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Abstract

Let R be a Z- graded commutative ring with identity. Several characterizations of graded
distributive modules will be investigate.
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1 Introduction

Let R be a Z-graded commutative ring with non-zero identity and M be a Z-
graded R -module. We shall say that M is a graded distributive module (for brevity a
g.d module) if the lattice of its graded submodules is distributive, i.e., if
(X+Y)NZ=(XNZ)+(YNnZ) for all graded submodules X.Y,Z of M (or
equivalently, (X NY)+Z=(X+Z)Nn(Y +Z) for all graded submodules X,Y,Z of
M ). The notion of distributive modules has been introduced and studied independently
by T. M. K. Davison [2] and W. Stephenson [12]. There are many important and
considerable research on the structure and characterization of distributive modules (see
for example [3, 4, 5, 13, 14]), however, to the best of author knowledge there are few
results concerning the graded version of this concept [6, 10].

In this paper we will give several characterizations of g.d modules. In fact, among
other things, we prove:

Theorem A Let M be a tortion free graded R - module. The following statements are
equevalent.
(i) M isa g.d R-module.

(i1) Every " closed submodule of M is “irreducible.
(iii) For any i€ Z, any x,ye M, and any "~ maximal ideal m, the graded submodules
Rx(m) and Ry(m) are comparable with respect to inclusion.
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(iv) For each graded submodule N of M and each ~maximal ideal m containing
N: M, E,(M/N(m)) is *indecomposable.

Theorem B For a graded torsion free R-module M , the following statements are
equivalent.

(i) M is a g.d module.

(i1) For each proper graded submodule N of M, N=ﬂ N(p) is an

pemK (MIN)

"irreducible decomposition of N .

To prove Theorems A and B, we need a series of assertions. We present the
necessary notation and definitions. Let R=®,_,R, and let M =® _,M,. Then the

elements of M, are called homogeneous of degree i. The set of all homogeneous
elements of R (resp. M ) is denoted by H(R) (resp. H(M)). Given multiplicatively
closed subset S < H(R), the ring of fractions S™'R turns into a graded ring by setting

(S"‘R),. ={rls:re H(R),s€ S,i=deg(r)—deg(s)}

for each ie Z, where deg(r) represents the degree of the homogeneous element r. We
recall that S™'M can be defined as S"'R®, M , which is a graded S™'R - module. In
the case that p is a graded prime ideal and S = H(R)\p, the graded ring S™'R (resp.

graded S”'R-module S7'M ) is denoted by R, (resp. M ), and is called the

P
homogeneous localization of R (resp. M ) at p. A graded ideal m'is called ~maximal
if it is maximal in the lattice of all graded ideals of R. The ring R is called quasi
local if it has a unique ~maximal ideal. Let N be a graded submodule of M and let p
be a graded prime ideal of R. We set N(P)=U _, 4,,(N:y, s). which is a graded

submodule of M containing N . We note that when M is a torsion free R-module
(that is when {xe M :rs=0 for some nonzero re R}={0}), then evidently

N(p)=Ng, NM.Weset
Z(N)={ae R:Nc(N:, a)}.

Then R\Z(N) is a multiplicatively closed subset of R. We say that N is a closed
submodule of M if Z(N) itself forms an ideal p of R. In this case p is a prime ideal
of R and we say that N is p— closed. Indeed then Z(N) is a graded prime ideal. To
see this let a=a,+..+a,€ Z(N) be the decomposition of a as a sum of
homogeneous elements a,. Then there exists xe H(M)\N such that
a x..+ax=axe N.Since N is graded this gives that axe N foreach i=m,...,n. It
follows that N © N :,, a, for each i =m,...,n, i.e., each homogeneous Wp%ln%nitﬁ; of a
belongs to Z(N).
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Finally we say that N is an irreducible submodule of M precisely when for

graded submodules N,N, of M, N =N, NN, implies that either N=N, or N=N,.

Proposition 1 Let N be an " irreducible submodule of M. Then N is a ~closed
submodule of M .

Proof. Let r,se Z(N). It follows that Nc(N:, r) and Nc(N:, s). Hence by
assumption Nc(N:, r)n(N:, s)=(N:, r—s), which means that r—se Z(N).
Since the product of an element of R and an element of Z(N) is always a element of
Z(N), the claim follows.

Proposition 2 Every graded submodule of M is the intersection of closed
submodules.

Proof. Let N be a graded submodule of M . Since the module M itself, being
“irreducible, is " closed, so the intersection of all *closed submodules of M containing
N is non-empty. Hence to prove the claim it is enough to show that for each
me H(M)\N there exist an ~closed submodule C of M containing N such that m

is not in € 1el Z ={L 2 N : Lisa graded submodule of M donot containm} . Then
Z is not empty and by Zorn's lemma it possesses a maximal element with respect to

inclusion, say C. We show that C is a “closed submodule of M . Let r,se Z(C).
Then there exist x, ye H(M)\C such that rx, sye C. Now by the maximality of C
we have meC+Rx and meC+Ry. This gives that rmerC+RrxcC and
sme sC+ Rsy < C . Therefore (r—s)me C and so r—se Z(C). Consequently C 1s an
" closed submodule of M .

Lemma 3 The following statements are equivalent.

(1) M isa g.d R-module.

(i) (Rx:; ¥)+(Ry:, x)=R forall x,ye H(M) with deg(x)=deg(y).
Furthermore if R is ~quasi local, then each of the above is equivalent to

(iii) The set of all graded submodules of M are linearly ordered with respect to
inclusion.

(iv) The set of all graded cyclic submodules of M is linearly ordered with respect to
inclusion.

Proof. (i)=(ii). Let x,ye H(M) be such that deg(x)=deg(y). Then we have
x€ Rxn(Ry+ R(x—y)). By assumption it follows that xe RxnRy+RxNR(x—y).
Hence there exist r,se€ R, such that x=ry+s(x—y). From this we deduce that
sye Rx. On the other hand we have (l-s)x=(r—s)y, which imply that
1—s€(Ry:, x). Therefore 1= s +(1-s)€e (Rx 'z Y)+(Ry:; x), as desired.

(il)=> (). Let X,Y and Z be graded submodules of M . Let xe XN(Y+Z) be a
homogeneous element. Then there exist homogeneous elements ye Y a\ll\l/ii/vvf’-/.%I%.iq’rUCh
that x=y+z and deg(x)=deg(y)=deg(z). By assumption we have
(Rx:, y)+(Ry:, x)=R. Therefore there exists re R such that re (Rx:;; y) and
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l-re (Ry:, x). Hence we have x=(1-r)x+ry+rz=sy+rz, for some se R. Now

xe€ (RxNRy)+(RxNRz)c (X NY)+(X NZ). As the opposite inclusion always
holds, the result follows.

(iii)= (iv) is clear.

(iv)=> (iii) Assume (iii) dose not hold. Then there exist graded submodyls X,Y of M
such that XZY and YZX . This gives that there exist xe H(X)\Y and ye H(Y)\ X .
Hence RxZRy and RyZRx, which contradicts to (iv).

Furthermore if R is ~quasi local it has been proved in [6. Lemma 5.22], that (i) and (iv)
are equivalent.

Lemma 4 ([6. Lemma 5. 24]) M is a g.d R-module if and only if M, is a g.d R, -

module for each graded prime ("~ maximal) ideal p of R .

Lemma 5 Foran R -module M the following statements are equivalent.

(i) M isag.d R-module.

(ii) For each proper graded submodule N of M and each graded prime ("~ maximal)
ideal p of R, N, isan "irreducible submodule of M.
Proof. ()= (ii). Let N be a proper graded submodule of M and let p be a graded
prime ideal of R which contains N:, M .Let N, =K NL,, . (Note that each graded
submodule of M, can be written as a homogeneous localization of some graded
submodule of M at p.) By Lemma 4, M, is a g.d module over the ~quasi local ring
R, . Therefore by Lemma 3, either L, c K, or K, c L

(p) p) ="1p>
N, =K, .Thus N, is irreducible.

(i))= (). In view of Lemmas 3 and 4 it is enough to prove that for each graded prime
ideal p of R, any two graded submodules of M, are comparable. So let p be a graded

ie. either N, =L, or

(p)

prime ideal of R and let K, , L, be proper graded submodules of M . We may

(p)?
assume that (M: KNL)cp. So by assumption K, "L, =(KNL), Iis an
“irreducible submodule of M . so either K, c K, NL, or L,cK, NL,.
and the result follows.

Consequently either K, c L, or L, c K

) (p)

Lemma 6 Let N be a graded submodule of M and p be a graded prime (" maximal)
ideal of R . If N

submodule of M . Furthermore if M is torsion free, the converse holds.
Proof. (=). Let N(p)=KnNL for some graded submodules K,L of M. By

homogeneous localizing at p and using the fact that (N(p)),, =\M\N\78ﬁ5 ipave
N, =K, NL, . Hence by assumption either N, =K or N, =L,
that either N(p)=K or N(p)=1L.

,is an " irreducible submodule of M, then N(p) is an “irreducible

) which gives
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(&).Let K,L Le graded submodules of M such that N

Np)=N,NM =(K, N"M)N (L,

have N(p)=L(p) or N(p)= K(p) and so by homogeneous localizing at p, N, =K,

or N, =L,.

From the above observations we deduce the following corollary.

w = K, ML, . This gives that

NM)=K(@{p)nL(p). Thus by assumption we

Corollary 7 Let M be a torsion free R-module. Then the following statements are
equivalent.
(@) M isag.d R-module.

(b) For each graded submodule N of M , each graded prime (" maximal) ideal p of
R El
N(p) is an " irreducible submodule of M .

Lemma 8 Let N be a finitely generated graded submodule of M and let p be a
graded prime ideal of R. Assume that N #0. Then (pN)(p) is an “closed
submodule of M .

Proof. We show that Z((pN)(p))=p. First let re Z((pN)(p)). Then there exists
me H(M)\(pN)(p) such that rme (pN)(p). It follows that (pN:, m)Cp and that
there exists e H(R)\p such that rtme pN . Hence rfe p and so re p. Consequently
Z((pN)(p)) < p. In order to prove the other inclusion, let re p. Since N is finitely
generated and N, #0, using the graded version of Nakayama's Lemma (see[ll,

Lemma L.7.5]), we have (pN), #N,,,. This gives that (pN)(p)# N(p). Since in any

(p)*
case we have (pN)(p)< N(p) and N(p) < (pN)(p):, p. so (pN)(p) < (pPN)(p):,, p.
This gives that there exists xe H(M)\(pN)(p) such that rxe (pN)(p), i.e.,
(pN)(p) C ((pN)(p):,, r). Hence re Z((pN)(p)) and the proof is complete.

Following [135, p. 72], we define a prime ideal p of R to be a Krull associated prime of
M if for every element 7€ p, there exists xe M such that 1€ 0:, x cp. We denote by
K(M) (resp. by mK(M)) the set of all Krull associated primes of M (resp. the set of
all maximal members of K(M)). Since M is a graded R module, then each element of
pe K(M) must be graded; furthermore for each element rep, we can choose a
homogeneous element x such that re0:, xcp. To see this let pe K(M). Let
t,+..+t, =tep be the decomposition of ¢ as a sum of homogeneous elements 7, of

degree i. By assumption there exists x,+..+x, =xeM such that zx=0 and

that 7 x =0, and by induction, # x, .. =0 for all i>1. Therefore 7,x=0 for

mu R
sufficiently large value of /. As is prime ideal, we have r € p. Iteratine .this
S P P H pvvvvw?gl%.lr
procedure we see that each homogeneous component of ¢ belongs to p. In order to

prove the second assertion, we have NZ' (0:, x,) €p. Since p is a prime ideal, there

=
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exists j with (0:, x,)cp. As 1€ (0:, x;) forall i=u,...,v; the proof of the claim is

complete.

A prime ideal p is called weak Bourbaki associated prime of M if it is minimal prime
divisor of 0:, x for some xe M . We will denote the set of all weak Bourbaki
associated primes of M by wB(M). It is known that (see for example [9, Lemma
2.15]), the set wB(M) is non empty. The fact that the set K(M) is not empty and that
each element of wB(M ) is graded follows from the following.

Proposition 9 ([8, Theorem 1]) With the above notation wB (M) < K(M).
Let “Spec(R) be the set of all graded prime ideals of R . It should be noted that for each
proper submodule N of M, N :ﬁpe*Spec(R)N(p)' The components N(p) in this

representation in general do not need to be ~closed. However if we focus our attention
on the graded prime ideals which belongs to mK (M/N), then we have a representation

of N such that each component is ~closed. In fact:

Theorem 10 Let N be a proper graded submodule of M. Then we have
N =ﬂpemmww;N (p), where the components N(p) are p—*= closed submodules with

distinct and incomparable graded primes Z(N(P)) =p.

Proof. First we note that N = ﬂ N(p). To see this, let xe H(M)\N.Let g be a

pemK (MIN )
minimal prime divisor of N:, x. Then there exists pe mK(M/N) such that qcp.
Hence N:, xcp and so x is not an element of N(p). Consequently x is not in
ﬂ ~ N(p) and we deduce the claim.

pemK {MIN)

Now to complete the proof it suffices to prove that if pe K(M/N), then N(p) is
p— closed; i.e., Z(N(p))=p. To this end, assume that r =r, +...+r, is not an element
of p. Then there exists m< j<n such that r; is not in p. We show that
(N():, r)=N(p). To this end, let xe H(M) such that rxe N(p). Since N(p) is a
graded submodule of M , this gives that all homogeneous components of rx are in
N(p). in particular r,xe N(p). This gives that there exists s€ H(R)\p such that
sr;xe N and so xe N(p). So Z(N(p))cp. To prove the other inclusion let rep.
Since pe K(M/N), there exists xe M \N(p) such that re N(p):; xcp. Therefore
we have N(p)c N(p):,, r and so re Z(N(p)).

The Category of graded R modules has as objects the graded R -modules. A
morphism f:M — M in this category is an R-module homomorphism satisfying
f(M.)c M, for all ieZ. A graded R-module E is called injective if it is an
injective object in this category. One call an extension N c M of graded, R fmodules
“essential extension if for any graded submodule 0#U < M one has UNN #0. In
analogy to the definition in the non-graded case, E is called a " injective hull of N if it
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is injective and essential extension of N . In view of [1, 3.6.2], any graded module

R-module X admits a unique injective hull up to isomorphism. We denote the
“injective hull of X by "E(X). A graded R-module is said to be " indecomposible
precisely when it is non-zero and cannot be written as the direct sum of two proper
graded submodules. By a similar argument as in the non-graded case one can see easily

that a graded submodule U of M is “irreducible if and only if "E(MM/U) is

" indecomposible.

Proof of Theorem A

(i)=(ii). Let N be an "closed proper submodule of M with Z(N)=p. This
gives that N(p) = N . Now the result follows by Corollary 7.

(ii) = (i). By virtue of Lemma 4, it is enough to show that for each ~maximal ideal
m of R, M, is a g.d module over the ~quasi local ring R, - To do this, by Lemma
3, it suffices to prove that for any x,ye H(M), either <x/l>c<y/l> or
<y/1>c<x/1>. To this end, let N=<x,y> and N #0. (If N = 0, then

(m)

x/1= y/1=0 and there is nothing to prove.) Then by Lemma 8, (mMN)(m) is an ~closed
and so by our assumption an irreducible submodule of M . Hence by Lemma 6,
(MN)y, is an “irreducible submodule of M . But R, /(M)R,, is either a field or is

(m) (m) * mj
of the form k[#,t™'], where ¢ is a homogeneous element of positive degree which is
transcendental over k (see [1, Lemma 1.5.7]). Since by [7, Lemma 1.1.1], any graded
module over kft,”'] is graded free, this gives that either N /mN,

o 15-& Timite

dimensional vector space over the field R, /MR, , or is a rank one graded free module

(m})

over R /MR . Therefore in any case we have either N, =<x/1>+(mN),, or
Ny =< ¥/1>+(mMN), . Hence by the graded version of Nakayama's Lemma
N =<x/l> or N, =<y/1>, which gives that either <x/1>c<y/l1> or

< y/1>c< x/1> and the result follows.

(i)= (iii). Suppose the contrary; i.e., there exist ie Z, x,ye M, and an " maximal
ideal m such that Rx(m)URy(m) and Ry(m)URx(m). It follows that x is not an
element of Ry(m) and y is not an element of Rx(m). Our assumption together with
Lemma 3, give that there exists r€ R, such that rxe Ry and (1-r)y€ Rx. Since m is

" maximal ideal, at least one of the elements r, 1—r is not contained in m. So at least
one of the homogeneous components of r or one of the homogeneous components of
1—r is not contained in m. If the first possibility is true, it follows that xe Ry(m), a

contradiction. With the second possibility we come to the contradiction y e Rx(m).
(ii1) = (i). Assume that (i) does not hold. Then, by Lemma 3, there exist ie Z and
x,y€ M, and an “maximal ideal m of R such that (Ry:, x)+(Rx:, y)cm. It follows
that ye Ry(m)\ Rx(m) and xe Rx(m)\ Ry(m), contracting to (iii). wWWW.SID.ir
(i) (iv). This follows by the paragraph before the proof of the theorem and
Corollary 7.
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The result of the previous Theorem is that for each graded submodule N of a g.d

module M , the representation of N as an intersection of ~closed modules given in

Theorem A, is a decomposition of N into “irreducible components. In theorem B, we
show that this condition is in fact sufficient for M to be g.d module.

Proof of Theorem B
()= (ii) follows from Theorems 10 and Theorem A .

(ii)=> (i). By Lemma 3 and 4 it is enough to show that for each ~maximal ideal m
of R the graded cyclic submodules of M are totally ordered. To this end, let

x,ye H(M).

Set N =< x,y >. Then by assumption mN = ﬂ (MN)(P), is an " irreducible

pemK (MimN)
decomposition of mAN . We claim that me mK(M/mN). If this is not the case, then
(MN)(p) = N(p) for all pe mK(M/mN). This gives that mN = ﬂ N(P)2 N .

pe MaxK (MmN )
But since N is finitely generated graded NUMN . Hence me mK(M/mN) and
(MN)(m) is an irreducible submodule of M . Thus by Lemma 6, (MN),, is an

“irreducible submodule of M . The result now follows by the same argument as in
the proof of the Theorem A part (ii) = (i).
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