

دومین کنفرانی بین الملله یزوهنتر در علوم و تکنولوز سے

Istanbul-Turkey

14 March 2016

رکیه – استانبول ۲۴ اسفند ۱۳۹۴

Chaotically Tuples of Unilateral Weighted Backward Shifts Acting On Hilbert Spaces

Mezban Habibi PhD Student at PNU, Shiraz, Iran P.O. Box 7164754818, Shiraz, Iran mezbanhabibi@gmail.com

GholamReza RooinTan

PhD Student at YU, Yasouj, Iran P.O. Box 7164754818, Shiraz, Iran roointan@gmail.com

Abstract

We investigate characterize the Chaotically Conditions for the Tuples of unilateral weighted backward shifts on some Hilbert Spaces. The Tuple $T = (T_1, T_2, T_3, ..., T_n)$ is chaotic if and only if T is Hypercyclic and has a non-trivial periodic point if and only if T has a non-trivial periodic point if and only if the series $\sum_{m=1}^{\infty} \left(\prod_{k=1}^{m} (e_{k,\lambda})^{-1} e_m \right), \lambda = 1, 2, ..., n$ are convergence.

Keywords: Hypercyclicity, periodic point, Chaotically Tuples, Infinity Tuples.

۔ومین کنفرانی بین المللے یروهنتر درعلوم و تکنولور ہے

Istanbul-Turkey

14 March 2016

ترکیه - استانبول ۲۴ اسفند ۱۳۹۴

Introduction

Let B be an Ordered Banach space and $T_1, T_2, T_3, ...$ are commutative bounded linear mapping on B, the infinity Tuple T is an infinity components $T = (T_1, T_2, T_3, ...)$, for every $x \in B$ defined

$$T(x) = T_1 T_2 T_3 ...(x) = Sup_n \{T_1 T_2 T_3 ... T_n(x) | n \in \mathbb{N}, n = 1,2,3,...\}$$

Infinity-Tuple $T=(T_1,T_2,T_3,...)$ is said to be hypercyclic infinity-tuple if Orb(T,x) is dense in B, that is $\overline{Orb(T,x)}=B$.

Definition 1.1 The Tuple $T = (T_1, T_2, T_3,...)$ is called chaotic tuple, if we have tree below conditions together,

- 1. It is topologically transitive, that is, for any given open sets U and V, there exist sequence of positive integers $\{\delta_i\}_{i=1}^n$ such that $T_1^{\delta_1}T_2^{\delta_2}...T_n^{\delta_n}(U)\cap (V)\neq \emptyset$.
- 2. It has a dense set of periodic points, that is, there is a set P such that for each x in P, we can find $\{\lambda_j\}_{j=1}^n$ such that $T_1^{\lambda_1}T_2^{\lambda_2}...T_n^{\lambda_n}(x)=x$.

It has a certain property called sensitive dependence on initial conditions.

Equations

If the Tuple satisfy the bellow theorem, we say that Tuple satisfy The Hypercyclic Criterion.

Theorem 1.1 [The Hypercyclicity Criterion] Let B be a separable Banach space and $T=(T_1,T_2,T_3,...)$ is an infinity tuple of commutative continuous linear mappings on B. If there exist two dense subsets Y and Z in B and strictly increasing sequences $\{m_{k,2}\}_{k=1}^{\infty}$, $\{m_{k,3}\}_{k=1}^{\infty}$, ... such that:

- 1. $T_1^{k_{1,j}} T_2^{k_{2,j}} T_3^{k_{3,j}} ... \to 0$ on Y as $m_{i,j} \to \infty$ for i = 1,2,3,...,
- 2. There exist function $\{S_k | S_k : Z \to B\}$ such that for every $z \in Z$, $S_k z \to 0$ and $T_1^{k_{1,j}} T_2^{k_{2,j}} T_3^{k_{3,j}} ... S_k z \to z$

Then $T = (T_1, T_2, T_3, ..., T_n)$ is a Hypercyclic Tuple.

Theorem 2.2 Suppose X be an F-sequence space whit the unconditional basis $\{e_k\}_{k\in N}$ and let $T_1, T_2, T_3, ... T_n$ are unilateral weighted backward shifts with weight

TECHNOL®

Istanbul-Turkey

14 March 2016

 $\text{sequence} \left\{ e_{1,k} \right\}_{k \in \mathbb{N}}, \left\{ e_{2,k} \right\}_{k \in \mathbb{N}}, \dots, \left\{ e_{n,k} \right\}_{k \in \mathbb{N}} \text{ and } \quad T = (T_1, T_2, T_3, \dots, T_n) \quad \text{be a tuple of operators}$ $T_1, T_2, T_3, ... T_n$. Then the following assertions are equivalent:

- T is chaotic,
- T is Hypercyclic and has a non-trivial periodic point,
- T has a non-trivial periodic point,
- 4. The series $\sum_{k=1}^{\infty} \left(\prod_{i=1}^{m} (e_{k,i})^{-1} e_m \right)$ are convergence in X for i=1,2,...,n.

Proof. Proof of the cases $1 \rightarrow 2$ and $2 \rightarrow 3$ are trivial, so we just proof $3 \rightarrow 4$ and $4 \rightarrow 1$.

First we proof $3 \to 4$, for this, Suppose that T has a non-trivial periodic point, and $x = \{x_n\}_{x_n \in X}$ be a non-trivial periodic point for T , that is there are positive integers μ_1 , μ_2 , ..., μ_n such that $T_{1}^{\;\mu_{1}}T_{2}^{\;\mu_{2}}...T_{n}^{\;\mu_{n}}(x)=x \text{. Comparing the entries at positions, } k \in N \; \bigcup \; \{0\} \text{, of x and } T_{1}^{\;\mu_{1}}T_{2}^{\;\mu_{2}}...T_{n}^{\;\mu_{n}}(x) \text{,}$ we will find that

$$x_{j+kM_1} = \prod_{t=1}^{M_1} \left(a_{j+kN+t} . x_{j+k+1} \right), x_{j+kM_2} = \prod_{t=1}^{M_2} \left(a_{j+kN+t} . x_{j+k+1} \right), \dots, x_{j+kM_n} = \prod_{t=1}^{M_n} \left(a_{j+kN+t} . x_{j+k+1} \right)$$

so for $k \in \mathbb{N} \cup \{0\}$ and $\lambda = 1, 2, ..., n$, we have

$$x_{j+kM_{\lambda}} = \left(\prod_{t=j+1}^{j+kM_{\lambda}} a_{t}\right)^{-1} \cdot x_{j} = c_{\lambda} \cdot \left(\prod_{t=1}^{j+kM_{\lambda}} a_{t}\right)^{-1}, \lambda = 1, 2, ..., n$$

Where $c_{\lambda} = \prod_{i=1}^{J} (m_{j,\lambda}.x_j), \lambda = 1,2,...,n$. Since $\{e_{\lambda}\}_{\lambda=1}^{\infty}$ is an unconditional basis foe X and $x \in X$ it follows that

$$\sum_{k=0}^{\infty} \left(\frac{1}{\prod_{j=kM_{\lambda}}^{(j+kM_{\lambda})}} . e_{j+M_{\lambda}} \right) = \frac{1}{c} \sum_{k=0}^{\infty} \left(x_{j+M_{\lambda}} . e_{j+M_{\lambda}} \right), \lambda = 1, 2, ..., n$$

convergence sequences in X. Without loss of generality we may assume that $j \ge N$. Applying the operators $T, T_2, T_3, ..., T_{k-1}$, where $k = Min\{M_1, M_2, ..., M_n\}$, to this series and note that

$$T_1(e_t) = a_{1,t}e_{t-1}, T_2(e_t) = a_{2,t}e_{t-1}, \dots, T_n(e_t) = a_{n,t}e_{t-1}$$

we deduce that

ومین کنفرانسین الملله یروهنتر در علوم و تکنولور سے

Istanbul-Turkey

14 March 2016

نرکیه - استانبول ۲۴ اسفند ۱۳۹۴

$$\sum_{k=0}^{\infty} \left(\frac{1}{\prod_{j=kM_1-\varepsilon_1)}^{(j+kM_1-\varepsilon_1)}} e_{\left(j+kM_1-\varepsilon_1\right)}, \sum_{k=0}^{\infty} \left(\frac{1}{\prod_{j=kM_2-\varepsilon_2)}^{(j+kM_2-\varepsilon_2)}} . e_{\left(j+kM_2-\varepsilon_2\right)}, ..., \sum_{k=0}^{\infty} \left(\frac{1}{\prod_{j=kM_n-\varepsilon_n}^{(j+kM_n-\varepsilon_n)}} e_{\left(j+kM_n-\varepsilon_n\right)} \right) e_{\left(j+kM_n-\varepsilon_n\right)}$$

convergence sequences in X. By adding these series, we see that condition 4 holds.

Proof of $4 \to 1$. It follows from theorem (2.1), so under condition 4 the operator T is Hypercyclic. Hence it remains to show that T has a dense set of periodic points. Since $\{e_{\alpha}\}$ is an unconditional basis, condition 4 with proposition 2.3 implies that for each $M_1 \in N$ consider the series

$$\varphi_{\lambda}(j, M_{\lambda}) = \sum_{k=0}^{\infty} \frac{1}{\prod_{j+kM_{\lambda}}^{j} m_{k,\lambda} \cdot e_{j+kM_{\lambda}}} = \prod_{t=1}^{j} m_{k,\lambda} \cdot \sum_{k=0}^{\infty} \frac{1}{\prod_{j+kM_{\lambda}}^{j} m_{k,\lambda} \cdot e_{j+kM_{\lambda}}}, \lambda = 1, 2, ..., n$$

All the series converges and define n elements in X. Moreover, if $Mj \ge 0$ then

$$T_1^{m_{j,1}}T_2^{m_{j,2}}...T_3^{m_{j,n}} = \varphi_1(j, M_1)T_1^{M_1}T_2^{M_2}...T_3^{M_n}.\varphi_1(j, M_1) = \varpi(j, M_1)$$

if $Nj \ge 0$ then

$$x_{j+kM_1} = \prod_{t=1}^{M_1} \left(a_{j+kN+t} . x_{j+k+1} \right), x_{j+kM_2} = \prod_{t=1}^{M_2} \left(a_{j+kN+t} . x_{j+k+1} \right), \dots, x_{j+kM_n} = \prod_{t=1}^{M_n} \left(a_{j+kN+t} . x_{j+k+1} \right)$$

when $m_{i,j} \geq M$, i=1,2,...,n. So that each $\varphi(i,N)$ for i=1,2,...,n is a periodic point for T. We shall show that T has a dense set of periodic points. Since $\{e_{\lambda}\}_{\lambda=1}^{\infty}$ is a basis, it suffices to show that for every element $x \in span\{e_{\lambda}: \lambda \in N\}$ there is a periodic point y arbitrarily close to it. For this, let $x = \sum_{j=1}^{m} x_{j}.e_{j}$ and $\varepsilon > 0$. We can assume without lost of generality that

$$\left| x_1 \cdot \prod_{t=1}^{1} a_{1,t} \right| \le 1, \left| x_2 \cdot \prod_{t=1}^{2} a_{2,t} \right| \le 1, \dots, \left| x_n \cdot \prod_{t=1}^{n} a_{n,t} \right| \le 1$$

Since $\{e_n\}_{n=1}^{\infty}$ is an unconditional basis, then condition 4 implies that there are $M_j \ge m, j = 1, 2, ..., n$ such that

$$\left\| \sum_{n=M_1+1}^{\infty} \left(\mathcal{E}_{1,n} \cdot \frac{1}{\prod_{t=1}^{\alpha} a_{t,1} e_t} \cdot e_k \right) \right\| < \frac{\mathcal{E}}{m_1} \cdot \left\| \sum_{n=M_2+1}^{\infty} \left(\mathcal{E}_{2,n} \cdot \frac{1}{\prod_{t=1}^{\alpha} a_{t,2} e_t} \cdot e_k \right) \right\| < \frac{\mathcal{E}}{m_2} \cdot \dots \cdot \left\| \sum_{n=M_n+1}^{\infty} \left(\mathcal{E}_{k,n} \cdot \frac{1}{\prod_{t=1}^{\alpha} a_{t,n} e_t} \cdot e_k \right) \right\| < \frac{\mathcal{E}}{m_n} \cdot \dots \cdot \left\| \sum_{n=M_n+1}^{\infty} \left(\mathcal{E}_{k,n} \cdot \frac{1}{\prod_{t=1}^{\alpha} a_{t,n} e_t} \cdot e_k \right) \right\| < \frac{\mathcal{E}}{m_n} \cdot \dots \cdot \left\| \sum_{n=M_n+1}^{\infty} \left(\mathcal{E}_{k,n} \cdot \frac{1}{\prod_{t=1}^{\alpha} a_{t,n} e_t} \cdot e_k \right) \right\| < \frac{\mathcal{E}}{m_n} \cdot \dots \cdot \left\| \sum_{n=M_n+1}^{\infty} \left(\mathcal{E}_{k,n} \cdot \frac{1}{\prod_{t=1}^{\alpha} a_{t,n} e_t} \cdot e_k \right) \right\| < \frac{\mathcal{E}}{m_n} \cdot \dots \cdot \left\| \sum_{n=M_n+1}^{\infty} \left(\mathcal{E}_{k,n} \cdot \frac{1}{\prod_{t=1}^{\alpha} a_{t,n} e_t} \cdot e_k \right) \right\| < \frac{\mathcal{E}}{m_n} \cdot \dots \cdot \left\| \sum_{n=M_n+1}^{\infty} \left(\mathcal{E}_{k,n} \cdot \frac{1}{\prod_{t=1}^{\alpha} a_{t,n} e_t} \cdot e_k \right) \right\| < \frac{\mathcal{E}}{m_n} \cdot \dots \cdot \left\| \sum_{n=M_n+1}^{\infty} \left(\mathcal{E}_{k,n} \cdot \frac{1}{\prod_{t=1}^{\alpha} a_{t,n} e_t} \cdot e_k \right) \right\| < \frac{\mathcal{E}}{m_n} \cdot \dots \cdot \left\| \sum_{n=M_n+1}^{\infty} \left(\mathcal{E}_{k,n} \cdot \frac{1}{\prod_{t=1}^{\alpha} a_{t,n} e_t} \cdot e_k \right) \right\| < \frac{\mathcal{E}}{m_n} \cdot \dots \cdot \left\| \sum_{n=M_n+1}^{\infty} \left(\mathcal{E}_{k,n} \cdot \frac{1}{\prod_{t=1}^{\alpha} a_{t,n} e_t} \cdot e_k \right) \right\| < \frac{\mathcal{E}}{m_n} \cdot \dots \cdot \left\| \sum_{n=M_n+1}^{\infty} \left(\mathcal{E}_{k,n} \cdot \frac{1}{\prod_{t=1}^{\alpha} a_{t,n} e_t} \cdot e_k \right) \right\| < \frac{\mathcal{E}}{m_n} \cdot \dots \cdot \left\| \sum_{n=M_n+1}^{\infty} \left(\mathcal{E}_{k,n} \cdot \frac{1}{\prod_{t=1}^{\alpha} a_{t,n} e_t} \cdot e_k \right) \right\| < \frac{\mathcal{E}}{m_n} \cdot \dots \cdot \left\| \sum_{n=M_n+1}^{\infty} \left(\mathcal{E}_{k,n} \cdot \frac{1}{\prod_{t=1}^{\alpha} a_{t,n} e_t} \cdot e_k \right) \right\| < \frac{\mathcal{E}}{m_n} \cdot \dots \cdot \left\| \sum_{n=M_n+1}^{\infty} \left(\mathcal{E}_{k,n} \cdot \frac{1}{\prod_{t=1}^{\alpha} a_{t,n} e_t} \cdot e_k \right) \right\| < \frac{\mathcal{E}}{m_n} \cdot \dots \cdot \left\| \sum_{n=M_n+1}^{\infty} \left(\mathcal{E}_{k,n} \cdot \frac{1}{\prod_{t=1}^{\alpha} a_{t,n} e_t} \cdot e_k \right) \right\| < \frac{\mathcal{E}}{m_n} \cdot \dots \cdot \left\| \sum_{n=M_n+1}^{\infty} \left(\mathcal{E}_{k,n} \cdot \frac{1}{\prod_{t=1}^{\alpha} a_{t,n} e_t} \cdot e_k \right) \right\| < \frac{\mathcal{E}}{m_n} \cdot \dots \cdot \left\| \sum_{n=M_n+1}^{\infty} \left(\mathcal{E}_{k,n} \cdot \frac{1}{\prod_{t=1}^{\alpha} a_{t,n} e_t} \cdot e_k \right) \right\| < \frac{\mathcal{E}}{m_n} \cdot \dots \cdot \left\| \sum_{n=M_n+1}^{\infty} \left(\mathcal{E}_{k,n} \cdot \frac{1}{\prod_{t=1}^{\alpha} a_{t,n} e_t} \cdot e_k \right) \right\| < \frac{\mathcal{E}}{m_n} \cdot \dots \cdot \left\| \sum_{n=M_n+1}^{\infty} \left(\mathcal{E}_{k,n} \cdot \frac{1}{\prod_{t=1}^{\alpha} a_{t,n} e_t} \cdot e_k \right) \right\| < \frac{\mathcal{E}}{m_n} \cdot \dots \cdot \left\| \sum_{n=M_n+1}^{\infty} \left(\mathcal{E}_{k,n} \cdot \frac{1}{\prod_{t=1}^{\alpha} a_{t,n} e_t} \cdot e_k \right) \right\|$$

ومین کنفرانسین الملله یروهنتر در علوم و تکنولور سے

Istanbul-Turkey

14 March 2016

رکیه – استانبول ۲۴ اسفند ۱۳۹۴

for every k = 1, 2, ..., n sequences $\{\varphi_{\alpha,i}\}$ taking values 0 or 1. By conditions 1 and 2, for i = 1, 2, ..., n

the elements $y_l = \sum_{i=1}^{m_l} x_i$ of X is a periodic point for T, and we have

$$||y_{\lambda} - x|| = \left\| \sum_{i=1}^{m_{\lambda}} (x_{i}.\psi(i, M_{\varphi}) - e_{i})_{i} \right\| = \left\| \sum_{i=1}^{m_{\lambda}} (x_{i}.\prod_{t=1}^{i} d_{t}, M_{\lambda}) \sum_{k=1}^{\infty} \left(\frac{1}{\prod_{t=1}^{i+kM_{\lambda}} a_{t}, M_{\lambda}} + e_{i} + M_{\lambda} \right) \right\|$$

$$\leq \sum_{i=1}^{m_{\lambda}} \left\| \left(x_{i}. \prod_{t=1}^{i} d_{t}, M_{\lambda} \left(\sum_{k=1}^{\infty} \left(\frac{1}{\prod_{t=1}^{i+kM_{\lambda}} a_{t}, M_{\lambda}} + e_{i} + M_{\lambda} \right) \right) \right\| \leq \sum_{i=1}^{m_{\lambda}} \left\| \left(\sum_{k=1}^{\infty} \left(\frac{1}{\prod_{t=1}^{i+kM_{\lambda}} a_{t}, M_{\lambda}} + e_{i} + M_{\lambda} \right) \right) \right\| \leq \varepsilon$$

So we find $|y_{\lambda} - x| < \varepsilon$. By this, the proof is complete.

References

- [1] G. Godefroy, J. H. Shapiro. (1991). Operators with dense, invariant, cyclic vector manifolds. *J. Func. Anal.*, Vol. 98. No. 2. 229-269.
- [2] Mezban Habibi. (2012). Infinity Tuples of Bounded Linear Operators on Banach Space, *Inter. Math. Forum.* Vol. 7. No. 18. 861-866.
- [3] Mezban Habibi. (2012). n-Tuples and Chaoticity, *Int. Journal of Math. Analysis*. Vol. 6. No. 14. 651-657.
- [4] Mezban Habibi. (2014). On Hilbert-Schmidt Tuples of Commutative Bounded Linear Operators on Separable Banach Spaces, *Inter. Jour. of Mathematics Trends and Technology*. Vol. 8. No. 2. 103-111.
- [5] Mezban Habibi, B. Yousefi. (2010). Conditions for a Tuple of Operators to be Topologically Mixing, *Int. Jour. App. Math.*, Vol. 23 No. 6. 973-976.