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Abstract

In this paper, the generalized gamma (GG) distribution that is a flexible dis-

tribution in statistical literature, and has exponential, gamma, and Weibull as

subfamilies, and lognormal as a limiting distribution is introduced. The power and

logarithmic moments of this family is defined. A new moment estimation method

of parameters of GG family using it’s characterization is presented, this method

is compared with MLE method in gamma subfamily for small and large sample

size. Here we study GG entropy representation and its estimation. In addition

Kullback-Leibler discrimination , Akaike and Bayesian information criterion is dis-

cussed. In brief, this paper consist of presentation of general review of important

properties in GG family.
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1 .Introduction

The generalized gamma(GG)distribution presents a flexible family in the varieties of

shapes and hazard functions for modeling duration. It was introduced by Stacy [23].

Distributions that are used in duration analysis in economics include exponential [6,15]
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, lognormal [7], gamma [19], and Weibull [8]. The GG family, which encompasses

exponential, gamma, and Weibull as subfamilies, and lognormal as a limiting distribu-

tion, has been used in economics by Jaggia [13], Yamaguchi [26], and Allenby et al [3].

Some authors [13] have argued that the flexibility of GG makes it suitable for duration

analysis, while others [3] have advocated use of simpler models because of estimation

difficulties caused by the complexity of GG parameter structure. Obviously, there

would be no need to endure the costs associated with the application of a complex GG

model if the data do not discriminate between the GG and members of its subfamilies,

or if the fit of a simpler model to the data is as good as that for the complex GG. Hager

and Bain [9] inhibited applications of the GG model. Prentice [21] resolved the conver-

gence problem using a nonlinear transformation of GG model. However, despite its long

history and growing use in various applications, the GG family and its properties has

been remarkably presented in different papers. Maximum-likelihood estimation of the

parameters and quasi maximum likelihood estimators for its subfamily (two-parameter

gamma distribution) can be found in [10,11,24,25]. Hwang, T. et al [12] introduced a

new moment estimation of parameters of the generalized gamma distribution using it’s

characterization. In information theory, thus far a maximum entropy (ME) derivation

of GG is found in Kapur [14], where it is referred to as generalized Weibull distribution,

and the entropy of GG has appeared in the context of flexible families of distributions

[20]. Some concepts of this family in information theory has introduced by Dadpay

et al [5]. The main objective of this paper is to review by more details the important

works on GG family. The paper is organized as follows:

Section 2 defines generalized gamma distribution and subfamily of this distribution.

Section 2 gives new moment estimation of parameters of GG family, using it’s charac-

terization. Section 4 discusses entropy of GG distribution and its estimation. Section 5

presents Kullback-Leibler discrimination in GG family. Section 6 illustrates Akaike and

Bayesian information criterion in GG family. Section 7 gives some brief concluding.
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2 .Generalized gamma distribution

The probability density of the generalized gamma distribution (GG(α,τ ,λ)) is given by

f(y|α, τ, λ) =
τ

λΓ(α)
(
y

λ
)ατ−1e−( y

λ
)τ

y ≥ 0, τ, α, λ > 0 (1)

where Γ(.) is the gamma function, α and τ are shape parameters, and λ is the scale

parameter. The GG family is flexible in that it includes several well-known mod-

els as subfamilies. The subfamilies of GG thus far considered in the literature are

exponential(α = τ = 1), gamma for(τ = 1), and Weibull for(α = 1). The lognormal

distribution is also obtained as a limiting distribution when α → ∞. By letting τ=2

we obtain a subfamily of GG which is known as the generalized normal distribution

(GN). The GN is itself a flexible family and includes half-normal(α = 1/2, λ2 = 2σ2),

Rayleigh(α = 1, λ2 = 2σ2), Maxwell-Boltzmann(α =3/2), and chi(α = k/2,k =1, 2,. . . ).

An important property of GG family for information analysis is that the family is closed

under power transformation [5]. That is, if X ∼ GG(α, τ, λ), then

Y = Xs ∼ GG(α,
τ

s
, λs), s > 0.

In particular,

Y = Xτ ∼ Gamma(α, λτ ).

It also has the property that Z = ηX has GG(ηα, τ, λ) distribution. In the below we

introduce subfamily of this distribution briefly.

2.1 Exponential distribution

The exponential distribution occurs naturally when describing the lengths of the inter-

arrival times in a homogeneous Poisson process. Exponential variables can also be

used to model situations where certain events occur with a constant probability per

unit length, such as the distance between mutations on a DNA strand, or between

road kills on a given road. In queuing theory, the service times of agents in a system
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(e.g. how long it takes for a bank teller etc. to serve a customer) are often modeled as

exponentially distributed variables. Reliability theory and reliability engineering also

make extensive use of the exponential distribution. Because of the memoryless property

of this distribution, it is well-suited to model the constant hazard rate portion of the

bathtub curve used in reliability theory.

Failure rate is the frequency with which an engineered system or component fails,

expressed for example in failures per hour. It is important in reliability engineering.

By calculating the failure rate for smaller and smaller intervals of time ∆t , the interval

becomes infinitely small. This results in the hazard function, which is the instantaneous

failure rate at any point in time:

h(t) = lim
4t→0

R(t)−R(t+4t)
4t ·R(t)

.

Continuous failure rate depends on a failure distribution, F (t), which is a cumulative

distribution function that describes the probability of failure prior to time t,

P (T ≤ t) = F (t) = 1−R(t), t ≥ 0.

The hazard function can be defined now as

h(t) =
f(t)
R(t)

.

Many probability distributions can be used to model the failure distribution. A common

model is the exponential failure distribution,

h(t) =
f(t)
R(t)

=
λe−λt

e−λt
= λ.

For an exponential failure distribution the hazard rate is a constant with respect to time

(that is, the distribution is ”memoryless”). For other distributions, such as a Weibull

distribution or a log-normal distribution, the hazard function may not be constant with

respect to time.
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2.2 Gamma distribution

In probability theory and statistics, the gamma distribution is a two-parameter family

of continuous probability distributions. It has a scale parameter λ and a shape param-

eter α. If α is an integer then the distribution represents the sum of α independent

exponentially distributed random variables, each of which has a mean of λ (which is

equivalent to a rate parameter of λ−1). The gamma distribution is frequently a proba-

bility model for waiting times; for instance, in life testing, the waiting time until death

is a random variable that is frequently modeled with a gamma distribution.

2.3 Weibull distribution

The Weibull distribution is a continuous probability distribution. It is named after

Waloddi Weibull who described it in detail in 1951, although it was first identified by

Frchet in 1927 and first applied by Rosin and Rammler in 1933 to describe the size

distribution of particles. The Weibull distribution is often used in the field of life data

analysis due to its ability to fit the exponential distribution and the normal distribution

and interpolate a range of shapes in between them.

2.4 Generalized normal distribution

The generalized normal distribution or generalized Gaussian distribution is either of

parametric continuous probability distributions on the real line. The GN family in-

cludes the below well-known models as subfamilies.

2.4.1 Half normal distribution

The half-normal distribution is the probability distribution of the absolute value of a

random variable that is normally distributed with expected value 0 and variance σ2, i.e.

if X is normally distributed with mean 0, then Y = |X| is half-normally distributed.
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2.4.2 Rayleigh distribution

In statistic literature, the Rayleigh distribution is a continuous probability distribution.

As an example of how it arises, the wind speed will have a Rayleigh distribution if the

components of the two-dimensional wind velocity vector are uncorrelated and normally

distributed with equal variance. The distribution is named after Lord Rayleigh.

2.4.3 Maxwell−Boltzmann distribution

The Maxwell−Boltzmann distribution applies to ideal gases close to thermodynamic

equilibrium, negligible quantum effects, and non-relativistic speeds. It forms the basis of

the kinetic theory of gases, which explains many fundamental gas properties, including

pressure and diffusion. The Maxwell−Boltzmann distribution is usually thought of

as the distribution for molecular speeds, but it can also refer to the distribution for

velocities, momenta, and magnitude of the momenta of the molecules, each of which

will have a different probability distribution function, all of which are related. The

original derivation by Maxwell assumed all three directions would behave in the same

fashion, but a later derivation by Boltzmann dropped this assumption using kinetic

theory. The Maxwell−Boltzmann distribution can now most readily be derived from

the Boltzmann distribution for energies.

2.4.4 Chi-square distribution

In probability theory, the chi-square distribution (λ = 1 in the Chi distribution) with

k degrees of freedom is the distribution of a sum of squares of k independent standard

normal random variables. It is one of the most widely used probability distributions in

inferential statistics, e.g. in hypothesis testing, goodness of fit tests, independence of

two criteria of classification of qualitative data, Friedman’s analysis of variance by ranks,

estimating variances, estimating the slope of a regression line via its role in Students

t-distribution, analysis of variance problems via its role in the F-distribution and so on.
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The sum of squares of statistically independent unit-variance Gaussian variables which

do not have mean zero yields a generalization of the chi-square distribution called the

noncentral chi-square distribution.

2.5 Two important moments

The power and logarithmic moments of GG distribution are played important role in

statistical inference and information theory.

Theorem 2.1 Let X ∼ GG(α, τ, λ), then

E(Xs) =
λsΓ( s

τ + α)
Γ(α)

; (2)

and

E(log(Xs)) = s log λ+
s

τ
ψ(α); (3)

where ψ(α) = d log Γ(α)
dα is the digamma function.

proof: According to expected value definition and by using y = (x
λ)τ we have

E(Xs) =
∫ ∞

0
xs τ

λΓ(α)
(
x

λ
)ατ−1e−( x

λ
)τ
dy =

λs

Γ(α)

∫ ∞

0
y( s

τ
+α)−1e−ydy,

then from definition of gamma function (2) is obtained. Similarly we can prove (3).

Corollary 2.2 If X has GG distribution, then

i) E(X) =
λΓ(α+ 1

τ )
Γ(α)

ii) V ar(X) =
λ2Γ(α+ 2

τ )
Γ(α)

− (
λΓ(α+ 1

τ )
Γ(α)

)2

Then, we can have the below table.
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Distribution name α τ λ Mean Variance

Exponential 1 1 λ λ λ2

Gamma α 1 λ αλ αλ2

Weibull 1 τ λ λΓ(1 + 1
τ ) λ2Γ(1 + 2

τ )− (Mean)2

Generalized normal α 2 λ
λΓ(α+ 1

2
)

Γ(α) λ2α− (Mean)2

Half normal 0.5 2
√

2σ2 σ
√

2
π σ2(1− 2

π )

Rayleigh 1 2
√

2σ2 σ
√

π
2 σ2(2− π

2 )

Maxwell Boltzmann 3
2 2 λ 2λ√

π
λ2(1− 4

π )

Chi k
2 2 λ

λΓ( k+1
2

)

Γ( k
2
)

λ2Γ( k+2
2

)

Γ( k
2
)
− (Mean)2

Table 1. Mean and variance for subfamilies of GG distribution

3 Moment method estimation of parameters

In this section, we recall the new method based on moments, using it’s characterization

for estimation of three parameter of GG family. Also the results of this method is

compared with MLE method via simulation. The results shows that this new method

is easy and more efficient than MLE method in small sample.

The proves of the following two theorems can be found in [12].

Theorem 3.1 Let n ≥ 3 and X1, X2, . . . , Xn be nonnegative, independent and iden-

tical distributed with f(x), then

Xn and Vn =
Sn

Xn
are independent iff f(x) ∼ GG (4)

Theorem 3.2 Let n ≥ 3 and X1, X2, . . . , Xn be nonnegative, independent and iden-

tical distributed according (1), then

i) E(S2
n) =

Γ(α)Γ(α+ 2
τ )− Γ2(α+ 1

τ )
α2Γ2(α)

ii) E(
S2

n

X
2
n

) =
n[Γ(α)Γ(α+ 2

τ )− Γ2(α+ 1
τ )]

Γ(α)Γ(α+ 2
τ ) + (n− 1)Γ2(α+ 1

τ )
(5)
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Furthermore, in GG distribution we have

σ2

µ2
=

Γ(α)Γ(α+ 2
τ )

Γ2(α+ 1
τ )

− 1,

and it can be shown that[12]

E(
S2

n

X
2
n

) →
Γ(α)Γ(α+ 2

τ )
Γ2(α+ 1

τ )
− 1.

Therefore, S2
n

X
2
n

→ σ2

µ2 asymptotically. From (2) and corollary 2.2 we know that

i) E(Xn) = E(
∑n

i=1Xi

n
) = E(X) =

λΓ(α+ 1
τ )

Γ(α)

ii) E(Xτ
n) = E(

∑n
i=1X

τ
i

n
) = E(Xτ ) = αλτ

iii) E(
S2

n

nX
2
n

) =
Γ(α)Γ(α+ 2

τ )− Γ2(α+ 1
τ )

Γ(α)Γ(α+ 2
τ ) + (n− 1)Γ2(α+ 1

τ )

Then, we can solve numerically via moment method the below equations for estimating

of GG parameters 

∑n

i=1
Xi

n = λΓ(α+ 1
τ
)

Γ(α) ;∑n

i=1
Xτ

i

n = αλτ ;
S2

n

nX
2
n

= Γ(α)Γ(α+ 2
τ
)−Γ2(α+ 1

τ
)

Γ(α)Γ(α+ 2
τ
)+(n−1)Γ2(α+ 1

τ
)
.

(6)

3.1 Application in gamma subfamily

Here, we generate

• 200 sample of size 10 from gamma(α = 2, λ = 0.5) distribution (G1)

• 200 sample of size 10 from gamma(α = 4, λ = 2) distribution (G2)

• 200 sample of size 10 from gamma(α = 7, λ = 3) distribution (G3)

• 200 sample of size 50 from gamma(α = 3, λ = 2) distribution (G4)
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The below tables, summarizes the results. In these tables, ”Std” is used for standard

deviation,”CI” shows 95 percent confidence interval ,”L” is used for length of confidence

interval and ”MSE” shows mean square error.

Method α̂ Std CI(95p) L MSE

MLE (G1) 2.7056 1.1342 (2.5484 , 2.8647) 0.3163 1.7791

MME (G1) 2.5353 1.0499 (2.3838,2.6816) 0.2928 1.3833

MLE (G2) 5.5703 2.7507 (5.1868,5.9539) 0.7671 9.9946

MME (G2) 5.1056 2.5495 (4.7501,5.4611) 0.711 7.6898

MLE (G3) 9.4345 3.9137 (8.8888,9.9803) 1.0915 21.1672

MME (G3) 8.5682 3.4193 (8.0914,9.045) 0.9536 14.0923

MLE (G4) 3.1351 0.5568 (3.0575,3.2128) 0.1553 0.3267

MME (G4) 3.1476 0.6847 (3.0521,3.2431) 0.191 0.4882

Table 2. Comparison results for α estimation

The above table shows that in G1,G2 and G3 states where sample sizes are small

(n=10), the MME is better than MLE method. In the G4 state that sample size is

nearly large (n=50), the MLE method is better than MME.

Method λ̂ Std CI(95p) L MSE

MLE (G1) 0.4182 0.1638 (0.3954 , 0.4411) 0.0457 0.0334

MME (G1) 0.449 0.1807 (0.4238,0.4743) 0.0505 0.0351

MLE (G2) 1.756 0.8041 (1.6439,1.8681) 0.2242 0.7028

MME (G2) 1.9514 0.9765 (1.8153,2.876) 0.2723 0.9511

MLE (G3) 2.584 1.0786 (2.4336,2.7344) 0.3008 1.3307

MME (G3) 2.828 1.1788 (2.6637,2.9924) 0.3287 1.4121

MLE (G4) 1.9976 0.4617 (1.9332,2.0619) 0.1287 0.2121

MME (G4) 2.0128 0.5242 (1.9397,2.0858) 0.1461 0.2735

Table 3. Comparison results for λ estimation
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The above table shows that in all states the MLE method is better than MME. In other

words, very likely we can say two methods are capable.

4 Entropy and its estimation

The concept of Shannon’s entropy [22] is the central role of information theory, some-

times referred as measure of uncertainty. The entropy of a random variable is defined

in terms of its probability distribution and can be shown to be a good measure of ran-

domness or uncertainty. Henceforth we assume that log is to the base 2 and entropy is

expressed in bits. For deriving entropy of the generalized gamma distribution, we need

the following two definitions, that more details of them can be found in [4].

Definition 4.1 The entropy of a discrete alphabet random variable f defined on the

probability space (Ω, β, P ) is defined by

HP (f) = −
∑
a∈A

p(f = a) log(p(f = a)). (7)

It is obvious that HP (f) ≥ 0.

Definition 4.2 The obvious generalization of the definition of entropy for a proba-

bility density function f defined on the real line is

H(f) = −
∫ +∞

−∞
f(x) log f(x)dx = E(− log f(x)). (8)

provided this integral exists.

Theorem 4.3 Let X ∼ GG(α, τ, λ), then

H(GG) = log λ+ log Γ(α) + α− log τ + (
1
τ
− α)Ψ(α) (9)

proof: By definition (8) we can write

H(GG) = −E(log f(y|α, τ, λ)) = − log τ+ατ log Γ(α)−ατE(log Y )+E(log Y )+
1
λτ
E(Y τ ).

(10)
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Furthermore, from (2) and (3) we have

i) E(Y τ ) =
λτΓ(1 + α)

Γ(α)

ii) E(log(Y )) = log λ+
1
τ
ψ(α)

then, by substitute these relations in (9) the theorem is proved.

Corollary 4.4 For all values of τ , H(GG) is increasing in α.

Corollary 4.5 For values of α < 1.5, H(GG) is increasing in τ .

We can summarizes the entropy of subfamilies of GG distribution as below table.

Distribution name α τ λ Entropy

Exponential 1 1 λ log λ+ 1

Gamma α 1 λ log λ+ log Γ(α) + α+ (1− α)Ψ(α)

Weibull 1 τ λ log λ+ 1− log τ + ( 1
τ − 1)Ψ(1)

Generalized normal α 2 λ log λ+ log Γ(α) + α− 1 + (1
2 − α)Ψ(α)

Half normal 0.5 2
√

2σ2 log σ + log
√
π

Rayleigh 1 2
√

2σ2 1
2 + log σ − 1

2Ψ(1)

Maxwell Boltzmann 3
2 2 λ log λ+ log

√
π

2 − 1
2 −Ψ(3

2)

Chi k
2 2 λ log λ+ log Γ(k

2 ) + k−2
2 + (1−k

2 )Ψ(k
2 )

Table 4. Entropy of subfamilies of GG distribution

4.1 Entropy estimation

Consider another form of (1) as

f(y|α, τ, λ) =
τ

λατΓ(α)
e(ατ−1) log y−( y

λ
)τ

y ≥ 0, τ, α, λ > 0. (11)

Then, the liklihood function is given by

L(y1, . . . , yn|α, τ, λ) = (
τ

λατΓ(α)
)ne(ατ−1)

∑n

i=1
log y−

∑n

i=1
( y

λ
)τ

y ≥ 0, τ, α, λ > 0. (12)
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Consequently,

l(α, τ, λ) = logL(y1, . . . , yn|α, τ, λ) = n(log τ−ατ log λ− log Γ(α)+(ατ−1)log y− yτ

λτ
),

(13)

where, log y =
∑n

i=1
log y

n and yτ =
∑n

i=1
yτ

n .

By taking derivative to parameters we have
∂l(α,τ,λ)

∂α = −nτ log λ− nΨ(α) + nτ log y = 0
∂l(α,τ,λ)

∂λ = −nατ
λ + nτyτ

λτ+1 = 0
(14)

By solving this equation and from (2) and (3) we have

log y = log λ+
1
τ
ψ(α) = E(log Y ) and yτ = λτα = E(Y τ ). (15)

Then, by replacement (15) in (10) we get

Ĥ(GG) = −(log τ̂ − α̂τ̂ log λ̂− log Γ(α̂) + (α̂τ̂ − 1)log y − yτ̂

λ̂τ̂
), (16)

From (13),(16) we can write

Ĥ(GG) = − l(α̂, τ̂ , λ̂)
n

(17)

5 Kullback-Leibler discrimination

In information theory, the Kullback - Leibler (KL)divergence (also information diver-

gence, discrimination information, or relative entropy) is a non-symmetric measure of

the difference between two probability distributions P and Q. KL divergence is a spe-

cial case of a broader class of divergences called f-divergences. Originally introduced

by Solomon Kullback and Richard Leibler [16] as the directed divergence between two

distributions, it is not the same as a divergence in calculus. Although it is often intuited

as a distance metric, the KL divergence is not a true metric - for example, the KL from

P to Q is not necessarily the same as the KL from Q to P. For more details see [17,18].
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For probability distributions P and Q of a discrete random variable the KL divergence

of Q from P is defined to be

K(P : Q) =
∑

i

P (i) log
P (i)
Q(i)

.

For distributions P and Q of a continuous random variable the summations give way

to integrals, so that

K(P : Q) =
∫ ∞

−∞
p(x) log

p(x)
q(x)

dx,

where p and q denote the densities of P and Q.

Let GG0 = GG(α0, τ0, λ0) be a given GG distribution. Authors in [5] showed that the

discrimination information function between GG0 and GG is given by

K(GG : GG0) = log
φτ

φαφτ

λ

− log
Γ(α)
Γ(α0)

−α+µ(α, φτ , φλ)+(αφτ −α0)υ(α, φτ , φλ), (18)

where φτ = τ
τ0

, φλ = ( λ
λ0

)τ0 , µ(α, φτ , φλ) is the first moment and υ(α, φτ , φλ) is the

geometric mean of a GG distribution with parameters (α, φτ , φλ). The discrimination

information K(GG : GG0) is a complicated function of the parameters, (18) is a general

representation that encompasses discrimination information functions between the GG

and its subfamilies, between distributions within each subfamily, and between distribu-

tions from different subfamilies. The discrimination information between GG(α, τ, λ)

and Gamma(α0, λ0) is given by (18) with φτ = τ . The discrimination information be-

tween GG(α, τ, λ) and Weibull(τ0, λ0) is given by (18) with α0 = 1. The discrimination

information between GG(α, τ, λ) and Exponential(λ0) is given by (18) with φτ = τ

and α0 = 1. The discrimination information between GG(α, τ, λ) and GN(α0, λ0) is

given by (18) with φτ = τ
2 and α0 = 2α.

6 Akaike and Bayesian information criterion

In order to introducing of an approach for model selection, we remember Akaike and

Bayesian information criterion based on entropy estimation. Akaike’s information crite-
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rion, developed by Hirotsugu Akaike [1,2] under the name of ”an information criterion”

(AIC) in 1971 and proposed in Akaike [2],is a measure of the goodness of fit of an

estimated statistical model. It is grounded in the concept of entropy, in effect offering a

relative measure of the information lost when a given model is used to describe reality

and can be said to describe the tradeoff between bias and variance in model construc-

tion, or loosely speaking that of precision and complexity of the model. The AIC is not

a test of the model in the sense of hypothesis testing, rather it is a test between models

- a tool for model selection. Given a data set, several competing models may be ranked

according to their AIC, with the one having the lowest AIC being the best. From the

AIC value one may infer that e.g. the top three models are in a tie and the rest are

far worse, but it would be arbitrary to assign a value above which a given model is

”rejected”. In the general case, the AIC is

AIC = 2K − 2 log(L(θ̂)),

where k is the number of parameters in the statistical model, and L is the maximized

value of the likelihood function for the estimated model.

The Bayesian information criterion (BIC) or Schwarz Criterion is a criterion for model

selection among a class of parametric models with different numbers of parameters.

Choosing a model to optimize BIC is a form of regularization. It is very closely related

to AIC. In BIC, the penalty for additional parameters is stronger than that of the AIC.

The formula for the BIC is

BIC = K log n− 2 log(L(θ̂)).

The AIC and BIC methodology attempts to find the model that best explains the data

with a minimum of their values. from (17) we have

l(α̂, τ̂ , λ̂) = −nĤ(GG).

Then for GG family we have

AIC = 2nĤ(GG) + 2K (19)
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and

BIC = 2nĤ(GG) +K log n (20)

6.1 Application in model selection

For description of this manner, we generate two samples of sizes 100 and 10 from Weibull

(τ = 10, λ = 5) distribution. Thus Weibull distribution is real distribution. Suppose

that some subfamilies of GG and normal distribution is considered as an approximate

distributions. We will to find best distribution based on these criterions. The below

tables, summarizes the results.

Distribution MLE(θ) Ĥ AIC BIC

Exponential 9.2216 3.2215 646.3 648.9052

Gamma (17.6593,0.5222) 2.1857 441.14 446.3503

Weibull (10.0228,5.1649) 0.337 71.4 76.6103

Normal (9.2216,2.0621) 2.1426 432.52 437.7303

Rayleigh 6.6801 2.5526 512.52 515.1252

Half normal 9.4471 2.9715 596.3 598.9052

Table 5. The results for n=100

Distribution MLE(θ) Ĥ AIC BIC

Exponential 8.8104 3.1759 65.518 65.8206

Gamma (17.5272,0.5027) 2.1438 46.876 47.4812

Weibull (9.6449,4.4446) 0.2253 8.506 9.1112

Normal (8.8104,2.2236) 2.2181 48.362 48.9672

Rayleigh 6.406 2.5107 52.214 52.5166

Half normal 9.0594 2.9296 60.592 60.8946

Table 6. The results for n=10

From above tables, we conclude that the Weibull distribution have smallest AIC and

BIC among others, which is exactly what we have been expected.
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7 Conclusion

This paper took the first major step toward reviewing of some important properties in

GG model thus far. In brief we discussed :

(a) The generalized gamma distribution, subfamilies and limiting distribution of it. (b)

A new moment estimation method of parameters of GG family. (c) Entropy representa-

tion and its estimation. (d) Kullback-Leibler discrimination. (e) Akaike and Bayesian

information criterion. In addition, we gave two explanatory examples as applications.
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