Characterizations of Graded Distributive Modules

Naser Zamani¹

Faculty of science, University of Mohaghegh Ardabili, P. O. Box 179, Ardabil, Iran

Abstract

Let R be a Z-graded commutative ring with identity. Several characterizations of graded distributive modules will be investigate.

Keywords: Graded Distributive Modules, Krull Associated Primes, Weak Bourbaki Associated Primes.

1 Introduction

Let *R* be a Z-graded commutative ring with non-zero identity and *M* be a Z-graded *R*-module. We shall say that *M* is a graded distributive module (for brevity a g.d module) if the lattice of its graded submodules is distributive, i.e., if $(X+Y) \cap Z = (X \cap Z) + (Y \cap Z)$ for all graded submodules X, Y, Z of *M* (or equivalently, $(X \cap Y) + Z = (X+Z) \cap (Y+Z)$ for all graded submodules X, Y, Z of *M*). The notion of distributive modules has been introduced and studied independently by T. M. K. Davison [2] and W. Stephenson [12]. There are many important and considerable research on the structure and characterization of distributive modules (see for example [3, 4, 5, 13, 14]), however, to the best of author knowledge there are few results concerning the graded version of this concept [6, 10].

In this paper we will give several characterizations of g.d modules. In fact, among other things, we prove:

Theorem A Let *M* be a tortion free graded *R* - module. The following statements are equevalent.

(i) M is a g.d R-module.

(ii) Every ^{*} closed submodule of M is ^{*} irreducible.

(iii) For any $i \in Z$, any $x, y \in M_i$ and any * maximal ideal m, the graded submodules Rx(m) and Ry(m) are comparable with respect to inclusion.

www.SID.ir

¹ Corresponding author.

E-mail address: naserzaka@yahoo.com

(iv) For each graded submodule N of M and each * maximal ideal m containing $N :_{R} M$, ${}^{*}E_{R}(M/N(m))$ is *indecomposable.

Theorem B For a graded torsion free R-module M, the following statements are equivalent.

(i) M is a g.d module.

(ii) For each proper graded submodule N of M, $N = \bigcap_{p \in mK(M/N)} N(p)$ is an * irreducible decomposition of N.

To prove Theorems A and B, we need a series of assertions. We present the necessary notation and definitions. Let $R = \bigoplus_{i \in \mathbb{Z}} R_i$ and let $M = \bigoplus_{i \in \mathbb{Z}} M_i$. Then the elements of M_i are called homogeneous of degree *i*. The set of all homogeneous elements of *R* (resp. *M*) is denoted by H(R) (resp. H(M)). Given multiplicatively closed subset $S \subseteq H(R)$, the ring of fractions $S^{-1}R$ turns into a graded ring by setting

$$(S^{-1}R)_i = \{r/s : r \in H(R), s \in S, i = deg(r) - deg(s)\}$$

for each $i \in \mathbb{Z}$, where deg(r) represents the degree of the homogeneous element r. We recall that $S^{-1}M$ can be defined as $S^{-1}R \otimes_R M$, which is a graded $S^{-1}R$ - module. In the case that p is a graded prime ideal and $S = H(R) \setminus p$, the graded ring $S^{-1}R$ (resp. graded $S^{-1}R$ -module $S^{-1}M$) is denoted by $R_{(p)}$ (resp. $M_{(p)}$), and is called the homogeneous localization of R (resp. M) at p. A graded ideal m is called * maximal if it is maximal in the lattice of all graded ideals of R. The ring R is called * quasi local if it has a unique * maximal ideal. Let N be a graded submodule of M and let p be a graded prime ideal of R. We set $N(p) = \bigcup_{s \in H(R) \setminus p} (N :_M s)$, which is a graded submodule of M containing N. We note that when M is a torsion free R-module (that is when $\{x \in M : rs = 0$ for some nonzero $r \in R\} = \{0\}$), then evidently $N(p) = N_{(p)} \cap M$. We set

$$Z(N) = \{a \in R : N \subset (N :_M a)\}.$$

Then $R \setminus Z(N)$ is a multiplicatively closed subset of R. We say that N is a * closed submodule of M if Z(N) itself forms an ideal p of R. In this case p is a prime ideal of R and we say that N is p^{-*} closed. Indeed then Z(N) is a graded prime ideal. To see this let $a = a_m + ... + a_n \in Z(N)$ be the decomposition of a as a sum of homogeneous elements a_i . Then there exists $x \in H(M) \setminus N$ such that $a_m x ... + a_n x = ax \in N$. Since N is graded this gives that $a_i x \in N$ for each i = m, ..., n. It follows that $N \subset N :_M a_i$ for each i = m, ..., n, i.e., each homogeneous components of a belongs to Z(N).

Archive of SID Finally we say that N is an *"irreducible* submodule of M precisely when for graded submodules N_1, N_2 of M, $N = N_1 \cap N_2$ implies that either $N = N_1$ or $N = N_2$.

Proposition 1 Let N be an ^{*}irreducible submodule of M. Then N is a ^{*}closed submodule of M.

Proof. Let $r, s \in Z(N)$. It follows that $N \subset (N_M; r)$ and $N \subset (N_M; s)$. Hence by assumption $N \subset (N:_M r) \cap (N:_M s) = (N:_M r-s)$, which means that $r-s \in Z(N)$. Since the product of an element of R and an element of Z(N) is always a element of Z(N), the claim follows.

Proposition 2 Every graded submodule of M is the intersection of * closed submodules.

Proof. Let N be a graded submodule of M. Since the module M itself, being * irreducible, is * closed, so the intersection of all * closed submodules of M containing N is non-empty. Hence to prove the claim it is enough to show that for each $m \in H(M) \setminus N$ there exist an ^{*} closed submodule C of M containing N such that m is not in C. Let $\sum = \{L \supseteq N : Lis \text{ a graded submodule of } M \text{ donot contain } m\}$. Then \sum is not empty and by Zorn's lemma it possesses a maximal element with respect to inclusion, say C. We show that C is a "closed submodule of M. Let $r, s \in Z(C)$. Then there exist $x, y \in H(M) \setminus C$ such that $rx, sy \in C$. Now by the maximality of C we have $m \in C + Rx$ and $m \in C + Ry$. This gives that $rm \in rC + Rrx \subseteq C$ and $sm \in sC + Rsy \subseteq C$. Therefore $(r-s)m \in C$ and so $r-s \in Z(C)$. Consequently C is an * closed submodule of M.

Lemma 3 The following statements are equivalent.

(i) M is a g.d R-module.

(ii) $(Rx_{\mathbb{R}} y) + (Ry_{\mathbb{R}} x) = R$ for all $x, y \in H(M)$ with $\deg(x) = \deg(y)$.

Furthermore if R is ^{*} quasi local, then each of the above is equivalent to

(iii) The set of all graded submodules of M are linearly ordered with respect to inclusion.

(iv) The set of all graded cyclic submodules of M is linearly ordered with respect to inclusion.

Proof. (i) \Rightarrow (ii). Let $x, y \in H(M)$ be such that deg(x)=deg(y). Then we have $x \in Rx \cap (Ry + R(x - y))$. By assumption it follows that $x \in Rx \cap Ry + Rx \cap R(x - y)$. Hence there exist $r, s \in R_0$ such that x = ry + s(x - y). From this we deduce that $sy \in Rx$. On the other hand we have (1-s)x = (r-s)y, which imply that $1-s \in (Ry_{R}, x)$. Therefore $1 = s + (1-s) \in (Rx_{R}, y) + (Ry_{R}, x)$, as desired.

(ii) \Rightarrow (i). Let X, Y and Z be graded submodules of M. Let $x \in X \cap (Y+Z)$ be a homogeneous element. Then there exist homogeneous elements $y \in Y$ and $z \in Z$ such that x = y + z and deg(x) = deg(y) = deg(z). By we assumption have $(Rx_{R}, y) + (Ry_{R}, x) = R$. Therefore there exists $r \in R$ such that $r \in (Rx_{R}, y)$ and

 $1-r \in (Ry_{R}, x)$. Hence we have x = (1-r)x + ry + rz = sy + rz, for some $s \in R$. Now $x \in (Rx \cap Ry) + (Rx \cap Rz) \subseteq (X \cap Y) + (X \cap Z)$. As the opposite inclusion always holds, the result follows.

 $(iii) \Rightarrow (iv)$ is clear.

 $(iv) \Rightarrow (iii)$ Assume (iii) dose not hold. Then there exist graded submodyls X, Y of M such that $X \not\subseteq Y$ and $Y \not\subseteq X$. This gives that there exist $x \in H(X) \setminus Y$ and $y \in H(Y) \setminus X$. Hence $Rx \not\subseteq Ry$ and $Ry \not\subseteq Rx$, which contradicts to (iv).

Furthermore if R is ^{*} quasi local it has been proved in [6. Lemma 5.22], that (i) and (iv) are equivalent.

Lemma 4 ([6. Lemma 5. 24]) *M* is a g.d *R*-module if and only if $M_{(p)}$ is a g.d $R_{(p)}$ -module for each graded prime (* maximal) ideal p of *R*.

Lemma 5 For an R-module M the following statements are equivalent.

(i) M is a g.d R-module.

(ii) For each proper graded submodule N of M and each graded prime (* maximal) ideal p of R, $N_{(p)}$ is an * irreducible submodule of $M_{(p)}$.

Proof. (i) \Rightarrow (ii). Let N be a proper graded submodule of M and let p be a graded prime ideal of R which contains $N :_R M$. Let $N_{(p)} = K_{(p)} \cap L_{(p)}$. (Note that each graded submodule of $M_{(p)}$ can be written as a homogeneous localization of some graded submodule of M at p.) By Lemma 4, $M_{(p)}$ is a g.d module over the ^{*} quasi local ring $R_{(p)}$. Therefore by Lemma 3, either $L_{(p)} \subseteq K_{(p)}$ or $K_{(p)} \subseteq L_{(p)}$, i.e. either $N_{(p)} = L_{(p)}$ or $N_{(p)} = K_{(p)}$. Thus $N_{(p)}$ is irreducible.

(ii) \Rightarrow (i). In view of Lemmas 3 and 4 it is enough to prove that for each graded prime ideal \mathfrak{p} of R, any two graded submodules of $M_{(\mathfrak{p})}$ are comparable. So let \mathfrak{p} be a graded prime ideal of R and let $K_{(\mathfrak{p})}$, $L_{(\mathfrak{p})}$ be proper graded submodules of $M_{(\mathfrak{p})}$. We may assume that $(M :_R K \cap L) \subseteq \mathfrak{p}$. So by assumption $K_{(\mathfrak{p})} \cap L_{(\mathfrak{p})} = (K \cap L)_{(\mathfrak{p})}$ is an ^{*} irreducible submodule of $M_{(\mathfrak{p})}$, so either $K_{(\mathfrak{p})} \subseteq K_{(\mathfrak{p})} \cap L_{(\mathfrak{p})}$ or $L_{(\mathfrak{p})} \subseteq K_{(\mathfrak{p})} \cap L_{(\mathfrak{p})}$. Consequently either $K_{(\mathfrak{p})} \subseteq L_{(\mathfrak{p})}$ or $L_{(\mathfrak{p})} \subseteq K_{(\mathfrak{p})}$ and the result follows.

Lemma 6 Let N be a graded submodule of M and p be a graded prime (* maximal) ideal of R. If $N_{(p)}$ is an * irreducible submodule of $M_{(p)}$, then N(p) is an * irreducible submodule of M. Furthermore if M is torsion free, the converse holds.

Proof. (\Rightarrow). Let $N(\mathfrak{p}) = K \cap L$ for some graded submodules K, L of M. By homogeneous localizing at \mathfrak{p} and using the fact that $(N(\mathfrak{p}))_{(\mathfrak{p})} = N_{W} \mathfrak{p}_{W} \mathfrak{p}_{W}$, we have $N_{(\mathfrak{p})} = K_{(\mathfrak{p})} \cap L_{(\mathfrak{p})}$. Hence by assumption either $N_{(\mathfrak{p})} = K_{(\mathfrak{p})}$ or $N_{(\mathfrak{p})} = L_{(\mathfrak{p})}$, which gives that either $N(\mathfrak{p}) = K$ or $N(\mathfrak{p}) = L$.

(\Leftarrow). Let K, L be graded submodules of M such that $N_{(\mathfrak{p})} = K_{(\mathfrak{p})} \cap L_{(\mathfrak{p})}$. This gives that $N(\mathfrak{p}) = N_{(\mathfrak{p})} \cap M = (K_{(\mathfrak{p})} \cap M) \cap (L_{(\mathfrak{p})} \cap M) = K(\mathfrak{p}) \cap L(\mathfrak{p})$. Thus by assumption we have $N(\mathfrak{p}) = L(\mathfrak{p})$ or $N(\mathfrak{p}) = K(\mathfrak{p})$ and so by homogeneous localizing at \mathfrak{p} , $N_{(\mathfrak{p})} = K_{(\mathfrak{p})}$ or $N_{(\mathfrak{p})} = L_{(\mathfrak{p})}$.

From the above observations we deduce the following corollary.

Corollary 7 Let M be a torsion free R-module. Then the following statements are equivalent.

(a) M is a g.d R -module.

(b) For each graded submodule N of M, each graded prime (* maximal) ideal p of R,

N(p) is an "irreducible submodule of M.

Lemma 8 Let N be a finitely generated graded submodule of M and let p be a graded prime ideal of R. Assume that $N_{(p)} \neq 0$. Then (pN)(p) is an ^{*}closed submodule of M.

Proof. We show that $Z((\mathfrak{p}N)(\mathfrak{p})) = \mathfrak{p}$. First let $r \in Z((\mathfrak{p}N)(\mathfrak{p}))$. Then there exists $m \in H(M) \setminus (\mathfrak{p}N)(\mathfrak{p})$ such that $rm \in (\mathfrak{p}N)(\mathfrak{p})$. It follows that $(\mathfrak{p}N)_R m) \subseteq \mathfrak{p}$ and that there exists $t \in H(R) \setminus \mathfrak{p}$ such that $rtm \in \mathfrak{p}N$. Hence $rt \in \mathfrak{p}$ and so $r \in \mathfrak{p}$. Consequently $Z((\mathfrak{p}N)(\mathfrak{p})) \subseteq \mathfrak{p}$. In order to prove the other inclusion, let $r \in \mathfrak{p}$. Since N is finitely generated and $N_{(\mathfrak{p})} \neq 0$, using the graded version of Nakayama's Lemma (see[11, Lemma I.7.5]), we have $(\mathfrak{p}N)_{(\mathfrak{p})} \neq N_{(\mathfrak{p})}$. This gives that $(\mathfrak{p}N)(\mathfrak{p}) \subset (\mathfrak{p}N)(\mathfrak{p}) \subseteq \mathfrak{p}N(\mathfrak{p})$ and $N(\mathfrak{p}) \subseteq (\mathfrak{p}N)(\mathfrak{p}) \colon_M \mathfrak{p}$, so $(\mathfrak{p}N)(\mathfrak{p}) \subset (\mathfrak{p}N)(\mathfrak{p}) \colon_M \mathfrak{p}$. This gives that there exists $x \in H(M) \setminus (\mathfrak{p}N)(\mathfrak{p})$ such that $rx \in (\mathfrak{p}N)(\mathfrak{p})$, i.e., $(\mathfrak{p}N)(\mathfrak{p}) \subset ((\mathfrak{p}N)(\mathfrak{p}) \colon_M r)$. Hence $r \in Z((\mathfrak{p}N)(\mathfrak{p}))$ and the proof is complete.

Following [15, p. 72], we define a prime ideal p of R to be a Krull associated prime of M if for every element $t \in p$, there exists $x \in M$ such that $t \in 0$:_R $x \subseteq p$. We denote by K(M) (resp. by mK(M)) the set of all Krull associated primes of M (resp. the set of all maximal members of K(M)). Since M is a graded R module, then each element of $p \in K(M)$ must be graded; furthermore for each element $t \in p$, we can choose a homogeneous element x such that $t \in 0$:_R $x \subseteq p$. To see this let $p \in K(M)$. Let $t_m + ... + t_n = t \in p$ be the decomposition of t as a sum of homogeneous elements t_i of degree i. By assumption there exists $x_u + ... + x_v = x \in M$ such that tx = 0 and 0:_R $x \subseteq p$. So we have the equations $\sum_{i+j=s} t_i x_j = 0$ for s = m+u, ..., n+v. It follows that $t_m x_u = 0$, and by induction, $t_m^i x_{u+i-1} = 0$ for all $i \ge 1$. Therefore $t_m^l x = 0$ for sufficiently large value of l. As p is prime ideal, we have $t_m \in p$. Iterating this procedure we see that each homogeneous component of t belongs to p. In order to prove the second assertion, we have $\bigcap_{i=u}^{i=v} (0:_R x_i) \subseteq p$. Since p is a prime ideal, there

exists j with $(0_R x_j) \subseteq p$. As $t \in (0_R x_i)$ for all i = u, ..., v; the proof of the claim is complete.

A prime ideal **p** is called *weak Bourbaki associated prime* of *M* if it is minimal prime divisor of 0_{R} *x* for some $x \in M$. We will denote the set of all weak Bourbaki associated primes of *M* by wB(M). It is known that (see for example [9, Lemma 2.15]), the set wB(M) is non empty. The fact that the set K(M) is not empty and that each element of wB(M) is graded follows from the following.

Proposition 9 ([8, Theorem 1]) With the above notation $wB(M) \subseteq K(M)$.

Let ^{*}Spec(R) be the set of all graded prime ideals of R. It should be noted that for each proper submodule N of M, $N = \bigcap_{p \in {}^{*}Spec(R)} N(p)$. The components N(p) in this representation in general do not need to be ^{*} closed. However if we focus our attention on the graded prime ideals which belongs to mK(M/N), then we have a representation of N such that each component is ^{*} closed. In fact:

Theorem 10 Let N be a proper graded submodule of M. Then we have $N = \bigcap_{p \in mK(M/N)} N(p)$, where the components N(p) are $p - {}^*$ closed submodules with distinct and incomparable graded primes Z(N(p)) = p.

Proof. First we note that $N = \bigcap_{p \in mK(M/N)} N(p)$. To see this, let $x \in H(M) \setminus N$. Let q be a minimal prime divisor of $N :_R x$. Then there exists $p \in mK(M/N)$ such that $q \subseteq p$. Hence $N :_R x \subseteq p$ and so x is not an element of N(p). Consequently x is not in $\bigcap_{p \in mK(M/N)} N(p)$ and we deduce the claim.

Now to complete the proof it suffices to prove that if $p \in K(M/N)$, then N(p) is p^{-*} closed; i.e., Z(N(p)) = p. To this end, assume that $r = r_m + ... + r_n$ is not an element of p. Then there exists $m \le j \le n$ such that r_j is not in p. We show that $(N(p):_M r) = N(p)$. To this end, let $x \in H(M)$ such that $rx \in N(p)$. Since N(p) is a graded submodule of M, this gives that all homogeneous components of rx are in N(p), in particular $r_j x \in N(p)$. This gives that there exists $s \in H(R) \setminus p$ such that $sr_j x \in N$ and so $x \in N(p)$. So $Z(N(p)) \subseteq p$. To prove the other inclusion let $r \in p$. Since $p \in K(M/N)$, there exists $x \in M \setminus N(p)$ such that $r \in N(p):_R x \subseteq p$. Therefore we have $N(p) \subset N(p):_M r$ and so $r \in Z(N(p))$.

The Category of graded R modules has as objects the graded R-modules. A morphism $f: M \to M'$ in this category is an R-module homomorphism satisfying $f(M_i) \subseteq M'_i$ for all $i \in \mathbb{Z}$. A graded R-module E is called **injective* if it is an injective object in this category. One call an extension $N \subset M$ of graded, Rippedules **essential extension* if for any graded submodule $0 \neq U \subset M$ one has $U \cap N \neq 0$. In analogy to the definition in the non-graded case, E is called a **injective hull* of N if it

is "injective and "essential extension of N. In view of [1, 3.6.2], any graded module R-module X admits a unique "injective hull up to isomorphism. We denote the "injective hull of X by "E(X). A graded R-module is said to be "indecomposible precisely when it is non-zero and cannot be written as the direct sum of two proper graded submodules. By a similar argument as in the non-graded case one can see easily that a graded submodule U of M is "irreducible if and only if "E(M/U) is "indecomposible.

Proof of Theorem A

(i) \Rightarrow (ii). Let N be an ^{*} closed proper submodule of M with Z(N) = p. This gives that N(p) = N. Now the result follows by Corollary 7.

(ii) \Rightarrow (i). By virtue of Lemma 4, it is enough to show that for each * maximal ideal m of R, $M_{(m)}$ is a g.d module over the * quasi local ring $R_{(m)}$. To do this, by Lemma 3, it suffices to prove that for any $x, y \in H(M)$, either $\langle x/1 \rangle \subseteq \langle y/1 \rangle$ or $\langle y/1 \rangle \subseteq \langle x/1 \rangle$. To this end, let $N = \langle x, y \rangle$ and $N_{(m)} \neq 0$. (If $N_{(m)} = 0$, then x/1 = y/1 = 0 and there is nothing to prove.) Then by Lemma 8, (mN)(m) is an * closed and so by our assumption an * irreducible submodule of M. Hence by Lemma 6, $(mN)_{(m)}$ is an * irreducible submodule of $M_{(m)}$. But $R_{(m)}/(m)R_{(m)}$ is either a field or is of the form $k[t,t^{-1}]$, where t is a homogeneous element of positive degree which is transcendental over k (see [1, Lemma 1.5.7]). Since by [7, Lemma 1.1.1], any graded module over $k[t,t^{-1}]$ is graded free, this gives that either $N_{(m)}/mN_{(m)}$ is a finite dimensional vector space over the field $R_{(m)}/mR_{(m)}$, or is a rank one graded free module over $R_{(m)}/mR_{(m)}$. Therefore in any case we have either $N_{(m)} = \langle x/1 \rangle + (mN)_{(m)}$ or $N_{(m)} = \langle x/1 \rangle$ or $N_{(m)} = \langle y/1 \rangle$, which gives that either $\langle x/1 \rangle \subseteq \langle y/1 \rangle$ or $\langle y/1 \rangle \subseteq \langle x/1 \rangle$ and the result follows.

(i) \Rightarrow (iii). Suppose the contrary; i.e., there exist $i \in \mathbb{Z}$, $x, y \in M_i$ and an * maximal ideal m such that Rx(m)URy(m) and Ry(m)URx(m). It follows that x is not an element of Ry(m) and y is not an element of Rx(m). Our assumption together with Lemma 3, give that there exists $r \in R$, such that $rx \in Ry$ and $(1-r)y \in Rx$. Since m is * maximal ideal, at least one of the elements r, 1-r is not contained in m. So at least one of the homogeneous components of r or one of the homogeneous components of 1-r is not contained in m. If the first possibility is true, it follows that $x \in Ry(m)$, a contradiction. With the second possibility we come to the contradiction $y \in Rx(m)$.

(iii) \Rightarrow (i). Assume that (i) does not hold. Then, by Lemma 3, there exist $i \in \mathbb{Z}$ and $x, y \in M_i$ and an * maximal ideal m of R such that $(Ry:_R x) + (Rx:_R y) \subseteq m$. It follows that $y \in Ry(m) \setminus Rx(m)$ and $x \in Rx(m) \setminus Ry(m)$, contracting to (iii). www.SID.ir

(i) \Leftrightarrow (iv). This follows by the paragraph before the proof of the theorem and Corollary 7.

The result of the previous Theorem is that for each graded submodule N of a g.d module M, the representation of N as an intersection of ^{*} closed modules given in Theorem A, is a decomposition of N into ^{*} irreducible components. In theorem B, we show that this condition is in fact sufficient for M to be g.d module.

Proof of Theorem B

(i) \Rightarrow (ii) follows from Theorems 10 and Theorem A.

(ii) \Rightarrow (i). By Lemma 3 and 4 it is enough to show that for each * maximal ideal m of R the graded cyclic submodules of $M_{(m)}$ are totally ordered. To this end, let $x, y \in H(M)$.

Set $N = \langle x, y \rangle$. Then by assumption $mN = \bigcap_{p \in mK(M/mN)} (mN)(p)$, is an ^{*}irreducible decomposition of mN. We claim that $m \in mK(M/mN)$. If this is not the case, then

 $(\mathsf{m}N)(\mathsf{p}) = N(\mathsf{p})$ for all $\mathsf{p} \in mK(M/\mathsf{m}N)$. This gives that $\mathsf{m}N = \bigcap_{\mathsf{p} \in MaxK(M/\mathsf{m}N)} N(\mathsf{p}) \supseteq N$.

But since N is finitely generated graded N UmN. Hence $m \in mK(M/mN)$ and (mN)(m) is an *irreducible submodule of M. Thus by Lemma 6, $(mN)_{(m)}$ is an *irreducible submodule of $M_{(m)}$. The result now follows by the same argument as in the proof of the Theorem A part (ii) \Rightarrow (i).

References

- [1] W. Bruns and J. Herzog, Cohen- Macaulay rings, Cambridge University Press, (1998).
- [2] T. M. K. Davison, Distributive homomorphism of rings and modules, J. Reine Angew. Math. 270 (1974), 28-34.
- [3] V. Erdogdu, Distributive modules, Canad. Math. Bull. 30(2) (1987), 248-254.
- [4] V. Erdogdu, The distributive hull of a ring, J. Algebra. 132(2) (1990), 263-269.
- [5] V. Erdogdu, Cyclically decomposable distributive modules, Comm. Algebra. 25(5) (1997), 1635-1639.
- [6] J. Escoriza and B. Torrecillas, Multiplication objects in commutative Grothendieck categories, Comm. Algebra. 26(6)(1998),1867-1883.
- [7] S. Goto and K. Watanabe, On graded rings I, J. Math. Soc. Japan 30 (1978), 172-213.
- [8] R. Kuntz, Associated prime divisors in the sense of Krull, Canad. J. Math. 24 (1972), 808-818.
- [9] M. Larsen and P. McCarthy Multiplicative theory of ideals, Academic Press, New York. (1971).
- [10] R. Naghipour and N. Zamani, Graded distributive modules, Southeast Asian Bull. Math. 29 (2005), 1095-1099.
- [11] C. Nastasescu and F. Van Oystaeyen Graded ring theory, North-Holland, Amsterdam, (1971).
- [12] W. Stepehenson, Modules whose lattice of submodules is distributive, Proc. London. Math. Soc. 28(3) (1974), 291-310.
- [13] A. A. Tuganbaev, *Semidistributive modules and rings*, Kluwer Academic Publ, Dordrecht-Boston-London,(1998).
- [14] A. A. Tuganbaev, *Distributive modules and related topics*, Gordon and Breach Science: Publ., Amsterdam, (1999).
- [15] D. Underwood, On some uniqueness questions in primary representations of ideals, J. Math. Kyoto Univ. 9 (1969), 69-94.