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Abstract– We present a modified examplar-based inpainting method in the framework of patch 
sparsity. In the examplar-based algorithms, the unknown blocks of target region are inpainted by 
the most similar blocks extracted from the source region, using the available information. Defining 
a priority term to decide the filling order of missing pixels ensures the connectivity of the object 
boundaries. In the exemplar-based patch sparsity approach, a sparse representation of missing 
pixels is considered to define a new priority term and the unknown pixels of the fill-front patch is 
inpainted by a sparse combination of the most similar patches. Here, we modify this representation 
of the priority term and take a measure to compute the similarities between fill-front and candidate 
patches. Also, a new definition is proposed for updating the confidence term to illustrate the 
amount of the reliable information surrounding pixels. Comparative reconstructed test images show 
the effectiveness of our proposed approach in providing high quality inpainted images.           
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1. INTRODUCTION 
 

Restoring damaged regions of an image and removing undesired objects are termed as image inpainting. 
The basic idea is to fill in the lost or broken parts of an image using the surrounding information in such a 
way that the final restored result appears to be natural to a not familiar observer. 

The applications of image inpainting techniques include removal of scratches in old photographs, 
repairing damaged regions of an image, removal of undesired objects, and restoration of missing blocks of 
transmitted images. 

The user is to identify the missing or damaged areas objectively, since these areas cannot be easily 
classified. These specified regions are called inpainting domain or target regions and the undamaged parts, 
whose information is used to repair the target region, are called source regions. 

Recently, several image inpainting approaches have been developed. They are roughly categorized 
into two main types: PDE (Partial Differential Equation)-based methods, and texture synthesis approaches. 
PDE-based methods use partial differential equations, which propagate edge information along isophote 
(i.e., a line with all the points having the same gray value) directions with diffusion techniques. Bertalmio 
et al. [1] were the first to introduce an image inpainting method. Their PDE-based scheme propagated 
boundary information of the inpainting domain along the isophote directions. Inspired by the work in [1], 
two other PDE-based algorithms [2, 3] were proposed by Chan and Shen. The Total Variational (TV) 
model [2] uses an Euler-Lagrange equation coupled with an anisotropic diffusion to preserve the direction 
of isophotes. This method does not restore a single object well when its disconnected remaining elements 
are separated far apart within the target region. The Curvature Driven Diffusion (CDD) model [3] considers 
geometric information by defining the strength of isophotes. This extended version of the TV approach can 
inpaint larger damaged regions. 
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A simple inpainting algorithm based on prior models was presented by Roth and Black [4]. They 
modified the diffusion technique of denoising approaches to learn image statistics from natural images and 
then applied it to the target region. Noori et al. [22] proposed a method based on bilateral filters which was 
originally used for image denoising. They iteratively convolved the damaged image with a space variant 
kernel to restore the thin regions. 

In almost all PDE-based algorithms, blurring artifacts may be produced when the missing regions are 
large and textured. So, these methods perform well on images with pure structures or thin target regions. 

To fill in large regions with pure textures, the second class of approaches, texture synthesis techniques 
were proposed. The common idea in these methods is to duplicate the information on the source region into 
the target region [5-10]; hence, the texture information is preserved.  

Texture synthesis approaches are classified into pixel-based sampling [5-7] and patch-based sampling 
[8-10] according to the sample texture size. Since the filling process in pixel-based scheme is performed 
pixel by pixel, the algorithm is very slow. However, the speed of patch-based sampling was greatly 
improved even though filling in the target region is by blocks of pixels, but discontinuous flaws between 
neighboring patches still remains. 

As natural images usually contain both structure and texture components, Bertalmio et al. [11] 
decomposed the input image into its structure and texture components and then restored them separately. 
The final outcome was the sum of two reconstructed components. This method is not appropriate for 
repairing large and thick damaged regions, because the PDE-based approach being used to construct the 
structure component often admits blurring artifacts. Criminisi et al. [12] presented an examplar-based 
inpainting technique to propagate the known patches (i.e., examplars) into the missing ones by ordering the 
synthesizing process. They can remove large objects from the image according to the defined patch priority 
values assigned to the pixel. Constructing information on both the structure and the texture characteristics 
for large and thick damaged regions is a special feature of this method.  

Other examplar-based schemes were also proposed [13-15]. Compared with the PDE-based 
approaches, the examplar-based inpainting algorithms have produced plausible results; however, they 
appear to fail on repairing other types of structures, such as curves, and are often faced with some artifacts 
in the output image. 

Some approaches based on image sparse representation were also introduced for the inpainting 
problem [16-19]. In these methods, an image is presented by a sparse combination of an overcomplete set 
of transformations (e.g., wavelet, contourlet, DCT, etc.), and then the missing pixels are inferred by 
adaptively updating the sparse representation. In [16], Elad et al. proposed an approach to separate the 
image into cartoon (structure) and texture components, and then represented the sparse combination of the 
two obtained components by two incoherent over-complete transformations. Although this approach can 
effectively fill in the regions with structure and texture, it may fail to repair the structure or might produce 
smoothing defects similar to the PDE-based approaches. Fadili et al. [17] proposed a sparse representation-
based iterative algorithm for image inpainting. They used the Expectation Maximization (EM) framework 
to consider recovering the missing samples based on representations.  The proposed approach in [18] is 
considered a simple exemplar-based model via global optimization. Hence, some problems associated with 
progressive fill-ins were avoided. Xu and Sun [19] presented an exemplar-based inpainting method using a 
patch sparsity representation. They introduced the idea of sparse representation under the assumption that 
the missing patch could be represented by sparse linear combinations of candidate patches. Then, a 
constrained optimization model was proposed for the patch inpainting. Nonetheless, at times the edges in 
the filled regions are not connected properly. 

Here, we intend to improve the patch sparsity image inpainting scheme based on the patch propagation 
scheme proposed in [19]. 

The remainder of our work is organized as follows. In Section 2, we explain the patch sparsity-based 
image inpainting. We present our proposed method in Section 3. Performance of our technique is 
investigated in Section 4. Finally, Section 5 gives the concluding remarks. 
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2. PATCH SPARSITY-BASED IMAGE INPAINTING 
 
We use the common notations being used in the inpainting literature. The target region, i.e., the region to be 
filled in, is shown by  Ω, and its boundary is denoted by δΩ. The source region, ϕ, which remains fixed 
throughout the algorithm, supplies samples to fill in the missing regions (refer to Fig. 1). 

 
Fig. 1. Notation diagram: The original image to be filled with target  

region ષ, its boundary ઼ષ and the source region ૖ 
 

The conventional examplar-based method [12] is as follows. 
Algorithm 1: A conventional examplar-based method. 
Step 1: For each point ࢖ on the boundary ઼ષ, construct a patch ࣒࢖, with ࢖ in the center of the patch. 
Step 2: Compute the patch priority ࡼሺ࢖ሻ: ࡼሺ࢖ሻ is defined as the product of two terms: a confidence 

term ࡯ሺ࢖ሻ, and a data term ࡰሺ࢖ሻ (see Fig. 2): 

ܲሺ݌ሻ ൌ .ሻ݌ሺܥ  ሻ,                                                              (1)݌ሺܦ

ሻ݌ሺܥ ൌ
∑ ஼ሺ௤ሻ೜∈ഗ೛∩೾ഥ

หట೛ห
ሻ݌ሺܦ		, ൌ

ห׏ூ೛఼.௡೛ห

ఈ
,																																															(2)	

where, ห࣒࢖ห is the area of ࣒ࢻ ,࢖ is a normalization factor (e.g., ࢻ	 ൌ	255 for a typical grey-level 
image), ࢖࢔ is a unit vector orthogonal to the boundary at the point ࢖, and સୄ࢖ is an isophote 
vector. ࡰሺ࢖ሻ lets linear structures to be synthesized first, and thus propagates securely into the 
target region, ࡯ሺ࢖ሻ illustrates the amount of the reliable information surrounding the pixel ࢖ 
and is initialized to be ࡯ሺ࢖ሻ ൌ ૙, ࢖∀ ∈ ષ, and ࡯ሺ࢖ሻ 	ൌ 	૚, ࢖∀ ∉ ષ. 

Ω

δΩ

Φ

 
Fig. 2. Given the patch ߰௣ for image I, ݊௣ is the normal to the boundary  

at ݌, and ܫ׏௣ୄ is the isophote vector 
 

Step 3: Find the patch ࣒࢖ෝ with the highest priority being filled in with the information extracted from 
the source region ૖ (Fig. 3a). 

Step 4: Make a global search on the whole image to find a patch ࣒ࢗ having the most similarity with 
  ,ෝ. Formally࢖࣒

ෝ࣒ࢗ ൌ ૖∋࣒ࢗܖܑܕ܏ܚ܉  ൯                                                        (3)࣒ࢗ,ෝ࢖൫࣒ࢊ

where the distance ࢊ between two generic patches is simply defined as the sum of squared 
differences (SSDs) of the already known pixels in the two patches (Fig. 3b). 

Step 5: Copy the value of each pixel to be filled in, ࢖ᇱ|࢖ᇱ ∈  ෝ∩ષ, using its corresponding position࢖࣒
inside ࣒ࢗෝ (Fig. 3c). 

Step 6: Update the confidence term ࡯ሺ࢖ሻ in the area encircled by ࣒࢖ෝ as follows: 

ሻࢗሺ࡯ ൌ ,ෝሻ࢖ሺ࡯ ࢗ∀ ∈ ෝ࢖࣒ ∩ ષ                                              (4) 
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(a)                                (b)                                (c) 

Fig. 3. Algorithm 1: (a) The patch ࣒࢖ෝ with the highest priority is found to be filled in, (b) The most similarity 

candidate patches with ࣒࢖ෝ are determined, e.g. ࣒ࢗᇱ and ࣒ࢗᇱᇱ, (c) The best matching patch in the  

candidate set copied into the position occupied by ࣒࢖ෝ, and thus partial filling of  is achieved 
 
Before discussing our improvement of the patch sparsity inpainting method proposed in [19], we first 

explain the general steps of the algorithm. 
The method investigates the sparsity of image patches and measures the confidence of the patch located 

at the structure region by the sparseness of its nonzero similarities to the neighbouring patches. The patch 
with larger structure sparsity is assigned a higher priority for further inpainting. The algorithm can be 
presented in six steps. Steps 1, 3, 5, and 6 are quite similar to the conventional examplar-based method 
(Algorithm 1). The priority term in Step 2 is computed in a different way. A sparse linear combination of 
weighted candidate patches is also used to fill in the missing patch instead of using a single best match in 
Step 4. Therefore, the steps 2 and 4 of Algorithm 1 are modified as follows: 

Step 2: A new definition for patch priority, namely structure sparsity, is proposed. For any selected 
patch, a collection of neighbouring patches with the most similarities is also distributed in the 
same structure or texture. Therefore, the confidence of structure for a patch is measured by the 
sparseness of its nonzero similarities to the neighbouring patches. The patch with more sparsely 
distributed nonzero similarities is laid on the fill-front due to the high structure sparseness. 

For the patch ࣒࢖, located at the fill-front ઼ષ, a neighbourhood window ࡺሺ࢖ሻ, with the center  
 is set (refer to Fig. 4a).  The sparseness of similarities for the patch is measured by ,࢖

࣋ሺ࢖ሻ ൌ ටቂ∑ ࢐࢖,࢖࢝
૛

ሻ࢖ሺ࢙ࡺ࢐૓࢖ ቃ
|ሻ࢖ሺ࢙ࡺ|

|ሻ࢖ሺࡺ|
                                            (5) 

where the patch ࣒࢐࢖ is located in the known region centered at ࢐࢖, and ࢝࢐࢖,࢖  refers to the 
similarity between ࣒࢖ and ࣒࢐࢖ (Fig. 4b), as defined by: 

࢐࢖,࢖࢝ ൌ
૚

ሻ࢖ሺ܈
ܘܠ܍ ቆെ

࢐ቁ࢖࣒,࢖ቀ࣒ࢊ

ો૛
ቇ                                           (6) 

with ࢊ measuring the mean squared distance of the already known pixels in the two patches, 
∑ ሻ being a normalization constant so that࢖ሺ܈ ሻ࢖ሺ࢙ࡺ࢐૓࢖࢐࢖,࢖࢝ ൌ ૚, and ો being set to 5. Finally, 
 ሻ is defined to be࢖ሺ࢙ࡺ

ሻ࢖ሺ࢙ࡺ ൌ ቄ࢐࢖: ࢐࢖ ∈ ࢐࢖࣒	܌ܖ܉ሻ࢖ሺࡺ ⊂ ષഥቅ                                     (7) 

The patch priority (or structure sparsity) term is defined as the product of the transformed 
structure sparsity term and the patch confidence term that is, 

ሻ࢖ሺࡼ ൌ .ሻ൯࢖૚ሿ൫࣋ሺ,ࣀሾࢀ  ሻ                                                         (8)࢖ሺ࡯

where ࢀሾࣀ,૚ሿ is a linear transformation taking ࣋ሺ࢖ሻ into the interval ሾࣀ, ૚ሿ.This transformation 
scales the structure sparsity variations to be comparable with ࡯ሺ࢖ሻ. 

Step 4: Contrary to the traditional examplar-based method [19], in which the fill-front patch ࣒࢖ෝ is 
filled by the best match ࣒ࢗෝ, in the patch sparsity inpainting method, ࣒࢖ෝ is inpainted by the 
sparse combinations of multiple examplars in the framework of sparse representation. Indeed, 
from the source region, the top ࡺ most similar patches are selected as the set of candidates 
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൛࣒ࢗൟࢗୀ૚
ࡺ

. Therefore, the unknown pixels in patch ࣒࢖ෝ is approximated by linear combinations of 
the ൛࣒ࢗൟࢗୀ૚

ࡺ
, that is, 

ෝ࣒ࢗ ൌ ∑ ࣒ࢗࢗࢻ
ࡺ
ୀ૚ࢗ 	                                                      (9) 

where the coefficient vector ࢻሬሬԦ ൌ ሼࢻ૚, ,૛ࢻ … ,  ሽ is obtained by solving a constrainedࡺࢻ
optimization problem in the framework of a  sparse representation (Fig. 4c). 

 

 
(a)                                   (b)                                 (c) 

Fig. 4. The patch sparsity inpainting method proposed in [19]: (a) The neighbourhood window ܰሺ݌ሻ, with the center 	
 To measure the sparseness of similarities for ߰௣ (b) ,ߗߜ is set for the patch ߰௣ located at the fill-front ,݌

the similarity between ߰௣ and ߰௣ೕ, ݓ௣,௣ೕ, is computed, (c) The unknown pixels in patch ߰௣ො, which 

has the highest priority, are filled by linear combinations of the top ܰ most similar patches 
 ൛࣒ࢗൟࢗୀ૚

ࡺ
weighted by coefficients ൛ࢗࢻൟࢗୀ૚

ࡺ
 obtained by solving an optimization problem 
 

This optimization problem minimizes the l 0 norm of ࢻሬሬԦ, i.e., the number of nonzero elements in 
the vector ࢻሬሬԦ, with the linearity assumption of the combination. 

 
3. THE PROPOSED METHOD 

 
Our proposed algorithm is given next. We modify steps 2, 4 and 6 to attain better results. 

Algorithm 2: A modified patch propagation-based image inpainting using patch sparsity. 
Step 1: For each point ࢖ on the boundary ઼ષ, a patch ࣒࢖ is constructed with ࢖ as the center of the 

patch  (as in [12] and [19]). 

Step 2: To compute the patch’s priority ࡼሺ࢖ሻ, a stable definition is used as follows: 

ܲሺ݌ሻ ൌ ߙ ሾܶ఍,ଵሿ൫ߩሺ݌ሻ൯ ൅ ߚ ሾܶఊ,ଵሿ
ᇱ ሺܥሺ݌ሻሻ                                            (10)	

where the terms ࢀሾࣀ,૚ሿ൫࣋ሺ࢖ሻ൯ and ࡯ሺ࢖ሻ are the same as the ones defined in [19], and ࢻ and 
are the component weights with ૙ࢼ ൑ ࢼ,ࢻ ൑ ૚ and ࢻ ൅ ࢼ ൌ ૚. As illustrated in [20], the 
confidence value rapidly drops to zero as the filling process goes on. When the dropping effect 
occurs, error continually propagates to the central part of the reconstructed image, causing 
noticeable visual artifacts. Therefore, a regularizing transformation is used to control the 
decreasing rate of the confidence term. We propose using a linear transformation ࢀᇱ to take 
,ࢽሻ into the interval ሾ࢖ሺ࡯ ૚ሿ. Also, the priority term is changed to an additive form instead of a 
multiplicative form (because the numerical multiplication is effectively sensitive to extreme 
values, while the additive form has been shown to be more robust with respect to its input and 
hence more stable).  

Step 3: Find the patch ࣒࢖ෝ with the highest priority to be filled in with the information extracted from 
the source region ૖ (as in [12] and [19]). 

Step 4: Perform a global search on the whole image to find the	ࡺ	most similar patches. Formally,  
 

߰௤ሶ ൌ argminట೜∈ம		൛݀൫߰௣ො, ߰௤൯	

൅	݀௚௥௔ௗ൫߰௣ො, ߰௤൯	

																																							൅	݀ௗ௜௩൫߰௣ො, ߰௤൯ൟ                                                          (11)	
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where the distance ࢊ between two generic patches is simply defined as the sum of squared 
differences (SSDs) of the already known pixels in the two patches.  
As a patch may contain texture details, we also include the gradient and divergence differences 
 between the already known pixels in the two patches to attain (respectively ,࢜࢏ࢊࢊ and ࢊࢇ࢘ࢍࢊ)
more accuracy. Hence, these added terms cause the preservation of texture properties. 

Step 5: Once the ࡺ most similar patches are found, we use a linear combination of patches ൛࣒ࢗൟࢗୀ૚
ࡺ

 to 

finally obtain the prediction of the missing pixels in ࣒࢖ෝ (as in [19]).  

Step 6:                                                                 Let ࣒ࢗෝ ൌ ∑ ࣒ࢗࢗࢻ
ࡺ
ୀ૚ࢗ                                               (12) 

Denote the unknown pixels in the patch ࣒࢖ෝ, by a matrix ࡼ, filled by the corresponding pixels in 
 :ෝ࣒ࢗ

ෝ࢖࣒ࡼ ൌ  ෝ.                                                         (13)࣒ࢗࡼ

As illustrated in [19], the coefficients ࢻሬሬԦ ൌ ሼࢻ૚, ,૛ࢻ … ,  ሽ are obtained by solving theࡺࢻ
following constrained optimization problem: 

ܖܑܕ
	
 ሬሬԦ‖૙ࢻ‖

.ܛ ෝࢗഥ࣒ࡼฮ			.ܜ െ ෝฮ࢖ഥ࣒ࡼ
૛
൏  ,ࢿ

ෝ࣒ࢗࡼቯࢼ െ ࡼ ෍ ࢐࢖࢐࣒࢖,࢖࢝
ሻ࢖ሺ࢙ࡺ∋࢐࢖

ቯ

૛

൏  ,ࢿ

∑ ࢏ࢻ
ࡺ
࢏ ൌ ૚.                                                        (14) 

 
The first and the second constraints concern the local patch consistency. The first constraint 
constrains the estimated patch ࣒ࢗෝ approximated by the target patch ࣒࢖ෝ over the already known 
pixels, and the second one forms the consistency between the newly filled pixels and the 
neighboring patches in appearance. It measures the similarity between the estimated patch and 
the weighted mean of the neighboring patches over the missing pixels. The last constraint 
imposes a normalization summation on the coefficients vector ࢻሬሬԦ. This constraint is used to 
achieve invariancy while reconstructing the target patch from its neighboring candidate patches. 
The parameter ࢿ is to control the error tolerance, ࢼ balances the strength of the two first 
constraints, which is set to 0.25 in our implementation (as in [19]), and ࢝࢐࢖,࢖ is defined to be as 
given in (6). 

The local patch consistency constraint can be rewritten in a compact form: 

ฮ࣒ࢗࡰෝ െ ฮࢀ࣒
૛
൏  (15)                                                  ,ࢿ

where,  

ࡰ ൌ ቈ
ഥࡼ

ඥࡼࢼ
቉,	 

ࢀ࣒ ൌ ൥
ෝ࢖ഥ࣒ࡼ

ඥࡼࢼ∑ ሻ࢖ሺ࢙ࡺ∋࢐࢖࢐࢖࢐࣒࢖,࢖࢝
൩                                                (16) 

So, the optimization problem can be formulated as 

ܖܑܕ
	
 			ሬሬԦ‖૙ࢻ‖

.ܛ ෝ࣒ࢗࡰฮ			 .ܜ െ ฮࢀ࣒
૛
൏  ࢿ

∑ ࢏ࢻ
ࡺ
࢏ ൌ ૚                                                                 (17) 
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Roth and Black [4] used the prior models to restore the image; the models have been shown to be 

useful when images have noise or uncertainty. They proposed a framework for learning image priors. The 

prior model used in their work was Markov random field (MRF), which assumes an image to be the result 

of a random process, described by an MRF.  

For images in Fig. 8, the size of the patch window ࣒ was set to 77 pixels and the value of ࢻ and ࢼ 

were set to 0.5 and 0.5, respectively. The size of the neighbourhood window, ࡺሺ࢖ሻ, was set to 1111, 

1919, and 5151 pixels for images (a), (b) and (c), respectively.  Also, the number of candidate patches, 

  .was fixed to be 11, 3 and 25, correspondingly ,ࡺ

We have used the parameters of the approach in [4] unchanged for all the examples considered here. 

This scheme converted color image to YCbCr color model, and the algorithm was independently applied 

to all 3 channels. We used a FoE prior with 8 filters of 3×3 pixels. The algorithm inpainted the missing 

areas by iteratively propagating information.  We set the number of iterations to 200. 

As seen in Fig. 8, the PDE-based method [4] performs well on piecewise smooth image, Fig. 8 (a), 

but fails to reconstruct areas containing texture with fine details and tends to blur the inpainted image, Fig. 

8 (b) and (c). The conventional algorithm [12] cannot preserve the edge continuity and the texture 

consistency, and thus produce unpleasant artifacts. The patch sparsity algorithm [19] produces more 

pleasant results; however, it fails to reconstruct some edges properly. 

In contrast, the results obtained by our algorithm appear to be closer to the original image than the 

ones obtained by the other three methods. Because of the improvement in the priority term, high 

importance was given to the structures in a more robust way. Also, the proposed similarity metric 

encompasses more properties of the patches and selects the most visually pleasant ones. Furthermore, the 

modification in the confidence term after filling in pixels helps reduce the error propagation. 

For a quantitative comparison, we computed the peak signal-to-noise ratio (PSNR) and structural 

similarity (SSIM) values between the original and inpainted images, also observing overall better obtained 

PSNR and SSIM values by Algorithm 2. 

However, similar to [19], our algorithm cannot properly recover large missing areas consisting of 

structures while the known region doesn’t contain any structure cues.  This is a limitation of our 

algorithm, which needs to be investigated in a future work. 
 

5. CONCLUSION 
 
We presented a modified patch sparsity scheme for inpainting degraded images. Addressing the patch 

sparsity approach as a robust inpainting method, the suggested modifications lead to an improvement in 

producing better results. We applied the proposed algorithm to several images and compared the obtained 

result with those obtained by three other methods. The high visual quality of the results obtained by our 

approach affirmed the effectiveness of the proposed algorithm. 

In future, we will also investigate the effects of varying patch sizes and try to select an optimal size.  

Moreover, the number of sufficient candidate patches would be explored since it has a direct impact on the 

computational time of inpainting.    
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