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Abstract

Let R be a Z- graded commutative ring with identity. Several characterizations of graded
distributive modules will be investigate.
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1 Introduction

Let R be a Z -graded commutative ring with non-zero identity and M be a Z-
graded R -module. We shall say that M is a graded distributive module (for brevity a
g.d module) if the lattice of its graded submodules is distributive, i.e., if
(X+Y)nZ=(XnZ)+(YnZ) for all graded submodules X,Y,Z of M (or
equivalently, (X ny)+Z =(X +Z)n(Y +Z) for all graded submodules X,Y,Z of
M ). The notion of distributive modules has been introduced and studied independently
by T. M. K. Davison [2] and W. Stephenson [12]. There are many important and
considerable research on the structure and characterization of distributive modules (see
for example [3, 4, 5, 13, 14]), however, to the best of author knowledge there are few
results concerning the graded version of this concept [6, 10].

In this paper we will give several characterizations of g.d modules. In fact, among
other things, we prove:

Theorem A Let M be a tortionfree graded R - module. Thefollowing statements are
equevalent.
(i) M is a g.d R -module.

(ii) Every * closed submodule of M is * irreducible.
(iii) For any iE Z, any x, y E M i and any *maximalideal m, the gradedsubmodules
Rx(m) and Ry(m) are comparable with respect to inclusion.
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(iv) For each graded submodule N of M and each * maximal ideal m containing
N:R M, *ER(MIN(m)) is *indecomposable.

Theorem B For a graded torsion free R -module M, the following statements are
equivalent.

(i) M is a g.d module.
(ii) For each proper graded submodule N of M, N =n N(p) is anpEmK(M/N)

" irreducible decomposition of N .

To prove Theorems A and B, we need a series of assertions. We present the
necessary notation and definitions. Let R = (fJiEZRi and let M = (fJiEZMi. Then the

elements of M i are called homogeneous of degree i. The set of all homogeneous

elements of R (resp. M) is denoted by H (R) (resp. H (M)). Given multiplicatively

closed subset S ~ H (R) , the ring of fractions S-1R turns into a graded ring by setting

(S-IR)i = {rls: rE H(R),SE S,i =deg(r)-deg(s)}

for each i E Z, where deg(r) represents the degree of the homogeneous element r. We

recallthat S-IM can be defined as S-IR@RM,whichisagraded S-IR-module. In

the case that p is a graded prime ideal and S = H(R)\p, the graded ring S-IR (resp.

0 graded S-I R -module S-IM) is denoted by R(p) (resp. M (P»)' and is called the

homogeneous localization of R (resp. M) at p. A graded ideal m is called" maximal

if it is maximal in the lattice of all graded ideals of R. The ring R is called" quasi

local if it has a unique" maximal ideal. Let N be a graded submodule of M and let p

be a graded prime ideal of R. We set N(p) = USEH(R)\p(N:Ms), which is a graded

submodule of M containing N . We note that when M is a torsion free R -module
(that is when {XE M : rs =0 for some nonzero rE R} ={O}), then evidently

N(p) =N(p) (1M . We set

Z(N)={aER:Nc(N:M a)}.

Then R\Z(N) is a multiplicatively closed subset of R. We say that N is a ., closed

submodule of M if ZeN) itself forms an ideal p of R. In this case p is a prime ideal

of R and we say that N is p-* closed. Indeed then ZeN) is a graded prime ideal. To

see this let a = am+...+a" E ZeN) be the decomposition of a as a sum of

homogeneous elements ai. Then there exists x E H (M) \ N such that

amx...+anx = aXE N. Since N is graded this gives that aixE N for each i =m,...,n. It

follows that N c N:M ai for each i =m,...,n , i.e., each homogeneous components of a

belongs to Z(N).
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Finally we say that N is an "irreducible submodule of M precisely when for
graded submodules N1,N 2 of M , N =N1 n N 2 implies that either N =Nj or N =N 2 .

Proposition 1 Let N be an "irreducible submodule of M. Then N is a "closed
submodule of M .

Proof Let r,SE Z(N). It follows that N c (N:M r) and N c (N:M s). Hence by

assumption Nc(N:M r)n(N:M s)=(N:M r-s), which means that r-sEZ(N).

Since the product of an element of R and an element of ZeN) is always a element of

Z(N), the claim follows.

Proposition 2 Every graded submodule of M is the intersection of * closed
submodules.

Proof. Let N be a graded submodule of M. Since the module M itself, being
" irreducible, is "closed, so the intersection of all "closed submodules of M containing
N is non-empty. Hence to prove the claim it is enough to show that for each
mE H (M) \ N there exist an "closed submodule C of M containing N such that m

is not in C. Let I ={L :) N : Lis a graded submoduleof M donot containm}. Then

I is not empty and by Zorn's lemma it possesses a maximal element with respect to

inclusion, say C. We show that C is a "closed submodule of M . Let r, s E Z (C) .

Then there exist x,yE H(M)\C such that rx, SYEC. Now by the maximality of C

we have mE C + Rx and mE C + Ry. This gives that rmE rC + Rrx c C and

sm E sC + Rsy c;;,C . Therefore (r - s)m E C and so r - s E Z(C). Consequently C is an
* closed submodule of M .

Lemma 3 Thefollowing statements are equivalent.
(i) M is a g.d R -module.
(ii) (Rx:R y) + (RY:R x) = R for all x, y E H (M) with deg (x) =deg (y).

Furthermore if R is * quasi local, then each of the above is equivalent to
(iii) The set of all graded submodules of M are linearly ordered with respect to
inclusion.

(iv) The set of all graded cyclic submodules of M is linearly ordered with respect to
inclusion.

Proof (i) =>(ii). Let x, y E H (M) be such that deg( x )=deg( y). Then we have

xERxn(Ry+R(x-y)). By assumption it follows that xERxnRy+RxnR(x-y).

Hence there exist r, s E Ro such that x =ry + s( x - y). From this we deduce that

sYERx. On the other hand we have (1-s)x=(r-s)y, which imply that

1- s E (RY:R x). Therefore 1=s + (1- S)E (RX:R y) + (RY:R x), as desired.

(ii) =>(i). Let X, Y and Z be graded submodules of M . Let x E X n (Y + Z) be a
homogeneous element. Then there exist homogeneous elements y E Y and z E Z such

that x=y+z and deg(x)=deg(y)=deg(z). By assumption we have

(Rx:R y)+(RY:R x)=R. Therefore there exists rE R such that rE (Rx:R y) and
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l-rE(RY:Rx). Hence we have x=(1-r)x+ry+rz=sy+rz, for some SER. Now

XE (RxnRy)+(RxnRz)c(X ny)+(X nZ). As the opposite inclusion always
holds, the result follows.
(iii) => (iv) is clear.
(iv)=> (iii) Assume (iii) dose not hold. Then there exist graded submodyls X,Y of M

such that X~;Y and Y~. This gives that there exist XE H(X)\Y and yE H(Y)\X .

Hence Rxlfiy and Rylfix, which contradicts to (iv).

Furthermore if R is * quasi local it has been proved in [6. Lemma 5.22], that (i) and (iv)
are equivalent.

Lemma 4 ([6. Lemma 5.24]) M is a g.d R -module if and only if MCP)is a g.d RCp)-

module for each graded prime (* maximal) ideal p of R .

Lemma 5 For an R -module M the following statements are equivalent.
(i) M is a g.d R -module.

(ii) For each proper graded submodule N of M and each graded prime (* maximal)

ideal p of R , NCP)is an *irreducible submodule of M CP).

Proof. (i)=> (ii). Let N be a proper graded submodule of M and let p be a graded

prime ideal of R which contains N:R M . Let NCP)=KCP)n LCP). (Note that each graded

submodule of M Cp)can be written as a homogeneous localization of some graded

.submodule of M at p.) By Lemma 4, M CP)is a g.d module over the * quasi local ring

RCP)'Therefore by Lemma 3, either LCP)~ KCP)or KCP)~ LCP), i.e. either NCP)=LCP)or

NCP) =KCP) . Thus NCP)is irreducible.

(ii) => (i). In view of Lemmas 3 and 4 it is enough to prove that for each graded prime

ideal p of R, any two graded submodules of M Cp)are comparable. So let p be a graded

prime ideal of R and let KCP)' LCP)be proper graded submodules of Mcp)' We may

assume that (M:R K n L) ~ p. So by assumption KCP)n LCP)=(K n L\p) is an

* irreducible submodule of M Cp)' so either KCP)~ KCP)n LCP) or LCP)c KCP)n LCP) .

Consequently either KCP)c LCP)or LCP)~ KCP)and the result follows.

Lemma 6 Let N be a graded submodule of M and p be a graded prime Cmaximal)

ideal of R . If NCP)is an * irreducible submodule of M Cp)'then N (p) is an *irreducible

submoduleof M . Furthermoreif M is torsionfree, the converseholds.
Proof (=». Let N(p) =K nL for some graded submodules K,L of M. By

homogeneous localizing at p and using the fact that (N(p))cP)=NCp)' we have

NCP)= KCP)n LCP)'Hence by assumption either NCP)=KCP) or NCP)= LCP)'which gives
that either N(p) =K or N(p) = L.

Archive of SID

www.SID.ir

www.SID.ir


Journal of Applied Mathematics, Islamic Azad University of Lahijan Vol.S, No.16, Spring 2008

( ~). Let K, L be graded submodules of M such that N(p)=K(p)n L(p)' This gives that

N(p)=N(p)nM=(K(p)nM)n(L(p)nM)=K(p)nL(p). Thus by assumption we

have N(p) = L(p) or N(p) = K(p) and so by homogeneous localizing at p, N(p) = K(p)

or N(p) = L(p).

From the above observations we deduce the following corollary.

Corollary 7 Let M be a torsion free R -module. Then the following statements are
equivalent.
(a) M is a g.d R -module.

(b) For each graded submodule N of M , each graded prime Cmaximal) ideal p of
R,
N (p) is an *irreducible submodule of M .

Lemma 8 Let N be a finitely generated graded submodule of M and let p be a

graded prime ideal of R. Assume that N(p)*-O. Then (pN)(p) is an "closed
submodule of M .

Proof. We show that Z((pN)(p» =p. First let rE Z((pN)(p». Then there exists

mE H(M)\(pN)(p) such that rmE (pN)(p). It follows that (pN:R m)cp and that

there exists t E H (R) \ P such that rtm E pN . Hence rt E p and so r E p. Consequently

Z((pN)(p» ~ p. In order to prove the other inclusion, let rE p. Since N is finitely

generated and N(p) *-0, using the graded version of Nakayama's Lemma (see[ll,

Lemma 1.7.5]), we have (pN)(p) *-N(p)' This gives that (pN)(p) *-N(p). Since in any

case we have (pN)(p) ~ N(p) and N(p) ~ (pN)(P):M p, so (pN)(p) c (pN)(P):M p.

This gives that there exists XE H(M)\(pN)(p) such that rXE (pN)(p), i.e.,

(pN)(p) c ((pN)(P):M r). Hence rE Z((pN)(p» and the proof is complete.

Following [15, p. 72], we define a prime ideal p of R to be a Krull associated prime of

M if for every element t E p, there exists x EM such that t EO:R x ~ p. We denote by

K (M) (resp. by mK (M» the set of all Krull associated primes of M (resp. the set of

all maximal members of K (M) ). Since M is a graded R module, then each element of

p E K (M) must be graded; furthermore for each element t E p, we can choose a

homogeneous element x such that tE O:Rx ~ p. To see this let pE K(M). Let

t", + ... + tll = t E P be the decomposition of t as a sum of homogeneous elements ti of

degree i. By assumption there exists Xu+... + Xv= XE M such that tx = 0 and

O:R x c p. So we have the equations LIi+i=.liXj =0 for s = m + u,..., n + v. It follows

that t",xu= 0, and by induction, t~,XU+;-1= 0 for all i;::;:1. Therefore t:nx= 0 for

sufficiently large value of I. As P is prime ideal, we have t",E p. Iterating this

procedure we see that each homogeneous component of t belongs to p. In order to

prove the second assertion, we have n::: (O:RXi) ~ p. Since p is a prime ideal, there
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exists j with (O:Rxi)~p.As tE(O:RX;) for all i=u,...,v; the proof of the claim is

complete.

A prime ideal p is called weak Bourbaki associated prime of M if it is minimal prime

divisor of O:Rx for some x EM. We will denote the set of all weak Bourbaki
associated primes of M by wB(M). It is known that (see for example [9, Lemma
2.15]), the set wB(M) is non empty. The fact that the set K(M) is not empty and that
each element of wB(M) is graded follows from the following.

Proposition 9 ([8, Theorem 1]) With the above notation wB (M) ~ K(M).

Let" Spec(R) be the set of all graded prime ideals of R . It should be noted that for each

proper submodule N of M, N =n pE*Spec( R) N (p). The components N (p) in this

representation in general do not need to be * closed. However if we focus our attention
on the graded prime ideals which belongs to mK (M/N) , then we have a representation

of N such that each component is * closed. In fact:

Theorem 10 Let N be a proper graded submodule of M. Then we have
N =n N(p), where the components N(p) are p-* closed submodules with

pEmK (M/N)

distinct and incomparable graded primes Z(N(p)) =p.

Proof. First we note that N =n N(p). To see this, let XE H(M) \N . Let q be a. pEmK(M/N)

minimal prime divisor of N:R x. Then there exists pE mK(M/N) such that q c p.

Hence N:R x c p and so x is not an element of N(p). Consequently x is not in

n N (p) and we deduce the claim.pEmK(M/N)

Now to complete the proof it suffices to prove that if pE K(M/N), then N(p) is

p-* closed; i.e., Z(N(p)) = p. To this end, assume that r = rm+...+ rn is not an element

of p. Then there exists m S j S n such that rj is not in p. We show that

(N(P):M r) =N(p). To this end, let XE H(M) such that rXE N(p). Since N(p) is a

graded submodule of M , this gives that all homogeneous components of rx are in

N (p), in particular rjx E N (p). This gives that there exists s E H (R) \ P such that

SrjXE N and so XE N(p). So Z(N(p)) ~ p. To prove the other inclusion let r E p.

Since pE K(M/N), there exists XE M \ N(p) such that rE N(P):R x c p. Therefore

we have N(p) c N(P):M r and so rE Z(N(p)).

The Category of graded R modules has as objects the graded R -modules. A

morphism f: M ~ M' in this category is an R -module homomorphism satisfying

f (M) eM; for all i E Z. A graded R -module E is called" injective if it is an

injective object in this category. One call an extension N eM of graded R -modules

* essential extension if for any graded submodule 0 =1= U c M one has U n N =1= O. In
analogy to the definition in the non-graded case, E is called a *injective hull of N if it
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is * injective and' essential extension of N . In view of [1, 3.6.2], any graded module
R -module X admits a unique * injective hull up to isomorphism. We denote the
* injective hull of X by *E(X). A graded R -module is said to be * indecomposible
precisely when it is non-zero and cannot be written as the direct sum of two proper
graded submodules. By a similar argument as in the non-graded case one can see easily
that a graded submodule U of M is * irreducible if and only if * E(M/U) is

* indecomposible.

Proof of Theorem A

(i)=> (ii). Let N be an * closed proper submoduleof M with ZeN) =p. This
gives that N(p) =N . Now the result follows by Corollary 7.

(ii)=> (i). By virtue of Lemma 4, it is enough to show that for each * maximal ideal

m of R, Mem) is a g.d module over the * quasi local ring Rem)'To do this, by Lemma

3, it suffice-s to prove that for any x, yE H(M), either < x/I >c< y/l> or

< y/l >c< x/l >. To this end, let N =< x, y > and Nem)=1=O. (If N(m) = 0, then

x/l = y/l = 0 and there is nothing to prove.) Then by Lemma 8, (mN)(m) is an *closed

and so by our assumption an * irreducible submodule of M . Hence by Lemma 6,

(mN)(m) is an * irreducible submodule of Mem)' But R(m/(m)Rcm) is either a field or is

of the form k[t,t-l], where t is a homogeneous element of positive degree which is'
transcendental over k (see [1, Lemma 1.5.7]). Since by [7, Lemma 1.1.1], any graded

module over k[t,r1] is graded free, this gives that either Nem/mNcm)is a finite

dimensional vector space over the field Rcm/mRcm)'or is a rank one graded free module

over Rem/mR(m)'Theref~)fein any case we have either Ncm =< x/l > +(mN)cm) or

N(m)=< y/l > +(mN)(m)' Hence by the graded version of Nakayama's Lemma

Ncm)=< x/l > or N(m)=< y/l > , which gives that either < x/I >~< y/l> or
< y/l >~< xll > and the result follows.

(i) =>(iii). Suppose the contrary; i.e., there exist iE Z, x, y E M i and an * maximal

ideal m such that Rx(m)URy(m) and Ry(m)URx(m). It follows that x is not an
element of Ry(m) and y is not an element of Rx(m). Our assumption together with
Lemma 3, give that there exists rE R, such that rXE Ry and (l-r)YE Rx. Since m is
* maximal ideal, at least one of the elements r, 1- r is not contained in m. So at least
one of the homogeneous components of r or one of the homogeneous components of
1- r is not contained in m. If the first possibility is true, it follows that x E Ry(m), a

contradiction. With the second possibility we come to the contradiction y E Rx(m).

(iii) => (i). Assume that (i) does not hold. Then, by Lemma 3, there exist i E Z and

x, YE Mi and an *maximal ideal m of R such that (RY:Rx)+ (Rx:R y) em. It follows

that y E Ry(m) \ Rx(m) and XE Rx(m) \ Ry(m) , contracting to (iii).

(i) {::}(iv). This follows by the paragraph before the proof of the theorem and
Corollary 7.
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The result of the previous Theorem is that for each graded submodule N of a g.d
module M , the representation of N as an intersection of "closed modules given in
Theorem A, is a decomposition of N into * irreducible components. In theorem B , we
show that this condition is in fact sufficient for M to be g.d module.

Proof of Theorem B

(i) =>(ii) follows from Theorems 10 and Theorem A.

(ii)=>(i). By Lemma 3 and 4 it is enough to show that for each * maximal ideal m
of R the graded cyclic sub modules of M(m) are totally ordered. To this end, let

x,YEH(M).

Set N =< x, Y >. Then by assumption mN =n (mN)(p), is an *irreduciblepemK(MlmN)

decomposition of mN . We claim that mE mK (M/mN). If this is not the case, then

(mN)(p) =N(p) for all pE mK(M/mN). This gives that mN =n N(p) -;dN .
peMaxK(MlmN)

But since N is finitely generated graded NUmN. Hence mE mK(M/mN) and

(mN)(m) is an "irreducible submodule of M . Thus by Lemma 6, (mN)(m) is an

*irreducible submodule of M (m)' The result now follows by the same argument as in

the proof of the Theorem A part (ii) => (i).
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