یادگیری ماشین یکی از روش های تحلیل داده است که به ساخت مدل های تحلیلی خودکار می پردازد . یادگیری ماشین یکی از شاخه های هوش مصنوعی است که مبتنی بر این نظریه استوار است که سیستم ها می توانند داده ها را یاد بگیرند ، الگوهای آن را شناسایی کنند و با کمترین دخالت انسان تصمیم بگیرند .
در بحث هوش مصنوعی و یادگیری ماشین هر روز توجه بیشتری به Graph Learning می شود . یکی از دلایل آن این است که می توان داده های بیشتری را به نمودار تبدیل کرد . یکی از مباحث اخیر در Graph Learning ،(GNN) Graph Neural Network است . GNN تجمع همسان گرا را اجرا می کند که در آن هر همسایه به صورت مساوی در به روز رسانی نمایش گره مرکزی مشارکت دارد .
Graph Attention Network (GAT) یا شبکه های توجه گرافی ، یک معماری بر اساس شبکه عصبی است که روی داده هایی با ساختار گراف کار می کند تا به رفع نقص های روش های قبلی بپردازد . GAT زیر مجموعه ای از GNN است که خود GNN نیز مرتبط با Graph Convolutional Network است .
برای پیاده سازی GATبه داده هایی نیاز داریم که از جنس گراف باشند مثل مولکول ها و شبکه های آب و برق ، شبکه های اجتماعی، شبکه های استنادی و داده های اتصال مغز و یا داده هایی که خودمان بتوانیم آنها را به شکل گراف دربیاوریم مثل پردازش زبان طبیعی و متون . یعنی می توانیم متون را نیز به گراف تبدیل کنیم . پس GAT روی داده های به شکل گراف عملکرد بهتری دارد . Attention به معنای توجه و Network به معنای شبکه است . شبکه به شبکه عصبی و یادگیری عمیق Deep Learning گفته می شود .
کاربرد GAT
- پردازش تصویر
- پردازش زبان طبیعی شامل ترجمه ، Self-attention و LSTM cell
- و غیره
GAT یکی از آخرین فناوری های روز state-of-the-art است و محققان هوش مصنوعی بیش از پیش به این موضوع می پردازند . بررسی تعداد مقالات منتشر شده با موضوع GAT در گوگل اسکالر نشان می دهد که از سال 2020 تا سال2022 ، 6860 مقاله منتشر شده است . مقاله Graph Attention Networks که در سال 2018 منتشر شده ، پایه اصلی مبحث GAT است . مطالعه بیشتر در خصوص GAT
منبع
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. arXiv preprint arXiv:1710.10903