Characterizations of Graded Distributive Modules

Naser Zamani¹

Faculty afscience, Universityof Mohaghegh Ardabili, P. O.Box 179, *Ardabil, Iran*

Abstract

Let *R* be a Z- graded commutative ring with identity. Several characterizations of graded distributive modules will be investigate.

Keywords: Graded Distributive Modules, Krull Associated Primes, Weak Bourbaki Associated Primes.

1 Introduction

Let R be a Z -graded commutative ring with non-zero identity and M be a Z graded *R* -module. We shall say that *M* is a *graded distributive* module (for brevity a g.d module) if the lattice of its graded submodules is distributive, i.e., if $(X+Y)\cap Z=(X\cap Z)+(Y\cap Z)$ for all graded submodules *X,Y,Z* of *M* (or equivalently, $(X \cap Y) + Z = (X + Z) \cap (Y + Z)$ for all graded submodules *X,Y,Z* of *M*). The notion of distributive modules has been introduced and studied independently by T. M. K. Davison [2] and W. Stephenson [12]. There are many important and considerable research on the structure and characterization of distributive modules (see for example [3, 4, 5, 13, 14]), however, to the best of author knowledge there are few results concerning the graded version of this concept [6, 10].

In this paper we will give several characterizations of g.d modules. In fact, among other things, we prove:

Theorem A Let M be a *tortionfree gradedR* - *module. Thefollowing statements are equevalent.*

(i) M *is a g.d R -module.*

(ii) *Every* * *closed submodule of M is* * *irreducible.*

(iii) *For any* $i \in \mathbb{Z}$, *any* $x, y \in M$, *and any * maximal ideal* m, *the graded submodules Rx(m) and Ry(m) are comparable with respect to inclusion.*

<www.SID.ir>

Corresponding author.

E-mail address: naserzaka@yahoo.com

(iv) *For each graded submodule N of M and each* * *maximal ideal* m *containing* $N:_{R} M$, ${}^{*}E_{R}(M/N(m))$ *is* ${}^{*}indecomposable.$

Theorem B *For a graded torsion free R -module M, the following statements are equivalent.*

(i) *M is a g.d module.*

(ii) *For each proper graded submodule N of M*, $N = \bigcap_{p \in mK(M/N)} N(p)$ *is an* " *irreducible decomposition of N* .

To prove Theorems A and **B,** we need a series of assertions. We present the necessary notation and definitions. Let $R = \bigoplus_{i \in \mathbb{Z}} R_i$ and let $M = \bigoplus_{i \in \mathbb{Z}} M_i$. Then the elements of M_i are called homogeneous of degree i . The set of all homogeneous elements of *R* (resp. *M*) is denoted by $H(R)$ (resp. $H(M)$). Given multiplicatively closed subset $S \subseteq H(R)$, the ring of fractions $S^{-1}R$ turns into a graded ring by setting

$$
(S^{-1}R)_i = \{ r/s : r \in H(R), s \in S, i = deg(r) - deg(s) \}
$$

for each $i \in \mathbb{Z}$, where $deg(r)$ represents the degree of the homogeneous element r. We recall that $S^{-1}M$ can be defined as $S^{-1}R\otimes_R M$, which is a graded $S^{-1}R$ -module. In the case that p is a graded prime ideal and $S = H(R) \backslash p$, the graded ring $S^{-1}R$ (resp. graded $S^{-1}R$ -module $S^{-1}M$) is denoted by $R_{(p)}$ (resp. $M_{(p)}$), and is called the homogeneous localization of *R* (resp. *M*) at p . A graded ideal m is called ^{*} *maximal* if it is maximal in the lattice of all graded ideals of R . The ring R is called ∂^* *quasi local* if it has a unique * maximal ideal. Let *N* be a graded submodule of *M* and let p be a graded prime ideal of *R*. We set $N(p) = \bigcup_{s \in H(R) \setminus p}(N : M(s))$, which is a graded submodule of *M* containing *N* . We note that when *M* is a torsion free *R* -module (that is when $\{x \in M : rs = 0 \text{ for some nonzero } r \in R\} = \{0\}$), then evidently $N(p) = N_{(p)} \cap M$. We set

$$
Z(N) = \{a \in R : N \subset (N :_M a)\}.
$$

Then $R\setminus Z(N)$ is a multiplicatively closed subset of R. We say that N is a closed submodule of *M* if $Z(N)$ itself forms an ideal p of R. In this case p is a prime ideal of *R* and we say that *N* is $p - \infty$ closed. Indeed then $Z(N)$ is a graded prime ideal. To see this let $a = a_m + ... + a_n \in Z(N)$ be the decomposition of *a* as a sum of homogeneous elements a_i . Then there exists $x \in H(M) \setminus N$ such that $a_m x_{n+1} + a_n x = a x \in N$. Since *N* is graded this gives that $a_i x \in N$ for each $i = m, ..., n$. It follows that $N \subset N$:_M *a_i* for each $i = m, ..., n$, i.e., each homogeneous components of *a* belongs to $Z(N)$.

Finally we say that *N* is an *"irreducible* submodule of *M* precisely when for graded submodules N_1, N_2 of $M, N = N_1 \cap N_2$ implies that either $N = N_1$ or $N = N_2$.

Proposition 1 *Let N be an "irreducible submodule of M. Then N is a "closed submodule of M* .

Proof. Let $r, s \in Z(N)$. It follows that $N \subset (N :_M r)$ and $N \subset (N :_M s)$. Hence by assumption $N \subset (N:_{M} r) \cap (N:_{M} s) = (N:_{M} r-s)$, which means that $r-s \in Z(N)$. Since the product of an element of R and an element of $Z(N)$ is always a element of *Z(N),* the claim follows.

Proposition 2 *Every graded submodule of M is the intersection of* * *closed submodules.*

Proof. Let *N* be a graded submodule of *M.* Since the module *M* itself, being " irreducible, is "closed, so the intersection of all "closed submodules of *M* containing *N* is non-empty. Hence to prove the claim it is enough to show that for each $m \in H(M) \setminus N$ there exist an \check{b} closed submodule C of M containing N such that m is not in C. Let $\sum_{i=1}^{n}$ $\{L \supseteq N : L \text{ is a graded submodule of } M \text{ donot contain } m\}$. Then \sum is not empty and by Zorn's lemma it possesses a maximal element with respect to inclusion, say C. We show that C is a "closed submodule of M . Let $r, s \in Z(C)$. Then there exist $x, y \in H(M) \setminus C$ such that $rx, sy \in C$. Now by the maximality of C we have $m \in C + Rx$ and $m \in C + Ry$. This gives that $rm \in rC + Rrx \subseteq C$ and $sm \in sC + Rsy \subset C$. Therefore $(r-s)m \in C$ and so $r-s \in Z(C)$. Consequently C is an * closed submodule of *M* .

Lemma 3 *Thefollowing statements are equivalent.*

(i) M *is a g.d R -module.*

(ii) $(Rx:_{R} y) + (Ry:_{R} x) = R$ *for all* $x, y \in H(M)$ *with* deg $(x) = deg(y)$.

Furthermore if R is * *quasi local, then each of the above is equivalent to*

(iii) *The set of all graded submodules of M are linearly ordered with respect to inclusion.*

(iv) *The set of all graded cyclic submodules of M is linearly ordered with respect to inclusion.*

Proof. (i) \Rightarrow (ii). Let *x*, $y \in H(M)$ be such that deg(*x*)=deg(*y*). Then we have $x \in Rx \cap (Ry + R(x - y))$. By assumption it follows that $x \in Rx \cap Ry + Rx \cap R(x - y)$. Hence there exist $r, s \in R_0$ such that $x = ry + s(x - y)$. From this we deduce that $sy \in Rx$. On the other hand we have $(1-s)x = (r-s)y$, which imply that $1-s \in (Ry:_{R} x)$. Therefore $1 = s + (1-s) \in (Rx:_{R} y) + (Ry:_{R} x)$, as desired.

(ii) \Rightarrow (i). Let *X*, *Y* and *Z* be graded submodules of *M*. Let $x \in X \cap (Y + Z)$ be a homogeneous element. Then there exist homogeneous elements $y \in Y$ and $z \in Z$ such that $x = y + z$ and $deg(x) = deg(y) = deg(z)$. By assumption we have $(Rx:_{R} y) + (Ry:_{R} x) = R$. Therefore there exists $r \in R$ such that $r \in (Rx:_{R} y)$ and

 $1-r\in (Ry:_{R} x)$. Hence we have $x=(1-r)x+ry+rz=sy+rz$, for some $s \in R$. Now $x \in (Rx \cap Ry)+(Rx \cap Rz) \subseteq (X \cap Y)+(X \cap Z)$. As the opposite inclusion always holds, the result follows.

 $(iii) \Rightarrow (iv)$ is clear.

 $(iv) \Rightarrow (iii)$ Assume (iii) dose not hold. Then there exist graded submodyls *X*, *Y* of *M* such that $X \not\subset Y$ and $Y \not\subset X$. This gives that there exist $x \in H(X) \setminus Y$ and $y \in H(Y) \setminus X$. Hence $Rx\nsubseteq Ry$ and $Ry\nsubseteq Rx$, which contradicts to (iv).

Furthermore if *R* is $\tilde{ }$ quasi local it has been proved in [6. Lemma 5.22], that (i) and (iv) are equivalent.

Lemma 4 ([6. Lemma 5. 24]) *M is a g.d R -module if and only if* $M_{(0)}$ *is a g.d* $R_{(0)}$ *module for each graded prime* (* *maximal) ideal* p *of R* .

Lemma 5 *For an R -module M the following statements are equivalent.*

 (i) *M is* a *g.d* R *-module.*

(ii) *For each proper graded submodule N of M and each graded prime* (* *maximal) ideal* ρ *of* R , $N_{(p)}$ *is an *irreducible submodule of* $M_{(p)}$ *.*

Proof. (i) \Rightarrow (ii). Let *N* be a proper graded submodule of *M* and let p be a graded prime ideal of *R* which contains $N:_{R} M$. Let $N_{(p)} = K_{(p)} \cap L_{(p)}$. (Note that each graded submodule of $M_{(p)}$ can be written as a homogeneous localization of some graded submodule of *M* at p.) By Lemma 4, $M_{(p)}$ is a g.d module over the ^{*} quasi local ring $R_{(p)}$. Therefore by Lemma 3, either $L_{(p)} \subseteq K_{(p)}$ or $K_{(p)} \subseteq L_{(p)}$, i.e. either $N_{(p)} = L_{(p)}$ or $N_{(p)} = K_{(p)}$. Thus $N_{(p)}$ is irreducible.

 $(ii) \Rightarrow (i)$. In view of Lemmas 3 and 4 it is enough to prove that for each graded prime ideal p of *R*, any two graded submodules of $M_{(p)}$ are comparable. So let p be a graded prime ideal of *R* and let $K_{(p)}$, $L_{(p)}$ be proper graded submodules of $M_{(p)}$. We may assume that $(M:_{R} K \cap L) \subseteq \mathfrak{p}$. So by assumption $K_{(p)} \cap L_{(p)} = (K \cap L)_{(p)}$ is an ^{*} irreducible submodule of $M_{(p)}$, so either $K_{(p)} \subseteq K_{(p)} \cap L_{(p)}$ or $L_{(p)} \subseteq K_{(p)} \cap L_{(p)}$. Consequently either $K_{(p)} \subseteq L_{(p)}$ or $L_{(p)} \subseteq K_{(p)}$ and the result follows.

Lemma 6 Let N be a graded submodule of M and p be a graded prime (\hat{i} maximal) *ideal* of R. If $N_{(p)}$ *is an* **irreducible submodule* of $M_{(p)}$, *then* $N(p)$ *is an* **irreducible* submodule of M . Furthermore if M is torsion free, the converse holds.

Proof. (\Rightarrow) . Let $N(p) = K \cap L$ for some graded submodules K, L of M. By homogeneous localizing at p and using the fact that $(N(p))_{(p)} = N_{W}(\psi_0) \cdot N_{W}(\psi_0)$ where $N_{(p)} = K_{(p)} \cap L_{(p)}$. Hence by assumption either $N_{(p)} = K_{(p)}$ or $N_{(p)} = L_{(p)}$, which gives that either $N(\mathfrak{p}) = K$ or $N(\mathfrak{p}) = L$.

(\Leftarrow). Let *K*, *L* be graded submodules of *M* such that $N_{(p)} = K_{(p)} \cap L_{(p)}$. This gives that $N(\mathfrak{p})=N_{(p)}\cap M=(K_{(p)}\cap M)\cap (L_{(p)}\cap M)=K(\mathfrak{p})\cap L(\mathfrak{p})$. Thus by assumption we have $N(\mathfrak{p}) = L(\mathfrak{p})$ or $N(\mathfrak{p}) = K(\mathfrak{p})$ and so by homogeneous localizing at \mathfrak{p} , $N_{(\mathfrak{p})} = K_{(\mathfrak{p})}$ or $N_{(p)} = L_{(p)}$.

From the above observations we deduce the following corollary.

Corollary 7 *Let M be a torsion free R -module. Then the following statements are equivalent.*

(a) M *is a g.d R -module.*

(b) *For each graded submodule ^N of ^M* , *each graded prime Cmaximal) ideal* p *of R,*

 $N(p)$ *is an* \int *irreducible submodule of* M .

Lemma 8 *Let N be a finitely generated graded submodule of M and let* p *be a graded prime ideal of R. Assume that* $N_{(p)} \neq 0$ *. Then* (pN)(p) *is an* ^{*} *closed submodule of M* .

Proof. We show that $Z((pN)(p)) = p$. First let $r \in Z((pN)(p))$. Then there exists $m \in H(M) \setminus (p)$ such that $rm \in (p)$ (p)). It follows that $(p) \cdot R$ and that there exists $t \in H(R) \backslash p$ such that $r \nmid m \in pN$. Hence $r \nmid \epsilon p$ and so $r \in p$. Consequently $Z((pN)(p)) \subseteq p$. In order to prove the other inclusion, let $r \in p$. Since N is finitely generated and $N_{(p)} \neq 0$, using the graded version of Nakayama's Lemma (see[11, Lemma I.7.5]), we have $(pN)_{(p)} \neq N_{(p)}$. This gives that $(pN)(p) \neq N(p)$. Since in any case we have $(pN)(p) \subseteq N(p)$ and $N(p) \subseteq (pN)(p):_M p$, so $(pN)(p) \subset (pN)(p):_M p$. This gives that there exists $x \in H(M) \setminus (p)$ such that $rx \in (p)$ (p), i.e., $(\mathfrak{p}(\mathfrak{p})\subset ((\mathfrak{p}(\mathfrak{p}))\colon_M r)$. Hence $r\in Z((\mathfrak{p}(\mathfrak{p}))\text{ and the proof is complete.}$

Following [15, p. 72], we define a prime ideal p of *R* to be a *Krull associated prime* of *M* if for every element $t \in \mathbf{p}$, there exists $x \in M$ such that $t \in \mathbf{0}$: $x \subseteq \mathbf{p}$. We denote by $K(M)$ (resp. by $mK(M)$) the set of all Krull associated primes of M (resp. the set of all maximal members of $K(M)$). Since M is a graded R module, then each element of $p \in K(M)$ must be graded; furthermore for each element $t \in p$, we can choose a homogeneous element *x* such that $t \in 0: R$ *x* \subseteq *p*. To see this let $p \in K(M)$. Let $t_m + ... + t_n = t \in \mathfrak{p}$ be the decomposition of *t* as a sum of homogeneous elements t_i of degree *i*. By assumption there exists $x_u + ... + x_v = x \in M$ such that $tx = 0$ and $0: R \times \subseteq \mathsf{p}$. So we have the equations $\sum_{i+j=s}^{t} x_i = 0$ for $s = m + u, ..., n + v$. It follows that $t_{m}x_{u}=0$, and by induction, $t_{m}^{i}x_{u+i-1}=0$ for all $i\geq 1$. Therefore $t_{m}^{i}x=0$ for sufficiently large value of *I*. As p is prime ideal, we have $t_m \in p$. Iterating this procedure we see that each homogeneous component of *t* belongs to p. In order to prove the second assertion, we have $\bigcap_{i=u}^{i=v}(0:_Rx_i) \subseteq p$. Since p is a prime ideal, there

N. *Zamani*

Archive of SID

exists *j* with $(0:_{R} x_{i}) \subseteq p$. As $t \in (0:_{R} x_{i})$ for all $i = u,...,v$; the proof of the claim is complete.

A prime ideal p is called *weak Bourbaki associated prime* of *M* if it is minimal prime divisor of $0:_{R} x$ for some $x \in M$. We will denote the set of all weak Bourbaki associated primes of M by $wB(M)$. It is known that (see for example [9, Lemma 2.15]), the set $wB(M)$ is non empty. The fact that the set $K(M)$ is not empty and that each element of $wB(M)$ is graded follows from the following.

Proposition 9 ([8, Theorem 1]) *With the above notation* $wB(M) \subseteq K(M)$.

Let \degree *Spec(R)* be the set of all graded prime ideals of *R*. It should be noted that for each proper submodule *N* of *M*, $N = \bigcap_{p \in {}^*} Spec(R)^{N(p)}$. The components $N(p)$ in this representation in general do not need to be * closed. However if we focus our attention on the graded prime ideals which belongs to mK*(M/N)* , then we have a representation of *N* such that each component is * closed. In fact:

Theorem **10** *Let N be a proper graded submodule of M. Then we have* $N = \bigcap_{p \in mK(M/N)} N(p)$, where the components $N(p)$ are p^{-*} *closed submodules* with *distinct and incomparable graded primes* $Z(N(p)) = p$.

Proof. First we note that $N = \bigcap_{p \in mK(M/N)} N(p)$. To see this, let $x \in H(M) \setminus N$. Let q be a minimal prime divisor of $N: R \times X$. Then there exists $p \in mK(M/N)$ such that $q \subseteq p$. Hence $N: R \subseteq \mathfrak{p}$ and so x is not an element of $N(\mathfrak{p})$. Consequently x is not in $\bigcap_{p \in mK(M/N)} N(p)$ and we deduce the claim.

Now to complete the proof it suffices to prove that if $p \in K(M/N)$, then $N(p)$ is $p -$ ^{*} closed; i.e., $Z(N(p)) = p$. To this end, assume that $r = r_m + ... + r_n$ is not an element of p. Then there exists $m \le j \le n$ such that r_j is not in p. We show that $(N(p):_M r) = N(p)$. To this end, let $x \in H(M)$ such that $rx \in N(p)$. Since $N(p)$ is a graded submodule of *M* , this gives that all homogeneous components of *rx* are in $N(p)$, in particular $r_i x \in N(p)$. This gives that there exists $s \in H(R) \setminus p$ such that $sr_i x \in N$ and so $x \in N(p)$. So $Z(N(p)) \subseteq p$. To prove the other inclusion let $r \in p$. Since $p \in K(M/N)$, there exists $x \in M \setminus N(p)$ such that $r \in N(p)$: $x \subseteq p$. Therefore we have $N(p) \subset N(p):_M r$ and so $r \in Z(N(p))$.

The Category of graded *R* modules has as objects the graded *R* -modules. A morphism $f: M \to M'$ in this category is an *R*-module homomorphism satisfying $f(M_i) \subseteq M$, for all $i \in \mathbb{Z}$. A graded *R*-module *E* is called *injective* if it is an injective object in this category. One call an extension $N \subset M$ of graded *R* -modules * *essential extension* if for any graded submodule $0 \neq U \subset M$ one has $U \cap N \neq 0$. In analogy to the definition in the non-graded case, *E* is called a **injective hull* of *N* if it

is * injective and' essential extension of *N* . In view of [1, 3.6.2], any graded module *R* -module *X* admits a unique ^{*} injective hull up to isomorphism. We denote the * injective hull of X by $E(X)$. A graded R-module is said to be * *indecomposible* precisely when it is non-zero and cannot be written as the direct sum of two proper graded submodules. By a similar argument as in the non-graded case one can see easily that a graded submodule *U* of *M* is irreducible if and only if $\text{irre}(M/U)$ is * indecomposible.

Proof of Theorem A

(i) \Rightarrow (ii). Let *N* be an * closed proper submodule of *M* with $Z(N) = p$. This gives that $N(p) = N$. Now the result follows by Corollary 7.

 $(ii) \Rightarrow (i)$. By virtue of Lemma 4, it is enough to show that for each ϕ^* maximal ideal m of *R*, $M_{(m)}$ is a g.d module over the *quasi local ring $R_{(m)}$. To do this, by Lemma 3, it suffices to prove that for any $x, y \in H(M)$, either $\langle x/1 \rangle \le \langle y/1 \rangle$ or $y/1 \geq y/1 \geq 0$. To this end, let $N = x, y >$ and $N_{(m)} \neq 0$. (If $N_{(m)} = 0$, then $x/1 = y/1 = 0$ and there is nothing to prove.) Then by Lemma 8, $(mN)(m)$ is an *closed and so by our assumption an * irreducible submodule of *M* . Hence by Lemma 6, $(mN)_{(m)}$ is an ^{*} irreducible submodule of $M_{(m)}$. But $R_{(m)}/(m)R_{(m)}$ is either a field or is of the form $k[t, t^{-1}]$, where t is a homogeneous element of positive degree which is transcendental over *k* (see [1, Lemma 1.5.7]). Since by [7, Lemma 1.1.1], any graded module over $k[t, t^{-1}]$ is graded free, this gives that either $N_{(m)}/mN_{(m)}$ is a finite dimensional vector space over the field $R_{(m)}/mR_{(m)}$, or is a rank one graded free module over $R_{(m)}/mR_{(m)}$. Therefore in any case we have either $N_{(m)} = \langle x/1 \rangle + (mN)_{(m)}$ or $N_{(m)} = \langle y/1 \rangle + (mN)_{(m)}$. Hence by the graded version of Nakayama's Lemma $N_{(m)} = \langle x/1 \rangle$ or $N_{(m)} = \langle y/1 \rangle$, which gives that either $\langle x/1 \rangle \subseteq \langle y/1 \rangle$ or $\langle y/1 \rangle \leq \langle x/1 \rangle$ and the result follows.

(i) \Rightarrow (iii). Suppose the contrary; i.e., there exist $i \in \mathbb{Z}$, $x, y \in M$, and an *maximal ideal m such that $Rx(m)\hat{U}Ry(m)$ and $Ry(m)\hat{U}Rx(m)$. It follows that x is not an element of $R_y(m)$ and y is not an element of $Rx(m)$. Our assumption together with Lemma 3, give that there exists $r \in R$, such that $rx \in Ry$ and $(1-r)y \in Rx$. Since m is $^{\circ}$ maximal ideal, at least one of the elements $r, 1-r$ is not contained in m. So at least one of the homogeneous components of *r* or one of the homogeneous components of $1-r$ is not contained in m. If the first possibility is true, it follows that $x \in Ry(m)$, a contradiction. With the second possibility we come to the contradiction $y \in Rx(m)$.

 $(iii) \Rightarrow (i)$. Assume that (i) does not hold. Then, by Lemma 3, there exist $i \in \mathbb{Z}$ and $x, y \in M_i$ and an *maximal ideal m of *R* such that $(Ry:_{R} x) + (Rx:_{R} y) \subseteq m$. It follows that $y \in R_y(m) \setminus Rx(m)$ and $x \in Rx(m) \setminus Ry(m)$, contracting to (iii). *<www.SID.ir>*

 $(i) \Leftrightarrow (iv)$. This follows by the paragraph before the proof of the theorem and Corollary 7.

The result of the previous Theorem is that for each graded submodule *N* of a g.d module *M* , the representation of *N* as an intersection of "closed modules given in Theorem A, is a decomposition of N into $\check{ }$ irreducible components. In theorem B , we show that this condition is in fact sufficient for *M* to be g.d module.

Proof of Theorem B

 $(i) \Rightarrow (ii)$ follows from Theorems 10 and Theorem *A*.

 $(ii) \Rightarrow (i)$. By Lemma 3 and 4 it is enough to show that for each \degree maximal ideal m of *R* the graded cyclic submodules of $M_{(m)}$ are totally ordered. To this end, let $x, y \in H(M)$.

Set $N = < x, y >$. Then by assumption $mN = \bigcap_{p \in mK(M/mN)} (mN)(p)$, is an ^{*}irreducible decomposition of mN . We claim that $m \in mK(M/mN)$. If this is not the case, then

 $(mN)(p) = N(p)$ for all $p \in mK(M/mN)$. This gives that $mN = \bigcap_{p \in MaxK(M/mN)} N(p) \supseteq N$.

But since *N* is finitely generated graded $N\dot{\cup}$ m*N*. Hence $m \in mK(M/mN)$ and $(mN)(m)$ is an "irreducible submodule of *M*. Thus by Lemma 6, $(mN)_{(m)}$ is an * irreducible submodule of $M_{(m)}$. The result now follows by the same argument as in the proof of the Theorem *A* part (ii) \Rightarrow (i).

References

- [1] W. Bruns and J. Herzog, *Cohen- Macaulay rings,* Cambridge University Press, (1998).
- [2] T. M. K. Davison, *Distributive homomorphism of rings and modules,* J. Reine Angew. Math. 270 (1974), 28-34.
- [3] V. Erdogdu, *Distributive modules,* Canad. Math. Bull. 30(2) (1987), 248-254.
- [4] V. Erdogdu, *The distributive hull of a ring,* J. Algebra. 132(2) (1990),,263-269.
- [5] V. Erdogdu, *Cyclically decomposable distributive modules,* Comm. Algebra. 25(5) (1997), 1635- 1639.
- [6] J. Escoriza and B. Torrecil1as, *Multiplication objects in commutative Grothendieck categories,* Comm. Algebra. 26(6)(1998),1867-1883.
- [7] S. Goto and K. Watanabe, *On graded rings I,* J. Math. Soc. Japan 30 (1978), 172-213.
- [8] R. Kuntz, *Associated prime divisors in the sense of Krull,* Canad. J. Math. 24 (1972), 808-818.
- [9] M. Larsen and P. McCarthy *Multiplicative theory of ideals,* Academic Press, New York. (1971).
- [10] R. Naghipour and N. Zamani, *Graded distributive modules,* Southeast Asian Bull. Math. 29 (2005), 1095-1099.
- [11] C. Nastasescu and F. Van Oystaeyen *Graded ring theory,* North-Hol1and, Amsterdam, (1971).
- [12] W. Stepehenson, *Modules whose lattice of submodules* is *distributive,* Proc. London. Math. Soc. 28(3) (1974), 291-3]0.
- [13] A. A. Tuganbaev, *Semidistributive modules and rings,* Kluwer Academic Pub], Dordrecht-Boston-London, (1998).
- [14] A. A. Tuganbaev, *Distributive modules and related topics*, Gordon and Breach Science; Publ. Amsterdam, (1999).
- [15] D. Underwood, *On some uniqueness questions in primary representations of ideals,* J. Math. Kyoto Univ. 9 (1969), 69-94.