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Abstract  
 

We investigate characterize the Chaotically Conditions for the Tuples of unilateral 

weighted backward shifts on some Hilbert Spaces. The Tuple ),...,,,( 321 nTTTTT   is 

chaotic if and only if T  is Hypercyclic and has a non-trivial periodic point if and only 

if T  has a non-trivial periodic point if and only if the series   nee
m
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k

mk ,...,2,1,
1 1
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are convergence. 
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Introduction 

Let B  be an Ordered Banach space and ,...,, 321 TTT are commutative bounded linear mapping on B , 

the infinity Tuple T is an infinity components ,...),,( 321 TTTT  , for every Bx  defined 

},...3,2,1,)(...{)...()( 321321  nNnxTTTTSupxTTTxT nn  

Infinity-Tuple ,...),,( 321 TTTT   is said to be hypercyclic infinity-tuple if  xTOrb ,  is dense in B, 

that is   BxTOrb , . 

 

Definition 1.1 The Tuple ,...),,( 321 TTTT   is called chaotic tuple, if we have tree below conditions 

together, 

1. It is topologically transitive, that is, for any given open sets U and V, there exist sequence of 

positive integers 
n

jj 1}{   such that 


)()(...21

21 VUTTT n

n  . 

2. It has a dense set of periodic points, that is, there is a set P such that for each x in P, we can find 

n

jj 1}{  such that xxTTT n

n )(...21

21


. 

It has a certain property called sensitive dependence on initial conditions. 

 

Equations 
If the Tuple satisfy the bellow theorem, we say that Tuple satisfy The Hypercyclic Criterion. 

 

Theorem 1.1 [The Hypercyclicity Criterion] Let B  be a separable Banach space and 

,...),,( 321 TTTT   is an infinity tuple of commutative continuous linear mappings on B . If there exist 

two dense subsets Y  and Z  in B  and strictly increasing sequences


12, }{ kkm , 


13, }{ kkm , … such 

that: 

1. 0...,3,2,1

321 jjj kkk
TTT  on Y  as jim ,  for ,...3,2,1i , 

2. There exist function }:{ BZSS kk   such that for every Zz , 0zSk  and 

zzSTTT k

kkk jjj ...,3,2,1

321  

Then ),...,,,( 321 nTTTTT   is a Hypercyclic Tuple. 

 

Theorem 2.2 Suppose X be an F-sequence space whit the unconditional basis Nkke }{  and let 

nTTTT ,...,, 321  are unilateral weighted backward shifts with weight 
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sequence
Nkke }{ ,1

,
Nkke }{ ,2

,…,
Nkkne }{ ,

and ),...,,,( 321 nTTTTT   be a tuple of operators 

nTTTT ,...,, 321 . Then the following assertions are equivalent: 

1. T  is chaotic, 

2. T  is Hypercyclic and has a non-trivial periodic point, 

3. T  has a non-trivial periodic point, 

4. The series   


 












1 1

1

,

m

m

k

mik ee  are convergence in X  for ni ,...,2,1 . 

Proof. Proof of the cases 21  and 32   are trivial, so we just proof 43 and 14  . 

First we proof 43 , for this, Suppose that T  has a non-trivial periodic point, and Xxn n
xx  }{ be a 

non-trivial periodic point forT , that is there are positive integers 1 , 2 , …, n such that 

xxTTT n

n )(...21

21


. Comparing the entries at positions, }0{Nk , of x and )(...21

21 xTTT n

n


, 

we will find that 
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1.
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M

t

kjtkNjkMj xax
1

1.  

so for }0{Nk and n,...,2,1 , we have  

nacxax
kMj

t

tj

kMj

jt

tkMj ,...,2,1,..

1
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1

1
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Where   nxmc
j

t

jj ,...,2,1,.
1

, 


 . Since


1}{ e  is an unconditional basis foe X  and Xx  it 

follows that 
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convergence sequences in X. Without loss of generality we may assume that Nj  . Applying the 

operators 132 ,...,,, kTTTT , where },...,,{ 21 nMMMMink  , to this series and note that 

  1,11  ttt eaeT ,   1,22  ttt eaeT ,…,   1,  ttntn eaeT  

we deduce that 
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convergence sequences in X . By adding these series, we see that condition 4  holds. 

Proof of 14  . It follows from theorem (2.1), so under condition 4  the operator T is Hypercyclic. 

Hence it remains to show that T  has a dense set of periodic points. Since }{ e  is an unconditional 

basis, condition 4  with proposition 2.3 implies that for each NM l   consider the series 

n

em

m

em

Mj
j

t k
kMj

t

kMjk

k

k
kMj

t

kMjk

,...,2,1,

.

1
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All the series converges and define n elements in X. Moreover, if 0Mj  then 

    ),(,.....,... 11132111321
21,2,1, MjMjTTTMjTTT nnjjj MMMmmm

   

if 0Nj  then 

 


 
1

1

1

1.
M

t

kjtkNjkMj xax ,  


 
2

2

1

1.
M

t

kjtkNjkMj xax ,…,  


 
n

n

M

t

kjtkNjkMj xax
1

1.  

when Mm ji , , ni ,...,2,1 . So that each  Ni,  for ni ,...,2,1  is a periodic point for T. We 

shall show that T has a dense set of periodic points. Since 


1}{ e  is a basis, it suffices to show that 

for every element }:{ Nespanx    there is a periodic point y  arbitrarily close to it. For this, let 





m
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. and 0 . We can assume without lost of generality that 
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1}{ nne  is an unconditional basis, then condition 4 implies that there are njmM j ,...,2,1,   

such that 
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for every nk ,...,2,1  sequences }{ ,i  taking values 0  or 1. By conditions 1 and 2 , for nl ,...,2,1  

the elements 



lm

i

il xy
1

of X  is a periodic point for T, and we have 
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So we find   xy . By this, the proof is complete. 
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