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1. Introduction 

 
    Fluid Flow in macro devices is different from micro 
devices, because the Navier-Stokes equations based 
on the continuum flow model is not valid when the 
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 characteristics length of the flow domain decreasing. 
When the mean free path of the molecules is 
comparable to the characteristic length, this 
phenomenon is called rarefaction effect [1] and the 
flow rate in micro channels cannot be predicted with 
theories based on the continuum flow model. The 
most important dimensionless parameter in micro-
scale gas flows is the Knudsen number, The Knudsen 
number is defined as the ratio of the molecular mean 
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Abstract 
 
Micro scale gas flows has attracted significant research interest in the 
last two decades. In this research, the fluid flow of gases in the 
stepped micro-channel at a wide range of Knudsen number has been 
analyzed with using the Lattice Boltzmann (MRT) method. In the 
model, a modified second-order slip boundary condition and a 
Bosanquet-type effective viscosity are used to consider the velocity 
slip at the boundaries and to cover the slip and transition regimes of 
flow and to gain an accurate simulation of rarefied gases. It includes 
the slip and transition regimes of flow. The flow specifications such 
as pressure loss, velocity profile, streamline and friction coefficient at 
different conditions have been presented. The results show good 
agreement with available experimental data. The calculation shows 
that the friction coefficient decreases with increasing the Knudsen 
number and stepping the micro-channel has an inverse effect on the 
friction coefficient. Furthermore, a new correlation is suggested for 
calculation of the friction coefficient in the stepped micro-channel as 
below; 
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 Nomenclature   
   Greek Symbols 

B molecular slip coefficient ρ Density (kg.m-3)
C lattice speed λ Molecular mean free path (m)
Ci discrete velocity vectors ξ Sound speed
Cs Sound of speed in lattice scale ߗ collision operator
Cf Skin friction coefficient ∇ gradient

f particle distribution function τ non-dimensional relaxation time
H height of the channel (m) τs relaxation time (Based on viscosity)
j Speed in momentums space τq relaxation time (Based on slip boundary)

Kn Knudsen number (Kn=λ/H) υ kinematic viscosity (m2.s-1)
m distribution function in MRT µ dynamic viscosity (N.s.m-2)
M transform matrix π Pi number (3.14159)
n wall normal coordinate σ TMAC coefficient 
p Pressure (N.m-2)  Subscripts/Superscripts 
r Bounce back fraction parameter eq equilibrium

R gas constant i discrete Lattice directions
Re Reynolds number (Re=ρvH/µ) eff effective

S relaxation time diagonal matrix out outlet
t Time (s) in inlet

T Temperature (k) ρ density (relaxation time)
u Velocity (m.s-1) e energy (relaxation time)

wi weight factors ~ Pre collision
 w wall

 
free path (λ) to the characteristic length of system and 
increasing of it, causes the changing of a flow regime 
from the continuum to slip and transition mode. 

Thus, the Knudsen number is a measure of 
rarefaction of gases encountered in flows through very 
small size channels, and also is a measure of the 
degree of validity of the continuum mode. The 
existence of slip velocity at the wall was first 
predicted by Maxwell [2]. Because of the slip at the 
walls, the flow rate in micro devices is higher than 
predicted from no-slip boundary conditions. Based on 
the Knudsen number, the flow regime can be 
categorized into four groups: continuum flow (Kn < 
0.01), slip flow (0.01 < Kn < 0.1), transition flow (0.1 
< Kn < 10), and free molecular flow (Kn > 10) [3]. 
Micro devices work with a range of Knudsen numbers 
in different part of the devices, this fact makes it even 
more difficult to develop a generalized CFD model. 
By reducing the dimension of a channel, heat transfer 
coefficient increases significantly. Therefore, micro 
scale gas flows have attracted the interests of the 
researchers and received considerable attention in the 
past decades. Various flow phenomenon were 
observed in micro-scales that makes it different from 
macro scales, such as: slip flow, temperature jump, 

rarefaction, compressibility, intermolecular forces, 
and viscous dissipation. For the transition and free 
molecular regimes, it is accepted that the continuity 
assumption and consequently, the validity of classical 
description based on the Navier-Stokes equations 
(NSE) is questionable, because as the size is reduced 
the flow behavior depends strongly on the geometry 
dimension, and rarefaction effects dominate the flow 
characteristic [4]. Molecular based method such as 
molecular dynamics (MD) and direct simulation 
Monte Carlo (DSMC) may be used to simulate 
rarefied gas flows in transition flow regimes. 
However, simulations on the molecular level are still 
too expensive for the most practical application, so a 
midway approach for the flow simulation which can 
be considered as a particle based method and at the 
same time is independent of the actual number of 
molecule is needed. An approach that has some 
benefits to other's methods, is the Lattice Boltzmann 
method (LBM); because the LBM is a Mesoscopic 
method and due to its kinetic origin, it requires less 
computational cost, and the structure of the LBE is 
very simple. The important reason that makes the 
LBM more popular method than other methods, it can 
be easily implemented on parallel computers [5]. 
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Therefore, the LBM can be used to simulate fluid 
flows in all regimes upon appropriate adjustments [6]. 
The investigation of micro scale gas flows have been 
made by the different methods, such as: experimental 
work, analytical, and numerical simulations.  Arkilic 
et al. [7], investigated on straight micro channels and 
its work was in good agreement with experimental 
data of pong et al. [8]. Beskok et al. [9] performed 
numerical simulations to investigate the effects of 
compressibility and rarefaction with the first-order 
slip boundary condition in micro channels flows. 
Investigations of Colin et al. [10] show, that the 
accuracy of the first-order slip boundary condition is 
not valid when the Knudsen is larger than 0.05. In 
recent efforts, the main focus was on developing LB 
models for rarefied gaseous flow in slip flow regimes 
[11-17], but only a few papers have been focused on 
LBM in transition flow regimes[18-23].Two 
approaches are proposed to increase the accuracy of 
the LBM, the first approach is to use the higher-order 
LBM via increasing the number of discrete velocity 
[18-19, 24-28]. Kim et al.[29,30] Zhang et al.[31,32] 
recently found that the accuracy of higher-order LB 
models for rarefied gas flows cannot predict the mass 
flow rate properly.  
    Succi [33] additionally found that the higher-order 
LBM with a large number of discrete velocities are 
not numerically stable. Another approach is to make 
use of an effective viscosity [12-19] for high Kn 
number. Recently, flows through more complicated 
geometries have been studied. Oliveira et al.[34], 
numerically and experimentally studied constricted 
micro channels and Liou et al. [35] numerically 
studied micro channel with expansion and contraction 
for a wide range of Kn number in slip flow regimes. 
The above summary shows that, the experimental 
measurements, and numerical simulations of gas 
flows in straight micro channels have already been 
extensively studied in slip flow regimes but only a 
few papers can be mentioned in transition flow 
regimes. However, few studies have been given to 
complex micro channel flows especially under a wide 
range of Knudsen number in slip and transition flow 
regimes.In this study, the fluid flow of gases in a 
stepped micro channel has been studied for a wide 
range of Knudsen numbers that shows the regimes of 
flows with using Lattice Boltzmann method. The 
friction coefficient is an important parameter which 
must be analyzed to estimate  wall shear rate to 
balancing between heat removing and shear stress at 
the wall if we use the micro-channel for increasing of 

heat transfer coefficient or stepping the micro-
channel. In this study, the friction coefficient in the 
micro-channel is calculated and a new correlation is 
suggested for it. The two cases of constant Knudsen 
number and variable Knudsen number have been 
conducted for calculation of flow specifications and 
friction coefficient. 
 
2. Governing Equations and Numerical 
Procedure 
2.1. Boltzmann equations 
 
    The continuum Boltzmann equation is a 
fundamental equation for rarefied gases flows in the 
kinetic theory. It considers the collective behavior of 
molecules in a system. For system without an external 
force, the Boltzmann equation can be written as; 
 ∂f∂t + ξԦ . ∇f = Ω(f, f ᇱ)  (1)

 
    where f (xሬԦ,ξԦ ,t)  is the single particle distribution 
function (the probability of finding particle within a 
certain range of velocity ξԦ at a certain range of 
location	xሬԦ at a given time t) and ߗ is the collision 
operator. The collision operator ߗ is a nonlinear 
integral term, in which f and f ᇱare pre and post 
collision distribution functions. The simplified model 
for collision operator is: 
 Ω = −1λ (f − fୣ୯) (2)

 
    where λ is called relaxation time, and f ୣ୯  is the 
equilibrium distribution function approximated as 
Maxwellian form as blow; 
 f ୣ୯ = ρ(2πRT)ଷଶ exp ቆ − (εԦ − uሬԦ)ଶ2RT ቇ	 (3)

 
where R is the gas constant and ρ,	uሬԦ and T are density, 
velocity and  temperature, respectively. This model 
known as the (BGK) model. 
By using BGK approximation Equation 1 can be re-
written as below; ∂f∂t + ξԦ . ∇f = −1λ (f − fୣ୯)	 (4)
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2.2. SRT and MRT schemes of Lattice 
Boltzmann 

 
    In lattice Boltzmann method, assumed Equation 4 
is valid along specific directions, so it can be written 
as; 
 ∂f୧∂t + ξԦ୧	. ∇f୧ 	= −1λ (f୧ − f୧ୣ୯)	 (5)

 
    By discretization of Equation 5, in space (x) and 
time (t). The lattice Boltzmann equation without 
external force is given by; 
 f୧(xሬറ + cറ୧dt, t + dt) − f୧(xሬറ, t) = −1τ ቀf୧(xሬറ, t) − f୧ୣ୯(xሬറ, t)ቁ 

(6)

 

    where τ = ஛୼୲, is the non-dimensional relaxation 

time. This model known as the lattice Boltzmann 
single relaxation time (SRT). Another approximation 
is the model with multiple relaxation time (MRT) 
collision operators.  MRT scheme offers a higher 
stability and accuracy than SRT scheme. Collision 
operator in MRT method is defined as bellows; 
 Ω୧ = −(MିଵSM)୧୨ ቂf୨ − f୨ୣ ୯ቃ (7)

 
    where S is a diagonal matrix		S = diag( 	τ଴, τଵ, … , τ୧)ିଵ and M is the transform matrix 
projecting the distribution function to the moment 
space and is given by; 
 m = Mf (8)
 
    In this work, we used the two dimensional nine 
velocity (D2Q9) model and is shown schematically in 
the figure 1. 
This model is very suitable for solving of fluid flow 
problems in two-dimensional flow systems. in D2Q9 
model the velocity set is given by: 
 

Ԧܿ௜ =
۔ۖۖەۖۖ
ۓ (0,0),			݅ = 0൬cos ൬݅ − 12 ൰ߨ , sin ൬݅ − 12 ൰൰ߨ ܿ,			݅ = 1, … ,4√2 ൬cos ൬2݅ − 94 ൰ߨ , sin ൬2݅ − 94 ൰൰ߨ ܿ,			݅ = 5,… ,8

	 (9)

    The equilibrium distribution function followed by 
discretization of the D2Q9 lattice nodes is obtained as 
below 
 f୧ୣ ୯ = ρw୧ ቈ1 + cԦ୧. ucୱଶ + (cԦ୧. u)ଶ4cୱଶ − uଶ2cୱଶ቉	 (10)

 
    where cୱ = √RT = ୡ√ଷ is the sound speed, R is the 

gas constant, T is the temperature, and ݓ௜ are weight 
factors and is given by; 
 

wሬሬሬԦ୧ = ۔ۖەۖ
ۓ 49 , i = 019 ,			i = 1,… ,4136 , i = 5,… ,8 (11)

 
    We used the relaxation matrix S and transform 
matrix M given by Lallemand et al. [26]; 
 S = diag( τ஡, τୣ, τக, τ୨, τ୯, τ୨, τ୯, τୱ, τୱ)ିଵ  (12)
ܯ 
=
ۈۉ
ۈۈۈ
ۇۈ
1 1 1 1 1 1 1 1 1−4 −1 −1 −1 −1 2 2 2 24 −2 −2 −2 −2 1 1 1 10 1 0 −1 0 1 −1 −1 10 −2 0 2 0 1 −1 −1 10 0 1 0 −1 1 1 −1 −10 0 −2 0 2 1 1 −1 −10 1 −1 1 −1 0 0 0 00 0 0 0 0 1 −1 1 ۋی1−

ۋۋۋ
ۊۋ

 (13)

 
    Based on D2Q9 model, we can define distribution 
function and equilibrium distribution function in MRT 
model as follows; 
 
 m = Mf 
 

(14)mୣ୯ = Mfୣ୯ =ቆρ, eୣ୯, εୣ୯, j୶, q୶ୣ୯, 	j୷,			q୷ୣ୯,			p୶୶ୣ୯,			p୶୷ୣ୯ ቇ୘  

= Mfୣ୯ = ρ ൬1,−2 + 3|u|ଶ, 1 − 3|u|ଶ, u, −v,u, −v, uଶ − vଶ, uv ൰୘ 

 

(15)
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Fig. 1. Discrete velocity vectors for D2Q9 lattices 
 

    The macroscopic parameters such as density ρ, 
velocity u, and pressure p are calculated in terms of 
the distribution function as follows; 
 ρ =෍f୧୧  (16)

 ρuሬԦ =෍cറ୧୧ f୧	 (17)

 p = ρcୱଶ (18)
 
2.3. LBM for high Knudsen number 
 
    According to the Chapman–Enskog expansion, 
kinematic viscosity can be written as: υ = cୱଶδt(߬௦ − 0.5) (19)
 
    Based on [36], relaxation time (߬௦) is a free 
parameter, but in a micro-channel simulation it must 
be defined correctly to obtain accurate slip velocity at 
the wall. 

    The first step in simulation of micro scale gas flows 
is defining the relation between the relaxation time 
and the Knudsen number. Based on the inverse power 
law (IPL) model, the mean free path (λ) of gas is 
given by[37]: 

ߣ = μ݌ඨ2ܴܶߨ 	 (20)

     
    Finally, from Eqs. (19) and (20), the relaxation time (τୱ) can be expressed as a function of the Knudsen 

number (Kn) and height of the channel (H) as 
follows: 
 τୱ = 0.5 + ඨ6πKnH (21)

 
    In the limit of the Kn<<1, the molecule-wall 
collisions can be neglected compared with the 
intermolecular collision, but for gas flows at high 
Knudsen number, due to the effect of the Knudsen 
layer near the solid wall, collision between gas 
molecule and the walls are the dominant phenomenon, 
and the inter molecular collisions are reduced with the 
increase of the rarefaction effect. In the free molecular 
flow limit Kn>>1 only the collision of the gas 
molecule with the wall should be considered.[9], So 
Viscosity and the mean free path given by Eq. (20) are 
only valid in unbounded gas flow region and must be 
corrected. In the literature, some formulation has been 
proposed from different point of view [27]. We used 
the effective viscosity proposed by Beskok et al. 
[9]here and is below; 
 μୣ୤୤ = 11 + f(Kn) μ , f(Kn) = aKn (22)

 
    Several models have been proposed for calculation 
of f(Kn) which are based on numerical and analytical 
data.  
    For instance, Beskok et al.[9] used a=2.2 with their 
calculation and Michalis et al. [28] investigated the 
rarefaction effect on gas viscosity using the DSMC 
method, and suggested a value near to 2 for a. 
    According to the equation 21 and effective 
viscosity, relaxation time should be defined as; 

τୱ = 0.5 + ඨ6π KnH(1 + f(Kn))	 (23)

    
    At low Knudsen numbers, due to its definition, the 
mean free path is a key parameter, so with decreasing 
the Kn, its value will decrease and thus the 
compressibility of flow will increase. 
    Mean free path is inversely proportional to the 
pressure, so variation of the local Knudsen number 
along the channel can be expressed as 
 Kn(x) = Kn଴୳୲P୭୳୲P(x)  (24)

www.SID.ir


www.SID.ir

Arc
hive

 of
 S

ID

Bakhshan & Omidvar / TPNMS 3 (2015) 14-28 
 

19 
 

    where the quantities with the (out) subscript 
represents the values at the outlet of channel and p(x) 
and Kn(x) is the local pressure and Knudsen along the 
centerline of channel. 
 
2.4. Boundary Conditions for LBM 
 
    To simulate various flow regimes such as slip and 
transition flow in the micro channels, suitable 
boundary conditions must be applied for isothermal 
rarefied gas, when an effective viscosity is used. We 
used the second-order slip boundary condition as 
follows; 
 uୱ = Bଵσ୚λୣ ∂u∂n |୵ − Bଶλଶୣ ∂ଶu∂nଶ |୵	 (25)

 
    where λୣ is the mean effective free path, n is the 
wall normal coordinate pointing into the fluid, 

and	σ୚ = ଶି஢஢  , in which ߪ is the tangential 

momentum accommodation coefficient (TMAC). We 
denotes the quantity at the wall, and  Bଵ = (1 −0.1817σ) .	Bଶ	Plays an important role for the second-
order order slip boundary condition in simulating 
rarefied gas flow with relatively large Knudsen 
number and  Bଶ = 0.8 is the best fit to the solution of 
linearized Boltzmann equation.  
    Second-order slip boundary conditions at the lower 
wall are given by; 
 fଶ = fସ෩,				fହ = rf଻෩ + (1 − r)f෩଼ 			 f଺ = rf෩଼ + (1 − r)f଻෩  
 

(26)

Fig. 2. Schematic diagram for boundary condition at the 
bottom wall 
 

    where f୰෩ are post collision distribution function at 
j=1 (Figure 2), (The wall is located at j=0.5), to match 

the second-order slip boundary condition, the bounce 
back fraction parameter r and relaxation time ߬௤ are 
chosen as; 

r = 11 + Bଵσ୚ටπ6 , τ୯ = 12 + 3 + 4πτ෤ୱଶBଶ16	τ෤ୱଶ  
(27)

where	τ෤ୱ = τୱ − 0.5 . 

2.5 Boundary Conditions at inlet and outlet 

    In this work, pressure (density) boundary condition 
is used at inlet and outlet of the flow domain. The 
unknown distribution functions at the inlet and outlet 
have been evaluated after the streaming step. With 
supposing the specified density at the inlet of flow 
boundary (For example in the Figure 3) along the y-
direction, and the specified u୷  (e.q., u୷ = 0 at the 
inlet in a channel flow), after streaming, fଶ, fଷ, fସ, f଺, f଻ 
are obtained and for determining the  u୶ and fଵ, fହ, f଼  
the following equations are used: fଵ + fହ + f଼ = ρ୧୬ − (f଴ + fଶ + fଷ + fସ + f଺ +f଻)  (28)

 fଵ + fହ + f଼ = ρ୧୬u୶ + (fଷ + f଺ + f଻) (29)
 fହ − f଼ = −fଶ + fସ − f଺ + f଻ (30)
 
So, with consistency of Equations 28 and 29 gives; 
 u୶ = 1 − (f଴ + fଶ + fସ + 2(fଷ + f଺ + f଻)/ρ୧୬ (31)
 
    Also we used the bounce-back rule for the non-
equilibrium part of the particle distribution to find fଵ − fଵୣ ୯ = fଷ − fଷୣ୯ which are normal to the inlet. 
With fଵ value, fହ and f଼ are obtained by the remaining 
equations as blow; 

 fଵ = fଷ + 23 ρ୧୬u୶ 

 

(32)

fହ = f଻ − 12 (fଶ − fସ) + 16 ρ୧୬u୶ 

 
(33)

f଼ = f଺ + 12 (fଶ − fସ) + 16 ρ୧୬u୶ (34)

    
    The corner nodes at the inlet are crucial for the 
simulations. 
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    The constant pressure boundary conditions are not 
applicable here, because the inlet pressure condition 
must be consistent with the flow field inside the 
channel. After streaming, fଷ, fସ, f଻ are obtained and 
with specified density and u୷ = 0 we determine fଵ, fଶ, fହ, f଺, f଼, as blow; fଵ = fଷ + 23	ρ୧୬u୶ (35)

 fଶ = fସ (36)
 fହ = rf଻ + (1 − r)f଼ (37)
 f଺ = rf଼ + (1 − r)f଻ (38)
 f଼ = f଻ + 16	ρ୧୬u୶	(1 − r) (39)

 
    So, with consistency of Equations (28-39) gives; 
 

u୶ = ൤1 − ሾf଴ + fଶ + fସ + 2(fଷ + f଺ + f଻)ሿρ୧୬ ൨൤1 + r3(1 − r)൨  (40)

 
    A similar procedure has been applied to the top 
inlet node and outlet nodes. 

2.6. Grid Generation  

    For grid generation, we used structural scheme with 
equal dimension in the both x and y directions. For the 
micro-channel without step, the total 2100(Nx=2100) 
and 21(Ny=21) lattice nodes have been considered in 
the x and y directions respectively.  
    Figure 3 shows, the considered grid schematically. 
Figure 4 shows, the generated and used grids at the 
boundary of flow field. 

Fig.3. The used schematic geometry for grid generation 

Fig.4. The used grids at the boundary of geometry 
 
    Figure 5 shows, the used geometry for stepped 
micro-channel, so with considering the following 
dimensions, the generated grids at the steps are shown 
in the figure 6. 	Lu=Ld=2000,	Wu=40,	Wc=20,	Lc=40,	Ls=20
 

 

Fig. 5. The used geometry with step 

Fig. 6. The generated grids at the steps 

 
3. Results and discussion 

    The used geometry in our simulation is shown 
schematically in figure 7. The micro-channel stepped 
in three locations with variable dimensions and the 
parametric study can be conducted. The prepared 

www.SID.ir


www.SID.ir

Arc
hive

 of
 S

ID

Bakhshan & Omidvar / TPNMS 3 (2015) 14-28 
 

21 
 

computer code has ability to consider the wide range 
of Knudsen number and it can calculate the flow 
specifications in different regimes, so we compared 
the extracted results with the other semi-empirical or 
theoretical available results.  

Fig. 7. The used schematic geometry 

    Figure 8, Shows the flow rate of fluid in the micro-
channel versus Knudsen number. The calculation has 
been donned with using the lattice Boltzmann method 
and compared with kinetic theory and the work of 
Ohwada et al[25]. This comparison shows, the LBM 
has good accuracy for prediction of fluid flow 
specifications at low and medium Knudsen numbers 
and its accuracy has much deviation at high Knudsen 
numbers, but the LBM accuracy increased with 
increasing Knudsen numbers. 

 

Fig. 8. Flow rate variation versus Knudsen number 

Figure 9, Shows the non-dimensional pressure loss 
throughout the micro-channel and compares the 
calculation results with experimental data of Arkilic et 
al.[7]. For consistence, we applied one step in the 
micro-channel. The pressure loss at the step is clear 
and the results have good agreement with 
experimental data. Figures (10-13) show, the non-
dimensional velocity profiles at different Knudsen 
numbers and compare the calculated results with 
results of Ohwada et al. [25]. and the result have good 

agreement with the work of Ohwada et al [25]. It is 
notified that this comparison is donned without stepping the 
micro-channel. 

Fig. 9. Non-dimensional pressure variation throughout the 
micro-channel 
 

 

Fig. 10.Velocity profile at outlet cross section at Knudsen 
number=0.1128 

 

Fig. 11.Velocity profile at outlet cross section at Knudsen 
number=4.5135 
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(Figure 31) suddenly at the steps to maintain the mass
conservation. 
 From figures (27-30), it is founded, the centerline
velocity increases gradually due to pressure loss in the
micro-channel and a sudden increasing of velocity at
steps location is observed. The slope of velocity at
low Knudsen number (0.01) is greater than high
Knudsen numbers and the importance of steps is
highlight at low Knudsen numbers. 
 

 

Fig. 18. Streamlines in the micro-channel at Pi/Po=5, 
Knudsen number=2 

 

Fig. 19.Velocity profiles at different Knudsen numbers 

 

 
Fig. 20.Velocity profile at different cross sections at 
Pi/Po=2, Outlet Knudsen number=0.01 

 

Fig. 21.Velocity profile at different cross sections at 
Pi/Po=5, Outlet Knudsen number=0.01 

 

Fig. 22.Velocity profile at different cross sections at 
Pi/Po=2, Outlet Knudsen number=0.1 

 

Fig. 23.Velocity profile at different cross sections at 
Pi/Po=5, Outlet Knudsen number=0.1 
 

Figures 31and 32, show the pressure losses throughout
the micro-channel at different outlet Knudsen
numbers and for two different pressure ratio. The
pressure losses at steps locations is clear from these
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figures and has same tracing for all Knudsen numbers
but with increasing the pressure ratio, the pressure
loss takes larger values. 
 

 

Fig. 24.Velocity profile at different cross sections at 
Pi/Po=2, Outlet Knudsen number=2 

 

Fig. 25.Velocity profile at different cross sections at 
Pi/Po=5, Outlet Knudsen number=0.5 

 

Fig. 26.Velocity profile at different cross sections at 
Pi/Po=5, Outlet Knudsen number=2 

  

Fig. 27.Centerline velocity profile at different outlet 
Knudsen numbers and Pi/Po=2, 1 step 

 

Fig. 28.Centerline velocity profile at different outlet 
Knudsen numbers and Pi/Po=2, 3 step 

 

Fig. 29.Centerline velocity profile at different outlet 
Knudsen numbers and Pi/Po=5, 1 step 
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