FUZZY IDEALS OF NEAR-RINGS WITH INTERVAL VALUED MEMBERSHIP FUNCTIONS

B. Davvaz*

Department of Mathematics, Yazd University, Yazd, Islamic Republic of Iran

Abstract

In this paper, for a complete lattice \mathcal{L} , we introduce interval-valued \mathcal{L} -fuzzy ideal (prime ideal) of a near-ring which is an extended notion of fuzzy ideal (prime ideal) of a near-ring. Some characterization and properties are discussed.

1. Introduction

Zadeh in [19] introduced the concept of a fuzzy subset of a non-empty set X as a function from X to [0,1]. Goguen in [10] generalized the fuzzy subset of X, to \mathcal{L} -fuzzy subset, as a function from X to a lattice \mathcal{L} .

Since Rosenfeld [18] in 1971 introduced the concept of fuzzy subgroups following Zadeh, fuzzy algebra theory has been developed by many researchers. Liu [12] defined the fuzzy ideals of a ring and discussed the operations on fuzzy ideals. Mukherjee and Sen [16], Malik and Mordeson [16], Mashinchi and Zahedi [14], Zahedi [21], shown the meaning of the fuzzy prime ideals and its nature. The notion of fuzzy ideals and its properties were applied to various areas: distributive lattice [2], BCK-algebra [17], hyperrings [6,8], nearrings [1,11], hypernear-rings [7].

In 1975, Zadeh [20] introduced the concept of interval-valued fuzzy subsets (in short written by i-v fuzzy sets), where the values of the membership functions are intervals of numbers instead of the numbers. In [4], Biswas defined interval-valued fuzzy subgroups of the same nature of Rosenfeld's fuzzy subgroups.

In this paper, for a complete lattice \mathcal{L} , we define Interval-valued \mathcal{L} -fuzzy ideals (prime ideals) of a near-

Keywords: Fuzzy set; Near-ring; Fuzzy ideal; Level set

ring, and we obtain an exact analogue of fuzzy ideals. In particular, we show there exists a one-to-one correspondence between the set of all f-invariant i-v \mathcal{L} -fuzzy prime ideals of R and the set of all i-v \mathcal{L} -fuzzy prime ideals of R', where R and R' are near-rings and f is a homomorphism from R onto R'.

2. Basic Definitions

From now on this paper \mathcal{L} is a complete lattice [3], i.e. there is a partial order \leq on \mathcal{L} such that, for any $S \subseteq \mathcal{L}$, infimum of S and supremum of S exist and these will be denoted by $\bigwedge_{s \in S} \{s\}$ and $\bigvee_{s \in S} \{s\}$, respectively. In particular for any elements $a,b \in \mathcal{L}$, in $f\{a,b\}$ and $\sup\{a,b\}$ will be denoted by $a \wedge b$ and $a \vee b$, respectively. Also, \mathcal{L} is a ditributive lattice with a least element 0 and a greatest element 1. If $a,b \in \mathcal{L}$; we write $a \geq b$ if $b \leq a$, and a > b if $a \geq b$ and $a \neq b$.

Definition 2.1. Given two elements $a,b \in \mathcal{L}$ with $a \le b$, we define the following closed interval set:

$$[a,b] = \{c \in \mathcal{L} | a \le c \le b\}.$$

Suppose $\mathcal{D}(\mathcal{L})$ denotes the family of all closed intervals of \mathcal{L} .

^{*} E-mail: davvaz@yazduni.net

Definition 2.2. Let $I_1 = [a_1, b_1]$, $I_2 = [a_2, b_2]$ and $I_i = [a_i, b_i]$ be elements of $\mathcal{D}(\mathcal{L})$ then we define

$$I_1 \wedge I_2 = [a_1 \wedge a_2, b_1 \wedge b_2],$$

$$I_1 \vee I_2 = [a_1 \vee a_2, b_1 \vee b_2],$$

$$\bigwedge_{i} \{I_i\} = [\bigwedge_{i} \{a_i\}, \bigwedge_{i} \{b_i\}],$$

$$\bigvee_{i} \{I_i\} = [\bigvee_{i} \{a_i\}, \bigvee_{i} \{b_i\}].$$

We call $I_2 \le I_1$ if and only if $a_2 \le a_1$ and $b_2 \le b_1$.

Definition 2.3. Let X be a non-empty set. An \mathcal{L} -fuzzy subset F defined on X is given by

$$F = \{(x, \mu_F(x) | x \in X) \}$$
, where $\mu_F : X \to \mathcal{L}$.

Definition 2.4. Let X be a non-empty set. An intervalvalued \mathcal{L} -fuzzy subset F defined on X is given by

$$F = \{(x, [\mu_F^L(x), \mu_F^U(x)]) | x \in X\},\$$

where μ_F^L and μ_F^U are two \mathcal{L} -fuzzy subsets of X such that $\mu_F^L(x) \le \mu_F^U(x)$ for all $x \in X$.

Suppose $\hat{\mu}_F(x) = [\mu_F^L(x), \mu_F^U(x)]$. If $\mu_F^L(x) = \mu_F^U(x)$ = c where $0 \le c \le 1$, then we have $\hat{\mu}_F(x) = [c, c]$ which we also assume, for the sake of convenience, to belong to $\mathcal{D}(\mathcal{L})$. Thus $\hat{\mu}_F(x) \in \mathcal{D}(\mathcal{L})$ for all $x \in X$. Therefore the i-v fuzzy subset F is given by

$$F = \{(x, \hat{\mu}_F(x)) | x \in X\}$$
, where $\hat{\mu}_F : X \to \mathcal{D}(\mathcal{L})$.

Definition 2.5. Let f be a mapping from a set X into a set Y. Let A be an i-v \mathcal{L} -fuzzy subset of X. then the image of A, i.e., f[A] is the i-v fuzzy subset of Y with the membership function defined by

$$\hat{\mu}_{f[A]}(y) = \begin{cases} \bigvee_{z \in f^{-1}(y)} {\{\hat{\mu}_A(z)\} \text{ if } f^{-1}(y) \neq \emptyset} \\ [0,0] \qquad \text{for all } y \in Y \end{cases}$$

Let B be an i-v \mathcal{L} -fuzzy subset of Y. Then the inverse image of B, i.e., $f^{-1}[B]$ is the i-v \mathcal{L} -fuzzy subset of X with the membership function given by

$$\hat{\mu}_{f^{-1}[B]} = \hat{\mu}_B(f(x))$$
 for all $x \in X$.

Definition 2.6. Let X and Y be any two non-empty sets and $f: X \to Y$ be any function. An i-v \mathcal{L} -fuzzy subset of F of X is called f-invariant if

$$f(x) = f(y) \Rightarrow \hat{\mu}_F(x) = \hat{\mu}_F(y)$$
, where $x, y \in X$.

Definition 2.7. A non-empty set R with two binary operations + and \cdot is called a near-ring [5,15] if

- 1) (R,+) is a group,
- 2) (R,\cdot) is a semigroup,
- 3) $x \cdot (y+z) = x \cdot y + x \cdot z$ for all $x, y, z \in R$.

To be more precise, they are left near-rings because the left distributive law is satisfied. We will use the word near-ring to mean left near-ring. We denote xy instead of $x \cdot y$. Note that x0 = 0 and x(-y) = -xy but in general $0x \neq 0$ for all $x \in R$ [15, Lemma 1.10]. A nearring R is called a zero symmetric if 0x = 0 for all $x \in R$.

Definition 2.8. Let $(R,+,\cdot)$ be a near-ring. An ideal of R is a subset I of R such that

- 1) (I,+) is a normal subgroup of (R,+),
- 2) $RI \subset I$,
- 3) $(r+i)s-rs \in I$ for all $i \in I$ and $r, s \in R$.

Note that if I satisfies (1) and (2) then it is called a left ideal of R. If I satisfies (1) and (3) then it is called a right ideal of R. Let P be an ideal of R. We call P a prime ideal if for any ideal $I, J \subseteq R$, $IJ \subseteq P$ then $I \subseteq P$ or $J \subseteq P$.

i-v L-Fuzzy Ideals in a Near-Ring

In this section first we define interval-valued \mathcal{L} -fuzzy subnear-rings and ideals and then we explain some results in this connection.

Definition 3.1. Let $(R,+,\cdot)$ be a near-ring. An i-v \mathcal{L} -fuzzy subset F of R is called an i-v \mathcal{L} -fuzzy subnear-ring, if the following hold:

1) $\hat{\mu}_F(x) \wedge \hat{\mu}_F(y) \leq \hat{\mu}_F(x-y)$ for all $x, y \in R$,

2)
$$\hat{\mu}_F(x) \wedge \hat{\mu}_F(y) \leq \hat{\mu}_F(x \cdot y)$$
 for all $x, y \in R$.

Furthermore F is called an i-v \mathcal{L} -fuzzy ideal of R, if F is an i-v \mathcal{L} -fuzzy subnear-ring of R and

3)
$$\hat{\mu}_F(x) = \hat{\mu}_F(y+x-y)$$
 for all $x, y \in R$,

4)
$$\hat{\mu}_F(x) \le \hat{\mu}_F(xy)$$
 for all $x, y \in R$,

5)
$$\hat{\mu}_E(i) \le \hat{\mu}_E((x+i)y - xy)$$
 for all $x, y, i \in R$.

Note that F is an i-v \mathcal{L} -fuzzy left ideal of R if it satisfies (1), (3) and (4), and F is an i-v \mathcal{L} -fuzzy right ideal of R if it satisfies (1), (2), (3) and (5).

Now, we give an example of an i-v \mathcal{L} -fuzzy ideal of a near-ring.

Example 3.2. Let $R = \{0, a, b, c\}$ be a set with two binary operations as follows:

Then $(R,+,\cdot)$ is a near-ring. Define an i-v \mathcal{L} -fuzzy subset F by membership function $\hat{\mu}_F:R\to\mathcal{D}(\mathcal{L})$ by $\hat{\mu}_F(b)=\hat{\mu}_F(c)<\hat{\mu}_F(a)<\hat{\mu}_F(0)$. Then F is an i-v \mathcal{L} -fuzzy ideal of R.

Lemma 3.3. For an i-v \mathcal{L} -fuzzy ideal F of a near-ring R, we have

$$\hat{\mu}_F(x) = \hat{\mu}_F(-x) \le \hat{\mu}_F(0)$$
 for all $x \in R$.

Proposition 3.4. Let F be an i-v \mathcal{L} -fuzzy ideal of R. If $\hat{\mu}_F(x-y) = \hat{\mu}_F(0)$ then $\hat{\mu}_F(x) = \hat{\mu}_F(y)$.

Proof. Assume that $\hat{\mu}_F(x-y) = \hat{\mu}_F(0)$. Then

$$\hat{\mu}_F(x) = \hat{\mu}_F(x - y + y)$$

$$\geq \hat{\mu}_F(x - y) \wedge \hat{\mu}_F(y)$$

$$= \hat{\mu}_F(0) \wedge \hat{\mu}_F(y)$$

$$= \hat{\mu}_F(y).$$

Similarly, using $\hat{\mu}_F(y-x) = \hat{\mu}_F(x-y) = \hat{\mu}_F(0)$, we get

$$\hat{\mu}_F(y) \ge \hat{\mu}_F(x)$$
.

Corollary 3.5. $[\mu_F^L, \mu_F^U]$ is an i-v \mathcal{L} -fuzzy ideal of a near-ring R if and only if μ_F^L, μ_F^U are \mathcal{L} -fuzzy ideals of R. Now, we define

$$F_t^L = \left\{ x \in X \middle| \mu_F^L(x) \ge t \right\} \quad \text{and} \quad F_s^U = \left\{ x \in X \middle| \mu_F^U(x) \ge s \right\}.$$

Then $\hat{\mu}_F$ is an i-v \mathcal{L} -fuzzy ideal of R if and only if for every t, s where $0 \le t \le s \le 1$, F_t^L , $F_s^U \ne \emptyset$ are ideals of R.

Definition 3.6. Let F_1 and F_2 be two i-v \mathcal{L} -fuzzy subsets of a near-ring R. Then $F_1 \cap F_2$ and $F_1 \circ F_2$ are defined as follows:

$$\hat{\mu}_{F_1 \cap F_2} = \hat{\mu}_{F_1}(x) \wedge \hat{\mu}_{F_2}(x)$$

$$\hat{\mu}_{F_1 o F_2}(x) = \begin{cases} \bigvee_{x = yz} \left\{ \hat{\mu}_{F_1}(y) \wedge \hat{\mu}_{F_2}(z) \right\} \\ [0.0] \quad \text{if } x \text{ is not expressible as } x = yz \end{cases}$$

Lemma 3.7. Let *R* be a near-ring, we have

- If F₁, F₂ are two i-v L-fuzzy ideals of R (right or left) then F₁ ∩ F₂ is an i-v L-fuzzy ideal of R (right or left), respectively;
- 2) If R is a zero-symmetric and if F_1 is an i-v \mathcal{L} -fuzzy right ideal and F_2 is an i-v \mathcal{L} -fuzzy left ideal, then $F_1 o F_2 \subseteq F_1 \cap F_2$.

Proof. (1) It is an immediate consequence of Corollary 3.5 and Definition 3.6.

(2) We assume *R* is a zero symmetric near-ring. If $\hat{\mu}_{F_0 o F_2}(x) = 0$, there is nothing to prove. Otherwise

$$\hat{\mu}_{F_1 o F_2}(x) = \bigvee_{x = yz} \{ \hat{\mu}_{F_1}(y) \wedge \hat{\mu}_{F_2}(z) \}.$$

Since F_1 is an i-v \mathcal{L} -fuzzy left ideal, we have

$$\hat{\mu}_{F_1}(z) \le \hat{\mu}_{F_1}(yz) = \hat{\mu}_{F_1}(x)$$
,

and since F_1 is an i-v \mathcal{L} -fuzzy right ideal, we have

$$\hat{\mu}_{F_1}(x) = \hat{\mu}_{F_1}(yz) = \hat{\mu}_{F_1}((0+y)z - 0z) \ge \hat{\mu}_{F_1}(y)$$
.

Therefore

$$\hat{\mu}_{F_1 o F_2}(x) \le \hat{\mu}_{F_1}(x) \land \hat{\mu}_{F_2}(x) = \hat{\mu}_{F_1 \cap F_2}(x)$$
.

Definition 3.8. Let X be a non-empty set and F be an i-v \mathcal{L} -fuzzy subset of X. Then we define

$$F_{[t,s]} = \{x \in X | \hat{\mu}_F(x) \ge [t,s] \}$$
.

The set $F_{[t,s]}$ is called the "level set" of F.

It is easy to see that $F_{[t,s]} = F_t^L \cap F_s^U$.

Now, we obtain the relation between an i-v *L*-fuzzy ideal and level ideals. This relation is expressed in terms of a necessary and sufficient condition.

Theorem 3.9. Let R be a near-ring and F be an i-v \mathcal{L} -fuzzy subset of R. Then F is an i-v \mathcal{L} -fuzzy ideal of R if and only if for every t, s where $0 \le t \le s \le 1$, $F_{[t,s]} \ne \emptyset$ is an ideal of R.

Proof. The proof is similar to the proof of Theorem 3.4 of [7], by considering the suitable modification with using Definitions 2.4 and 3.1.

Definition 3.10. An i-v \mathcal{L} -fuzzy ideal P of a near-ring R is said to be prime if P is not constant function and for any i-v \mathcal{L} -fuzzy ideals F_1, F_2 in $R, F_1 \circ F_2 \subseteq P$ implies $F_1 \subseteq P$ or $F_2 \subseteq P$.

Proposition 3.11. Let P be an i-v \mathcal{L} -fuzzy prime ideal of a near-ring R. Define

$$\pi = \{x \in R | \hat{\mu}_P(x) = \hat{\mu}_P(0) \},$$

then π is a prime ideal in R.

Proof. The proof is similar to the proof of Theorem 3.7 in [1].

Proposition 3.12. Let R be a near-ring and F_1, F_2 are i-v \mathcal{L} -fuzzy prime ideals of R, then $F_1 \cap F_2$ is an i-v \mathcal{L} -fuzzy prime if and only if $F_1 \subseteq F_2$ or $F_2 \subseteq F_1$.

Proof. The proof is straightforward, in view of the fact that $F_1 \circ F_2 \subseteq F_1 \cap F_2$.

We have the following corollary which plays an important role in the determination of i-v \mathcal{L} -fuzzy prime ideals.

Corollary 3.13. Let R be a near-ring. Then every ideal of R is a level ideal of an i-v \mathcal{L} -fuzzy ideal of R.

Proof. Let *I* be any ideal of a near-ring *R* and let $[\alpha_1, \alpha_2] \le [\beta_1, \beta_2] \ne [0,0]$ be elements in $\mathcal{D}(\mathcal{L})$. Then the fuzzy subset *F* is defined as follows:

$$\hat{\mu}_F(x) = \begin{cases} [\beta_1, \beta_2] & \text{if } x \in I \\ [\alpha_1, \alpha_2] & \text{otherwise.} \end{cases}$$

We have $I = F_{[\beta_1, \beta_2]}$ and by Theorem 3.9, it is enough to prove that F is an i-v \mathcal{L} -fuzzy ideal.

An element $[\alpha_1,\alpha_2] \neq [1,1]$ in $\mathcal{D}(\mathcal{L})$ is called "prime" if for any $[a_1,a_2],[b_1,b_2] \in \mathcal{D}(\mathcal{L}), \ [a_1,a_2] \wedge [b_1,b_2] \leq [\alpha_1,\alpha_2]$ implies either $[a_1,a_2] \leq [\alpha_1,\alpha_2]$ or $[b_1,b_2] \leq [\alpha_1,\alpha_2]$.

Theorem 3.14. Let I be a prime ideal of a near-ring R and let $[\alpha_1, \alpha_2]$ a prime element in $\mathcal{D}(\mathcal{L})$. Let P be the fuzzy subset of R defined by

$$\hat{\mu}_P(x) = \begin{cases} [1,1] & \text{if } x \in I \\ [\alpha_1, \alpha_2] & \text{otherwise.} \end{cases}$$

Then P is an i-v \mathcal{L} -fuzzy prime ideal.

Proof. By Corollary 3.13, P is clearly a non-constant i-v \mathcal{L} -fuzzy ideal. Let F_1 and F_2 be any i-v \mathcal{L} -fuzzy ideals and let $F_1 \nsubseteq P, F_2 \nsubseteq P$. Then there exist x, y in R, such that $\hat{\mu}_{F_1}(x) \nleq \hat{\mu}_{P}(x)$ and $\hat{\mu}_{F_2}(x) \nleq \hat{\mu}_{P}(x)$. This implies that $\hat{\mu}_{P}(x) = \hat{\mu}_{P}(y) = [\alpha_1, \alpha_2]$ and hence $x \notin R$ and $y \notin R$. Since I is prime, there exists $r \in R$ such that $xry \notin I$. Now, we have $\hat{\mu}F_1(x) \nleq [\alpha_1, \alpha_2]$ and $\hat{\mu}F_2(ry) \nleq [\alpha_1, \alpha_2]$ (otherwise $\hat{\mu}F_2(y) \lneq [\alpha_1, \alpha_2]$ and since $[\alpha_1, \alpha_2]$ is prime, $\hat{\mu}_{F_1}(x) \land \hat{\mu}_{F_2}(ry) \nleq [\alpha_1, \alpha_2]$ and hence $(F_1oF_2)(xry) \nleq [\alpha_1, \alpha_2] = \hat{\mu}_{P}(xry)$ so that $F_1oF_2 \nsubseteq P$. Hence P is an i-v \mathcal{L} -fuzzy prime.

Lemma 3.15. Let f be a mapping from a non-empty set X into a non-empty set Y, and let A, B are i-v \mathcal{L} -fuzzy subsets of X, Y, respectively, such that

$$\hat{\mu}_A = [\mu_A^L, \mu_A^U] : X \to \mathcal{D}(\mathcal{L}) \text{ and}$$

$$\hat{\mu}_{R} = [\mu_{R}^{L}, \mu_{R}^{U}]: Y \to \mathcal{D}(\mathcal{L}).$$

Then

$$\hat{\mu}_{f[A]} = [f(\mu_A^L), f(\mu_A^U)]$$
 and

$$\hat{\mu}_{f^{-1}[B]} = [f^{-1}(\mu_B^L), f^{-1}(\mu_B^U)].$$

Using Lemma 3.15, the following propositions are obvious.

Proposition 3.16. Let f be a homomorphism from a near ring R onto a near-ring R', and A be any f-invariant i-v \mathcal{L} -fuzzy prime ideal of R. Then f[A] is an i-v \mathcal{L} -fuzzy prime ideal of R'.

Proposition 3.17. Let f be a homomorphism from a near ring R onto a near-ring R', and B be any f-invariant i-v \mathcal{L} -fuzzy prime ideal of R'. Then $f^{-1}[B]$ is an i-v \mathcal{L} -fuzzy prime ideal of R.

Theorem 3.18. Let f be a homomorphism from a near ring R onto a near-ring R', then the mapping $A \to f[A]$ defines a one-to-one correspondence between the set of all f-invariant i-v \mathcal{L} -fuzzy prime ideals of R and the set of all i-v \mathcal{L} -fuzzy prime ideals of R'.

References

- 1. Abou-Zaid, S. On fuzzy subnear-rings and ideals, *Fuzzy Sets and Systems*, **44**:139-46, (1991).
- Yuan Bo and Wu Wangming, Fuzzy ideals on a ditributive lattice, *Ibid.*, 35: 231-40, (1990).
- 3. Birkhoff, G. *Lattice Theory*, Amer. Math. Soc. Colleq. Publ. Vol. 25, Amer. Math. Soc., Providence, RI, (1984).
- 4. Biswas, R. Rosenfeld's fuzzy subgroups with interval valued membership functions, *Fuzzy Sets and Systems*, **63**: 87-90, (1994).

- 5. Clay, J. R. *Near-Rings; Geneses and Applications*, Oxford, New York, (1992).
- 6. Davvaz, B. On H_{ν} -rings and fuzzy H_{ν} -ideals, J. Fuzzy Math., **6**: 33-42, (1998).
- 7. Davvaz, B. On Hypernear-rings and Fuzzy Hyperideals, *Ibid.*, **7**: 745-53, (1999).
- Davvaz, B. Some results on L-fuzzy H_v-ideals, Pure Math. Appl., 10: 31-40, (1990).
- Dickson, L. E. Definitions of a group and a field by independent postulates, *Trans. Am. Math. Soc.*, 6: 198-204, (1905).
- Goguen, J. A. L-fuzzy sets, J. Math. Anal. Appl., 18: 145-74, (1967).
- 11. Seung Dong Kim and Hee Sik Kim, On fuzzy ideals of near-rings, *Bull. Korean Math. Soc.*, **33**: 593-601, (1996).
- 12. Liu, W. J. Fuzzy invariant subgroups and fuzzy ideals, *Fuzzy Sets and Systems*, **8**: 133-39, (1982).
- 13. Malik, D. S. and Mordeson, J. N. Fuzzy prime ideals of a ring, *Ibid.*, **53**: 237-50, (1991).
- Mashinchi, M. and Zahedi, M. M. On fuzzy ideals of a ring, J. Sci. I. R. Iran, 1(3): 208-10, (1990).
- 15. Meldrum, J. D. P. Near-Rings and Their Links with Groups, Pitman, London, (1985).
- 16. Mukhrejee, T. K. and Sen, M. K. On fuzzy ideals in rings I, Fuzzy Sets and Systems, 21: 99-104, (1987).
- 17. Ougen, X. Fuzzy BCK-algebra, *Math. Japonica*, **36**: 935-42, (1991).
- 18. Rosenfeld, A. Fuzzy groups, *J. Math. Anal.*, **35**: 512-17, (1971).
- 19. Zadeh, L. A. Fuzzy sets, *Inf. And Control.*, **8**: 338-53, (1965)
- Zadeh, L. A. The concept of a linguistic variable and its application to approximate reasoning-1, *Ibid.*, 8: 199-249, (1975)
- 21. Zahedi, M. M. A characterization of L-fuzzy prime ideals, *Fuzzy Sets and Systems*, **44**: 147-60, (1991).