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INTRODUCTION
Nanowires and nanotubes have numerous

industrially significant applications. For such usages,
the precise clarification of the mechanical properties
of nanostructures is a key problem. At nano dimension,
because of the great ratio of surface area to volume,
mechanical and physical properties of nanowire expose
new features as surface effects and size effects.
Therefore the essential question the researchers
pursue to address is what the role of surface effect is
in the reaction of nanowires to mechanical loads [1, 2].

The AFM experimental results have shown that the
mechanical properties of nanostructures are size-
dependent; moreover this concept has been
theoretically clarified by allowing for the surfaces
effects. The earlier investigations have been revealed
that effects of surface have a key role in the mechanical
behavior of nanostructures. Besides, nanowires in
such cases requisite to undergo an axial load devoid
of buckling. In recent years, a new technique based on
the conventional Euler buckling model has been
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Nano structures such as nanowires, nanobeams and nanoplates have been
investigated widely for their innovative properties. In this paper the buckling
of nanowires surrounded in a Winkler - Pasternak elastic medium has been
examined based on the nonlocal Euler-Bernoully model with considering the
surface effects. In the following a parametric study that explores the influence
of numerous physical and geometrical parameters on the buckling of nanowires
is presented.  It has been shown that by growing the ratio of surface area to
bulk in nano-size structures, the effect of surface energy turn out to be
important and should be taken into consideration. Moreover the results point
out that surface elasticity and residual surface tension stimulus the buckling
behavior of nanowires.

ORIGINAL  RESEARCH  PAPER

suggested to specify the elastic modulus of nanowires
by computing its critical force of buckling [3]. Riaz et
al. using a nanoindentation technique studied the
effect of surface energy on the instability and buckling
of Zno nanowire [4]. Ansari and Sahmani proposed a
non-classical solution to investigate bending and
buckling responses of nanobeams including surface
stress effects [5]. Hasheminejad et al. studied flexural
vibrations of cracked micro- and nanobeams in the
presence of surface effects [6]. Rahmani and Noroozi
Moghaddam considered the surface effects to study
the electromechanical coupling behavior  of
piezoelectric Nano-beams. In this work the exact
solution for free vibration was derived for the simply
supported boundary conditions [7]. Challamel and
Elishakoff pointed out the role of boundary conditions
in the buckling and vibration response of small scale
beams in presence of surface elasticity effects [8].

Recently many nanotechnologists use the nonlocal
elasticity in modeling the mechanical behavior of
nanostructures. Based on the Eringen’s nonlocal
elasticity theory, the stress at a point in the structure is
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considered to be dependent not only on the strain at
this point but also on the strain at all of the points in
the structure. Therefore, the nonlocal model covers
data about long range loads among atoms; besides the
interior length scale is presented into the constitutive
relations basically as material factor to capture the small
scale influence [9]. Reddy reformulated various beam
theories, including the Euler–Bernoulli, Timoshenko,
Reddy, and Levinson beam theories, using the nonlocal
differential constitutive relations of Eringen [10]. The
equations of motion of the nonlocal theories were
derived, and variational statements in terms of the
generalized displacements were presented. Rahmani
studied the flexural vibration of pre-stressed
nanobeams based on nonlocal theory [11]. It was
shown that increase of the axial compressive loading
leads to decrease of the fundamental frequency of
nanobeams. Pirmohammadi et al. investigated the active
vibration suppression of a single-walled carbon
nanotube under the action of a moving harmonic load
using Eringen’s nonlocal elasticity theory [12]. Rahmani
and Ghaffari studied the free vibration of Nano-
sandwich-structure with nonlocal effect. The model
allows for the flexibility of the sandwich core while the
faces were treating as beams [13].
From the literature review, it is observed that the
nonlocal and surface effects on the mechanical
behavior of nanostructures have been investigated
separately. On the other hand, the previous studies
showed that both these effects have important roles
on the behaviors of nanostructures. For example Lee
and Chang showed that the frequency ratio of the
nanocantilever beam is sensitive to both the surface
and nonlocal effects [14]. When the nonlocal effect
was taken into account without consideration of
surface effects, the frequency ratio of the beam
decreased with decrease in width ratio and with
increase in mode number. However, the situation was
reversed when the surface effects were taken into
account without consideration of nonlocal effect.
Consequently, to perform an accurate vibration
analysis, the formulation should include both these
effects. Only a few number of studies investigated the
surface and nonlocal effects together [15-18]. Chen et
al. formulated a theoretical outline to survey the size
effect due to both nonlocal effect and interface effect
for a composite material and found that both nonlocal
and surface effects dominate the size-dependent
effective property of the material on nanoscale [15].

Mahmoud et al. considered the coupled effects of
surface properties and nonlocal elasticity on the static
deflection of nanobeams [18]. Surface elasticity was
applied to describe the behavior of the surface layer.
Information about the forces between atoms, and the
internal length scale were proposed by the nonlocal
Eringen model. Lee and Change used Rayleigh–Ritz
method to analyze the influences of surface and
nanolocal effects on the critical buckling load of the
nonuniform nanowire [17]. Eltaher et al. studied the
coupled effects of surface properties and nonlocal
elasticity on vibration characteristics of nanobeams
by using FEM [16]. Nonlocal differential elasticity of
Eringen was exploited to reveal the long-range
interactions of a nanoscale beam. To incorporate
surface effects, Gurtin–Murdoch model was proposed
to satisfy the surface balance equations of the
continuum surface elasticity.

In the present paper, based on the Eringen’s nonlocal
constitutive relations and by applying the effects of
surfaces, equilibrium equation of nanowire surrounded
in an elastic medium is achieved. Also the elastic
medium has been modeled as Winkler–Pasternak
foundation. Winkler elastic foundation comprises of
narrowly spaced linear elastic springs which are
continuously integrated at the bottom beam surface.
The foundation parameter is defined by the springs
stiffness and the response force of substance taken to
be linearly proportional to the beam deflection [19, 20].
The Winkler model does not make allowance for the
continuousness of the elastic environment. A more
precise model of the elastic foundation can be obtained
by a two parameters elastic foundation recognized as
the Winkler–Pasternak model. The Pasternak
foundation model simulates the transverse shear stress
as a result of the shear deformation of the medium
[21], whereas the Winkler approach accounts for the
normal pressure from the surrounding medium [22]. In
conclusion a closed-form solution of buckling load is
achieved for simply supported nanowire and a
parametric study is presented to investigate the effect
of geometrical properties such as diameter and length
of the nanowire.

THEORETICAL FORMULATION
Consider a nanowire as shown in Fig. 1. The
equilibrium equation based on the nonlocal Euler–
Bernoulli model [10] is as following:
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where w(x) represents the defection at point  x, p is the
axial compressive load and q is the transverse
distributed forces  of the nanowire.

In the case of a circular cross section nanowire, EI
is presented as [10]:

 4 / 64E I E D

where E and D are the Young’s modulus and diameter
of a nanowire. The influence of surface elasticity on
the buckling of a nanowire can be applied by changing
the traditional flexural rigidity EI for the bulk material
by the effective flexural rigidity E I for a nanowire,
which is given by:

Where Es is the surface modulus. In the following, the
vibration and buckling of nanowire based on this
surface model will be considered. The residual surface
tension will produce a distributed transverse loading
q(x) lengthwise the longitudinal direction. In the present
study, axial load caused by elastic medium is supposed
in the following form based on the Winkler and
Pasternak foundations:

where kw (nN/nm) and kp (nN/nm) are the Winkler and
Pasternak stiffness parameters of the elastic medium.
The distributed transverse loading produced by the
residual surface tension and axial force owing to elastic
medium is:

(1)

Fig.1. Buckling of a circular nanowire under axial load.

(2)
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where the factor H is a constant calculated by the
remaining surface tension and the shape of the cross
section. H is specified, individually, by [10]:

where  is the residual surface tension. Consequently
putting Equations (3-6) in Equation (8) leads to
following equilibrium equation for a nanowire
embedded in an elastic medium:

When kp=0 and kw=0, Equation (7) is returned to the
nanowire equilibrium equation without an elastic
medium. To investigate the buckling of a nanowire
embedded in an elastic medium Equation (7) should be
solved for particular boundary conditions.

ANALYTICAL SOLUTIONS OF BUCKLING OF
SIMPLY SUPPORTED BEAMS

In this section exact solutions of buckling of simply
supported nanowire will be considered. The boundary
conditions are expressed as:

Here we evaluate the critical buckling force for
nanowire. The following expansions of the
displacements w(x) fulfill the boundary conditions in
Equation (8) and  the supposed buckling mode is
specified as:

 When t= 0, Thus we have

Applying the supposed displacement mode in the
equilibrium equation (Equation (7)) result in:
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As a final point the buckling force is achieved as:

On the other hand, by solving Equation (1) and using
the boundary conditions at the two ends of the beam,
correspondingly, the critical axial load of a wire without
considering the elastic medium and surface effects is
obtained as

NUMERICAL RESULTS AND DISCUSSION
As a case study, a silver nanowire with a circular

cross section will be investigated in this section. The
material constants are considered as E=76 GPa, ô0=0.89
N/m and Es=1.22 N/m on the surface. Variations of
buckling forces vs. the diameter of the simply
supported nanowire have been represented in Fig. 2.

In Fig. 2 the influence of the elastic medium on the
compressive load of buckling has been investigated.
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Fig. 2. The critical compressive load of a nanowire as a function
of the diameter D. (kw = 108,n=1)

It can be realized that attendance of the elastic medium
rises the buckling foces. Alternatively the effect of
surface effects on the compressive load of buckling
comes to be more important as the diameter decreases.
Besides generally, the influence of the nonlocal
parameter ì is to increase the buckling loads as can be
comprehended from the results presented in Fig. 3.

In addition the buckling loads in different mode
numbers and Pasternak stiffness constant (kp) with
respect to the nanowire length as well as diameter have
been stated in the Fig. 4 respectively.

Fig. 2 illustrates the normalized critical buckling load
(Pcr / Pcr0) versus nanowire diameter for different values
of Pasternak spring parameters, and for local (µ=0) as
well as nonlocal (µ=2 nm2) theories. The normalized
critical load of buckling shows a different dependence
on the characteristic size of the nanowire. The effect of
surface effects become considerable as the diameter
decreases in the range of nanometers and usually
raises the critical buckling load of nanowire.

Fig. 3 displays the variation of normalized critical
buckling load (Pcr / Pcr0) with respect to the nanowire
length. It can be seen that, the surface tension effects
result in an effective force that tends to strengthen the
nanowire. Also, as the stiffness spring kw increases
the normalized critical buckling loads increases.

Fig. 4 shows the change in the normalized critical
buckling load (Pcr / Pcr0) versus nanowire length with
the nonlocal parameter µ=2 nm2 and Winkler stiffness
constant kw =108 N/m2 for selected mode numbers (n =
1, 2) for different values of Pasternak stiffness
constant. Here, it is clear that by increasing the mode
number, the normalized critical buckling load decreases.

Fig. 3.  The critical compressive load of a  nanowire as a
function of the length L.(n=1, kw =108)
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Fig. 5 shows the variation of non-dimensional critical
buckling load versus Winkler stiffness constant kw for
several selected values of the Pasternak stiffness
constant and also for local and nonlocal elasticity
model. It can be observed that in the case of kw >107 N/
m2 the normalized critical buckling load increase. This
fact can be seen from Equation (13) mathematically.
With increasing Pasternak stiffness constant, the
difference between the local and nonlocal results
increases due to the effect of small length scale.

 Fig.5. The critical compressive load of a nanowire as a function
of the kw. (n=1)

Fig. 6 demonstrates the normalized critical buckling
load versus Pasternak stiffness constant kp for several
selected values of the Winkler stiffness constant. An

Fig. 4. The critical compressive load of a nanowire as
a function of the L. ( µ=2 nm2, kw =108 N/m2)

enhance in the non-dimensional critical buckling load
is identified when kp > 10-7nN/nm2 .This fact can be
seen from Equation (13) mathematically. With growing
Pasternak stiffness constant, the variance between the
local and nonlocal results rises because of the influence
of small length scale.

CONCLUSION
In this study, the buckling of nanowires under

uniaxial load embedded in Winkler - Pasternak elastic
medium has been studied based on the Euler-Bernoully
nonlocal model. It has been shown that with increasing
the ratio of surface area to bulk at nano-scale, the effect
of surface energy come to be noteworthy and it should
be taken into consideration. The results indicate that
residual surface tension, surface elasticity as well as
nonlocal parameter affect the buckling behavior of
nanowires.

When influence of surface is taken into
consideration, the critical parameters of a nanowire
correspondingly depend on its cross-sectional size.
Growing the Winkler and Pasternak stiffness constants
reduces the size dependency of the buckling deflection.
Alternatively the impact of the Pasternak stiffness
constant on the buckling load turn out to be more
substantial comparing with the Winkler stiffness
constant, however the elastic medium tends to raise
the critical axial load.
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Fig. 6. The critical compressive load of a nanowire as a
function of the kp. (n=1)
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