24dY2 jy3adly )Y, = el1adh yyoadty (evaadYa )
dYp dY; dY;
= /1M (gr20dR2y 1y = gt1edt (y (19)
=Y+, Y=Y, +v X
(ey 1adYy jy2ad¥y [y3ad¥3 y4adyy )Y,

d} dY dY- dY;
— eYl” 1eY20 26Y3a 3e‘/4” 4()75)

(20)
= o114dYi jy2adYy jy3adl3 ¥
=M Mer2 M2 (1) = M (1) = ¥
and
(emale oY24dY jr3adY3 Jy4adly ysadls )Y,
= gV1adN y2adVy gy3ad¥y jyqady (evsadYs Ys) @1

b Y; dY;
= V19N yy2adty jy3adYs (%)

= gl1adM groad) (Y= gl (Y=Y,

Substituting. (17)-(21) in (14) and comparing the
coefficients of ' Y,, i=1,2,..,6 yields the following

equations for the evaluation of the logarithmic coordinates
Yo i=1,2,.,6:

Y =W
Yy =W,
Fs =W . (22)
Y4 =Wy

Vs ==Y W3 +ws

Yo ="Y1Ws+Ws
with v,(0)=0, i=12,..,6
The TIP in logarithmic coordinates now takes the form

of a trajectory interception problem for the following two
control systems

CS1: 4, =m, Cs2: ¥, =aq
Yo =m, V2=a,
V3 =m; Vi =a,
Y4 =my Ya=ay
Vs ==Y M Ys=-Ya; +as
Yo=Yy Y6 =—Y104 +4

with initial conditions with v,(0) =0, i=1,2,...,6.
Complete controllability of ¢s1 and ¢s2 guarantees
existence of solutions to the TIP.
One such solution can be calculated as follows. Motivated
by the fact that a flow of z=[g,,g,] can be approximated
by the flow of z = cg, sin(2nt/T) + cg, cos(2nt/T), Where ¢ is
some constant, we seek the controls m;(a,?), i=1,.....,4 in
the form

. 2mt 2nt
my =(c; +¢s s1n7+ Cq cosT), my =c,
(23)

2nt . 2n
my =(c3 +Cs COST)’ my =(cy +c4 s1n7)

where ¢;, i=1,2,.....,6 are some unknown coefficients.
The above are substituted into CS1, and the systems
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Fig. 2. Underwater vehicle model 1: plots of the controlled state trajectories ¢ — ( 2,(2), ..., g (£)) versus time.
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Fig. 3. Underwater vehicle model 1: plots of the controlled state trajectories z, (¢) versus z, (r) » and z;(¢) versus z, (¢) -
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[Eh4 T T T T T T

z4(t)

0s 0.6 0.7

0.3 0.4
z;(1)

@

Fig. 4. Underwater vehicle model 1: plots of the controlled state trajectories, z, () versus z;(¢) and z¢(¢) versus z5(f) -

CS1 and CS2 are integrated symbolically, using
Mathematica®, to yield respective solutions y“(s) and
y™ () in terms of parameters @ and c¢. The equation
y"™(T)=v“(T) isthen also solved symbolically to deliver
the values for the unknown coefficients c; in terms of their
counterparts a; :

Cl :al,

cs = 13.544911}“75,

Co = 2a,T? +/(~50.2655a4T" +4a’T*)))/ 21>

szaz, C3:a3, C4:a4

This reflects that two solutions are found. In simulation
we used the positive values of ¢;.

Therefore by TIP the following control stabilize .the
system S1:

. 2t 2t
u; =(c; +cs smT +cg COST), Uy =c;.
24)

Uy =(c3 +cs cos%), uy, =(ep+64 sinT)

The controls given in (24) can be utilized to stabilize
thedefsystem Sl by just replacing a; to b;, where
b, =¥/ (z(1)), and § =, p(x).

u, =(b +ds sin%+d6 cos%), Uy, =b,
(25)

2 omt
s = (b + ds cosTm), uy = (b, +bg sm%

where

d = i3.54491\/g,
T

dg=(2bT* \/(—50.2655b6T3 +4bIT*Y)) /277,

COROLLARY:

If the controlled extended system possesses a sufficiently
wide stability margin, the controls given in (24) and (25)
provide an asymptotically stabilizing feedback control for
the approximate model S1 and exact model SI,
respectively (see [13]).

The controls given in (25), as applied to the model of the
underwater vehicle (3), result in controlled trajectories
depicted in Figs. 2 to 5.

(b)

0.8 T T T T

07 b L -H .

L
10 19 20 25 a0
time

Fig. 5. Un(%erwater vehicle model 1: plot of the Lyapunov function

V(z(?)) = %ZZIZ (r) versus time.

i=1l

V.CASE II: (WHEN ONE ACTUATOR IS NOT WORKING)

A model of an underwater vehicle (3) is considered in
which the actuator corresponding to control u, fails to be
operational. The model of the underwater vehicle with such
reduced number of controls, is referred to be Model 2
which is an example of a physical system where second
level Lie brackets are necessary for controllability. By
using the transformations

def
X = (x15x2’x3{x4’x5’x6) = (ZSaZ4szI’Z6’Z3522)

de . .
and (v;,v,,v3,0) = (u3,u,,u,,u,) in (3) gives:

(%] [ cosx, |
X, sinx, tanx,
X3 0

Model2:| ~ |=| . v +

Xy sinx, secx,
Xs

Y] L J

o1 - 0 -
1 0

0 COSX,4 COSX 26

%) + 4 ! V3 ( )

0 0

0 —sinx;

0 sinx, cosx;

def
=Z\(X) vy +Zy(x) vy + Z3(x) v4
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where
[ cosx, | (0] i 0 i
sinx, tanx, 1 0
def| 0 def| () def| cos X, COS X,
Zi(x) =| . Zy(x) =| L Z5(x) = ’
sin x, Secx; 0 0
0 —sinx;
L ] 10] | sinx, cosx; |
Computing the following Lie brackets:
[ —sinx, |
Ccosx, tanx,
def 0
Zy(x) =[21,2,](x) =
COSX, SeCX,
0
(. 0 -
- 0 -
0
def Sinx; cosx, Cosx, +sinx, sinx,
Zs(x) =[21,25](x) = 0 )
COSX| COSX,
| sinx; sinx, cosx, —sinx, cosx, |

def
Zg(x) =f[Zz,[Zl,Z3]](x)
- 0 -
0
—sinx, sinx, cosx, + cosx, sinx,
0

—cosx, sinx,

| —sinx; sinx, sinx, —cosx, COSx, |

which demonstrates that, if the motion.is restricted to the
manifold:

N={xei}16:‘x1‘<%}

then LARC condition is satisfied:
span{Z,, Z,, Z3, 24, Zs, Zgt(x) =R®, Vxe N (27)

The reasoning behind - this» transformation is just
to convert the system states in an order such that each state
variable x; can be steered along the vector field Z,(x) for
i=12,..,6.

A. Decomposition of the System into Two Subsystems

Decompose the original system (26) into two subsystems
such as: one subsystem is consist of first five state variables
which can be steered along the original vector fields and all
independent Lie brackets with level one, and other
subsystem is consist of one state variable which can be
steered along the Lie bracket with level two. Evaluating all
vector fields in (27) at zero will indicate that which state
variable is related to which vector fields. Then we have the
following decomposition:

41

X COS X, 0 0
Xy sinx, tanx, 1 0
Tl:| %5 |= 0 v+ 0 |v, +| cosx, cosx; [v;(28)
X4 sinx, secx; 0 0
X5 0 0 —sinux,
def
T2: Xx¢=sinx,cosx vy = f(x)v3 29)

def
By defining y = (x;,x,,x;,X4,%s), the subsystem 71 can

be written as:

=X W+ X0y + X (v, yeR (30)
where,
COS X, 0
sin x, tan x; 1
X ()= 0 22X, (») =01, X5(y) =| cos x4 cosx,
sinx, sec x, 0 0
0 0 —sinx;

Subsystem 71 is controllable as it satisfies the LARC
condition:

A'def  def 5 T
N ={y =(x,%3,%3,X4,X5) €R :‘xl‘ <E},

[ —sinx, |
dof COS X, tanx;
X, () =[X, X)) = 0 )
COS X, SECX;
(. 0 .
_ 0 -
. 0
def
X5(y) =[X,,X;1(») =| sinx, cosx, cosx, +sinx, sinx,
0
| COSX; COSX, ]
It can be easily verified that the Lie algebra
L(X,,X,,X;) is not nilpotent. The approximation to

subsystem 71 is considered in such a way that the
controllability ~Lie algebra L(X,X,,X;)is locally
nilpotent:

Ty =Y,(y)v, + L (v, + 0y, yeR’ (B

where,
1 0 0
0 1 0
() =| 0| Hho =0l ro=| 1 |
X, 0 0
0 0 -X

0

. 0 .

def def

Y,(») =V, 51 ={ 0], Ys(») =[N, 131(») =
1
0

-0 O O O
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gives,

span{; (3.1, (M)s Y5 (1)} =9 ¥ y e 0.
The Lie brackets multiplication table for L(Y,,Y,,Y;):
[M.1h]=Y, [1,53]=Ys [Y,,15]=0
[Y:. Y41 =[Y;.%s]1=0, i=12,3
shows that the controllability algebra L(Y,,Y,,Y;) is

nilpotent. R
The extended system for 71 is given by:

V=YW + L0, +5(0)vs + (), + Y (0)vs (32)

def 135 ,
where y (y) =—L, W (y),i=1,.5, & W(y)=—3%x}-
i-1
The descretized form of system (32) is:

y=Y,(»)a, +Y,(»)a, +Y;(y)a; +¥,(V)ag+Ys(y)as
(33)

The logarithmic coordinates for: 7’1 /satisfy the following
differential equations:

Y1 =9
Y2=4a,
Y3 =4as

Y4 ="V 14, tay

VY5 =—a3 +as, with 7;(0)=0, i=1,2,..,5

Thereﬁore by TIP the following control stabilize the
system 71:

.2
u,(x)=a, +(c, +c5)sin TTC ,

(34)

2wt
u,(x)=a, +c, cos 7

Tt

u;(x) = a5 +c5 cos
where, c¢; are found:

¢y :J_r3.54491,/a74, cg =+3.54491 /“75.

Replacing a; by b; and ¢; by d; in (34) we obtain the
following controls which stabilize the sub-system 71.

Va)

time

Fig. 7. Underwater vehicle Model 2: plot of the Lyapunov function
_1 24y versus time.
VE0)=2 2 2 0

i=1

Uy (x) = b, +(d4+d5)sin2; r

uz(x):b2+d40052;t, (35)

uy(x)=by +dj cos2TE !

with g, :J_r3.54491;/bT4, ds = 13.%4491\Z§ ,  where

by ==Ly W(y),i=1,..5, and W(y):E X;

i -
i=1

VI. STABILIZATION ALGORITHM FOR CASE II

Repeat the following algorithm until sufficient accuracy
is achieved in reaching the origin:

Algorithm:
Data: € >0
Step a: Apply the control (35) to original system (26)
until its trajectories converges to B(S};e):

def
S ={xeN:x=.=x5=0,x20}
where B(S;;e) denotes the € — neighborhood of §; .
Step b: To generate motion along [Z,,[Z,,Z;]], apply
the controls
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. 2nt
u, =k, smT,

. 2nt (36)
U, = k2 SIHT,

4r t
uy =k cosnT

until the system trajectories converges to B(S,;e),
where:

def
S, ={xe N:x;, & f(x) =0}

={x e N:x; &sinx,cosx; =0}
={xeN:x;=x,=0}

which is an invariant set for the controlled system (26)
Step c: Set € =¢/2.

Remark: The outcome of Step (a) steers all state variables
x;,i=12,..,5 to zero except Xg and the application of
Step (b) gives x4 =x, =0 while the other state variables
X, Xy,x3 and x5 may become nonzero. One more time
application of Step (a) will make all state variables
x;=0,i=12,..56 and this step will not change
Xg=x,=0as x= (xl,...,xé)T es,.

The simulation results are shown in Figs. 6 and 7, where,
in control (36) we have used k; =1k, =3,k =4 and

T=16.

VII. CONCLUSION

A new approach for steering the underwater vehicle is
presented by considering two different cases: (i) when_all
actuators are working, (ii) one actuator is not working. In
first case, the model of an underwater vehicle is steered by
employing a Lie bracket extension of the original system.
In second case (which represents a physical example where
second level Lie brackets are necessary for controllability),
the original system is decomposed into two. subsystems;
one subsystem, which is fifth dimensional, is steered by a
similar approach used in case (i)'and the second subsystem,
which is one dimensional is, steered by using sinusoidal
inputs. The mixture of both types of control is utilized to
steer the actual system. The method is general and can be
applied to a class of drift.free systems, for which the
associated controllability Lie algebra is locally nilpotent.

The approach does mnot necessitate conversion of the
system model into a “chained form”, and thus does not rely
on any special transformation techniques. By introducing
approximate models often permits significant simplification
of the differential equations describing the evolution of the
logarithmic coordinates in the open-loop problem
formulation (which are wusually difficult to solve
analytically).
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