
Bulletin of the Iranian Mathematical Society Vol. 39 No. 1 (2013), pp 65-85.

GROUPLIKES

M. H. HOOSHMAND

Communicated by Jamshid Moori

Abstract. We introduce and study an algebraic structure, namely
”Grouplike”. A grouplike is something between semigroup and
group and its axioms are generalizations of the four group axioms.
Every grouplike is a semigroup containing the minimum ideal that
is also a maximal subgroup (but the converse is not valid). The first
idea of grouplikes comes from b-parts and b-addition of real num-
bers introduced by the author. Here, the aim is extend the notion
of grouplikes (including sub-grouplikes, dual grouplikes, grouplike-
homomorphisms with standard kernels, etc.), establish some main
results and construct an expanded class. We prove a fundamen-
tal structure theorem for a large class of grouplikes, namely Class
United Grouplikes. Moreover, we obtain some other results for mag-
mas, semigroups and groups in general, exhibit several of their im-
portant subsets with related diagrams and give many equivalent
conditions for semigroups to be grouplikes. Finally, we point out
some directions for further research in grouplikes and semigroup
theory.

1. Introduction and preliminaries

The b-parts of real numbers were introduced and studied in [1, 3].
Those have many interesting number theoretic explanations, analytic
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66 Hooshmand

and algebraic properties, and their related functions satisfy the real func-
tional equation f(f(x) + y − f(y)) = f(x). Also, b-addition of two real
numbers, that is b-decimal part of their ordinary addition, was stated
as a new binary operation in R (see [3, 5]). In fact, (R,+b) is a semi-
group with some additional properties, where +b is b-addition. In [2],
the functional equation was generalized to several functional equations
on magmas, semigroups and groups such as decomposer and associative
functional equations.

1.1. B-parts of real numbers, b-addition and b-parts functions.
For every real number a, denote by [a] the largest integer not exceeding
a and put (a) = a − [a] (the decimal part of a). Let b be a nonzero
constant real number. For any real number a, set

[a]b := b[
a

b
] , (a)b := b(

a

b
).

We call the notation [a]b to be b-integer part of a and (a)b to be b-decimal
part of a. Also, [a]b and (a)b are called b-parts of a.
Clearly, a = [a]b + (a)b where [a]b ∈ bZ = ⟨b⟩, and (a)b ∈ b[0, 1) =
{bd|0 ≤ d < 1}. The b-decimal part of a is the remainder of the (gen-
eralized) division of a by b and if b is a positive integer, then [a]b is the
same unique integer of the residue class {[a] − b + 1, · · · , [a]} (mod b)
that is divisible by b (see [1, 3, 5]).
We call ( )b, [ ]b to be b-parts functions. These functions are idempotent,
their compositions are zero, and ( )b satisfies the following functional
equations:

f(f(x) + y − f(y)) = f(x) , f(x+ y − f(y)) = f(x)

f(f(x+ y) + z) = f(x+ f(y + z)).

The additive group of real numbers is equal to direct some of the images
of ( )b and [ ]b that are Rb := b[0, 1) and bZ = ⟨b⟩, respectively (see
[2, 5]). Now, for a fixed real number b ̸= 0 and every x, y ∈ R, we put

x+b y := (x+ y)b

and call it to be x b-addition y. The magma (R,+b) is a semigroup with
some additional properties, (Rb,+b) is the largest subgroup and also the
smallest ideal of it. (Rb,+b) is a generalization of the group of all least
non-negative residues mod n (Zn = {0, 1, 2, 3, 4, ..., n − 1}), and hence
we call it the group of all least [respectively largest] non-negative (real)
residues mod b, if b > 0 [respectively b < 0] or reference b-bounded group.
Also, its every subgroup is called b-bounded group and every 1-bounded
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Grouplikes 67

group is a decimal group. Several interesting properties of b-bounded
groups can be seen in [3, 5].

Convention. Here, we consider X as a set with the binary operation
“·” (magma or binary system (X, ·) ) where the product of x, y ∈ X
is denoted by xy, (S, ·) is a semigroup, and also (G, ·) is a group. If
the multiplication “·” is commutative, then it is denoted by + and is
called addition. When we use the notation H≤̇K [respectively H ≤ K],
it means that K is a semigroup or group and H is its sub-semigroup
[respectively subgroup]. A subset A of X is called normal, if xA = Ax,
for every x ∈ X. Now, by H⊴̇K [respectively H ⊴ K], we mean H≤̇K
[respectively H ≤ K] and H is normal. Also, when we use the notation
H △ S, it means that H is a two-sided ideal of the semigroup S. The
two sided unit element of X and S (if it exists) is denoted by 1 and of
G by e = eG.

2. Grouplikes

Now, we introduce an algebraic structure whose axioms are general-
izations of the four group axioms based on ideas from b-parts of real
numbers, b-addition, the semigroup (R,+b) and b-bounded groups, in-
troduced by the author.

Definition 2.1. Suppose Γ is a set and · is a function defined on Γ×Γ.
We call (Γ, ·) a grouplike, if it satisfies the following axioms:
(1) closure (i.e., the function · is from Γ× Γ to Γ);
(2) associativity (i.e., (xy)z = x(yz), for every x, y, z ∈ Γ);
(3) there exists ε ∈ Γ such that

εx = ε2x = xε2 = xε : ∀x ∈ Γ;

(4) for every ε satisfying (3) and every x ∈ Γ, there exists y ∈ Γ such
that

xy = yx = ε2.

We call every ε ∈ Γ satisfying the axioms (3) and (4) an identity-like.
If (Γ, ·) is grouplike and is not group, then we call it proper grouplike.
If a semigroup satisfies the axiom (3) (equivalently, it contains a central
idempotent), then we call it monoidlike.

The following lemma states an important basic property of grouplikes.

Lemma 2.2. Every grouplike contains a unique idempotent identity-
like.
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68 Hooshmand

Proof. Existence: Choose an arbitrary identity-like ε ∈ Γ. We have
ε3 = ε2 and ε belongs to the center of Γ. Putting e = ε2 implies e is a
central idempotent and it satisfies the axioms (3), (4) of grouplikes.
Uniqueness: If e1 and e2 are two idempotent identity-likes, then there

exist e′1 and e′2 in Γ such that e1 = e2e
′
2, e2 = e1e

′
1, e2e1 = e22e

′
2 = e2e

′
2 =

e1, and e1e2 = e21e
′
1 = e1e

′
1 = e2. Therefore, e1 = e2e1 = e1e2 = e2. □

Now, Lemma 2.2 justifies the following definition.

Definition 2.3. Let Γ be a grouplike and let e be the unique idempotent
identity-like element of Γ. Then, we call e standard identity-like and
use the notation (Γ, ·, e). Γ is a standard grouplike, if e is the only
idempotent of Γ. Γ is a zero grouplike if e is a zero of Γ. Every y that is
corresponded to x in axiom (4) is called inverse-like of x and is denoted
by x′e or x′. By standard mnoidlike, we mean a monidlike with only one
idempotent (equivalently, a semigroup with a central idempotent and no
other idempotents).

Regarding the concept of inverse-like in the above definition, note that
every identity-like ε satisfies ε2 = e = e2, by Lemma 2.2. So, y is an
inverse-like of x (for a given identity-like ε) if and only if xy = yx = e.
Therefore, we get the following axioms for grouplikes that is very similar
to the four groups axioms:
(i) closure;
(ii) associativity;
(iii) there exists a unique element e ∈ Γ such that ex = xe , e2 = e, for
all x ∈ X (i.e., e is its unique central idempotent);
(iv) for every x ∈ Γ, there exists y ∈ Γ (not necessarily unique) such
that xy = yx = e.
(We will minimize these axioms in continuation and give several equiv-
alent conditions for a semigroup to be grouplike.)

Example 2.4. (i) Every group [respectively unipotent monoid] is stan-
dard grouplike [respectively standard monoidlike] .
(ii) Now, consider the semigroup (R,+b). Since 0+b 0 = 0 and c+b c =
x+by, for all real numbers x, c and y = 2c−x, (R,+b, 0) is a proper grou-
plike (we call it real b-grouplike, and specially real grouplike if b = 1).
Moreover, the set of all identity-likes of (R,+b) is bZ which is also the
set of all inverse-likes of 0.
(iii) For an example of finite proper grouplike, consider Γ = {e, a, η, α}
and define a binary operation “·” by the following multiplication table:
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Grouplikes 69

· e a η α
e e a e a
a a e a e
η e a e a
α a e a e

It is easy to see that (Γ, ·, e) is a grouplike (we call it the Klein four-
grouplike) and η is its another identity-like.
(iv) Every null semigroup [non-singletons null semigroup] is grouplike
[proper grouplike] and all its elements are identity-likes. So, we call it
null grouplike.
(v) Every unipotent semigroup S containing the zero 0 is a zero grou-
plike. Because the zero is an identity-like element and if ε is another
element satisfying the axiom (3), then its square is central idempotent
and so ε2 = 0 = x0 = 0x, for every x ∈ S. Specially, ([0, 1), ·) is a
standard zero grouplike.
(vi) Let Ω be a set with a special element 0 and more than two elements.
For every x, y ∈ Ω, put xy = x, if x, y ̸= 0 and xy = 0, if x = 0 or
y = 0. Then, Ω is such zero grouplike which is not standard.

Consider a magma (X, ·). Recall that Z(X) and It(X) = E(X) are
the center and the set of all idempotent elements of X, respectively
(which may be empty). Here, we introduce some important subsets of
magmas and we use them specially for studying grouplikes and semi-
groups:

Nz(X) := {ε ∈ Z(X)|εx = ε2x = ε(εx) = (xε)ε = xε2, for all x in X},

Sv(X) := {t ∈ X|∀x ∈ X ∃y ∈ X such that t = xy = yx}.
Now, we put

Zt(X) := Z(X) ∩ It(X) , Sq(X) := {t ∈ X|t2 ∈ Sv(X)}

Sz(X) := Sq(X) ∩ Z(X)

Iz(X) := Nz(X) ∩ Sq(X) , Izt(X) := Iz(X) ∩ It(X).

We call every element of Nz(X) neutral-like, every element of Sv(X)
[respectively Sq(X)] solvable [respectively square solvable ], and every
element of Iz(X) identity-like (this agrees with the definition of identity-
like in Definition 2.1). Also, every element of Zt(X) [respectively Sz(X)]
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70 Hooshmand

is called central idempotent [respectively central square solvable].
For a fixed t and every x ∈ X, we set

Invt(x) := {y ∈ X|t = yx = xy},

and call its every element t-inverse-like of x. So, in (Γ, ·, e), the set
Inv(x) := Inve(x) is the set of all inverse-likes x′.
It is easy to show that in every magma X,

Izt(X) = Iz(X) ∩ Sv(X) = Iz(X) ∩ Zt(X) ⊆ Zt(X) ∩ Sv(X),

Nz(X) ∩ It(X) ⊆ Zt(X).

Moreover, if X is alternative, then

Nz(X) = {ε ∈ X|xε = εx = ε2x, for every x in X},

Izt(X) = Zt(X) ∩ Sv(X) , Nz(X) ∩ It(X) = Zt(X).

Now, let X be a magma with the zero element. Then,

Sv(X) = {0} = Izt(X), Sq(X) = {t ∈ X|t2 = 0}, Iz(X) = Null(X),

where Null(X) := {t ∈ X|tx = xt = 0 , for every x in X }. Notice
that X is a null semigroup [respectively null-free magma] if and only if
Null(X) = X [respectively Null(X) = {0}], and if X = S is semigroup,
then Null(S) is an ideal of S.
If X = S is semigroup, then

Sv(S) ⊆ Sz(S) ⊆ Sq(S),

for if δ ∈ Sv(S) and x ∈ S, then there is a y ∈ S such that δ = xy = yx,
and thus

δx = (xy)x = x(yx) = xδ , δ2 = x(δy) = (δy)x.

It is clear that a semigroup S is grouplike [respectively monoidlike] if
and only if ∅ ̸= Nz(S) ⊆ Sq(S) [respectively Zt(S) ̸= ∅] if and only if
∅ ̸= Zt(S) ⊆ Sv(S).
For every group G, we have

It(G) = Nz(G) = Zt(G) = Iz(G) = Izt(G) = {e}

⊆ Z(G) = Sv(G) = Sz(G) ⊆ Sq(G) ⊆ G.

Moreover, if G is commutative, then Sv(G) = Sz(G) = Sq(G) = G.
For an example of groups, if G = S3 =< a, b|a3 = b2 = 1 , bab = a−1 >,
then

Sv(S3) = Z(S3) = Sz(S3) = {1} , Sq(S3) = {1, b, ab, ba}⩽̸̇S3.
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Grouplikes 71

Also, for an example of commutative semigroups (grouplikes), consider

Sv(R,+b) = Rb = R+b R , Sq(R,+b) = R = Sz(R,+b),

Iz(R,+b) = Nz(R,+b) = bZ,

It(R,+b) = Zt(R,+b) = Izt(R,+b) = {0} = Rb ∩ bZ.
We will continue this topic in the last section (specially their interesting
useful diagrams, for semigroups and grouplikes, will be shown in figures
1-4). Now, we return to grouplikes.

Lemma 2.5. (Basic properties of grouplikes) For every grouplike (Γ, ·, e),
we have:
(i) Iz(Γ) ∪ It(Γ) ⊆ Inv(e) and

Izt(Γ) = Zt(Γ) = Iz2(Γ) = Iz(2)(Γ) = {e},
and so every grouplike which It(Γ) ⊆ Z(Γ) (e.g., every commutative
grouplike) is standard and Iz(Γ) is a null sub-semigroup of Γ and e is
its zero.
(ii) The equation tx = ty [respectively xt = yt] implies ex = ey [respec-
tively xe = ye], for every t, x, y in Γ (we call it left [respectively right]
e-cancelation property).
(iii) If x ∈ Γ and ε ∈ Iz(Γ), then εx = ex = xe = xε, and so

Inv(ε) = Inv(e) , εΓ = eΓ : ∀ε ∈ Iz(Γ).

Also, if an element x0 satisfies ε1x0 = ε2, for some ε1, ε2 ∈ Iz(Γ), then
ε2 = e and x0 ∈ Inv(e). Hence, for every ε1, ε2 ∈ Iz(Γ), the equation
ε1x = ε2 has a solution in Γ if and only if ε2 = e.
(iv) For every x, y,

∃t0 ∈ Γ : t0x = t0y ⇔ ∃ε1, ε2 ∈ Iz(Γ) : ε1x = ε2y ⇔ ex = ey.

(v) In each of the following descriptions, e is the unique element of Γ:
- There exists a unique solvable identity-like in Γ.
- There exists a unique central idempotent element in Γ.
- There exists a unique idempotent identity-like in Γ.
- There exists the least idempotent in Γ.

Proof. If ε1, ε2 ∈ Iz(Γ), then ε1, ε2, ε1ε2 ∈ Z(Γ) and (ε1ε2)
2 = ε21ε

2
2 =

ε1ε
2
2 = ε1ε2. For every x ∈ Γ, there exists y ∈ Γ such that ε21 = yx =

xy, so ε1ε2 = (ε1ε2)
2 = ε2ε

2
1 = (ε2y)x = x(ε2y), and thus ε1ε2 ∈
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Sq(Γ). Therefore, ε1ε2 is an idempotent identity-like of Γ and Lemma
2.2 implies ε1ε2 = e. Specially, we have ε2 = e = εe = eε, for every
ε ∈ Iz(Γ). Also, it is easy to see that It(Γ) ⊆ Inv(e) (thus e ≤ δ, for all
idempotents δ) and

Zt(Γ) = Nz(Γ) ∩ It(Γ) = Iz(Γ) ∩ It(Γ) = Izt(Γ) = {e}.
So, we have established the proof of (i). Other parts are concluded from
(i), Lemma 2.2 and axioms (3) and (4) of the definition. □

The above lemma contains two important facts, εΓ = eΓ and the
equivalent relation ex = ey, in grouplikes. These induce two groups
that are very useful for studying grouplikes. Let us introduce them
here. For every x, y ∈ Γ, we define

x ∼e y ⇔ ex = ey.

Note that ∼e is a semigroup congruence and Γ⧸ ∼e (the set of all
equivalent classes x that obtained from ∼e) is its quotient semigroup
with the binary operation ◦, defined by x ◦ y = xy . For, if x1 = y1 and
x2 = y2, then ex1 = ey1 and ex2 = ey2, so (ex1)(ex2) = (ey1)(ey2), thus
ex1x2 = ey1y2, and so x1x2 = y1y2.

Theorem 2.6. The quotient semigroup (Γ⧸ ∼e, ◦) is a group and eΓ is
a maximal subgroup (as the sense of subgroup of a semigroup) and also
minimum ideal of Γ . Moreover, Γ⧸ ∼e

∼= eΓ and

(2.1) (ex)−1 = ex′ = e(ex)′ , (ex)−1 ∼e x
′ ∼e (ex)

′ : ∀x ∈ Γ,

where x′ [respectively (ex)′] is every inverse-like of x [respectively ex] in
Γ and (ex)−1 is the inverse of ex in the group eΓ.

Proof. The identities (ex)(ey) = exy, e(ex) = ex = (ex)e and e =
(ex)(ex′) = (ex′)(ex) imply eΓ is subgroup of Γ with the identity e
and (2.1) holds. Now, if eΓ ⊆ G ≤ Γ, then e ∈ G, so e = eG and
G = eGG = eG ⊆ eΓ. Therefore, eΓ is a maximal subgroup. Also,
eΓ △ Γ, clearly, and if I △ Γ, then e ∈ I, by the axiom (4) of grouplikes
and the identity ε2 = e, so eΓ ⊆ I. It is clear that e is the identity
element of Γ⧸ ∼e and (ex)−1 = x′ = (ex)′ is the same inverse of x for
a given x ∈ Γ⧸ ∼e. Therefore, (Γ⧸ ∼e, ◦) is a group. Now, define the
map Ψ : eΓ → Γ⧸ ∼e, by Ψ(ex) = x, for every x ∈ Γ. It is a surjective
well-defined map and Ψ(ex) = Ψ(ey) if and only if ex = ey, for every
x, y ∈ Γ. Also,

Ψ((ex)(ey)) = Ψ(e(xy)) = xy = (ex)(ey) = Ψ(x) ◦Ψ(y).
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Grouplikes 73

Therefore, the proof is complete. □

Note. First notice that in general eΓ is not the largest subgroup of Γ
(consider the grouplike Ω in Example 2.4), but it is so if Γ is a standard
grouplike. In fact,

eΓ ≤max Γ ⇔ Γ is standard ⇔ It(Γ) = Zt(Γ).

⇔ Γ contains the largest subgroup

Regarding the above theorem, it can be shown that for a semigroup S
for which Zt(S) is a singleton, we have

S is grouplike ⇔ S contains an ideal subgroup.

⇔ S contains the least ideal which is also a maximal subgroup.

Therefore, in general, we have

S is standard grouplike

⇔ S has an ideal subgroup containing all its idempotents

⇔ S contains the least ideal which is also the largest subgroup.

Considering the property Iz(Γ) ⊆ Inv(e), we consider two hypothesis
for grouplikes:

(H1) (The identity-like hypothesis) exy = xy, for every x, y ∈ Γ (equiv-
alently, e is a bi-identity of Γ).
(H2) (The inverse-like hypothesis) Inv(e) = Iz(Γ) (equivalently, Inv(e) ⊆
Iz(Γ)).

By Lemma 2.5, in every grouplike, the equation exy = xy holds, for
all x, y such that x or y belongs to eΓ ∪ Iz(Γ).
Now, we prove that (H1) implies (H2).

Theorem 2.7. In every grouplike, the identity-like hypothesis implies
the inverse-likes hypothesis.

Proof. Define another binary operation in Γ by x � y = exy. This is
associative, x � (y � z) = (x � y) � z = exyz, and ε � x = e � x = ex, for
every x ∈ Γ. Thus, Iz(Γ, ·) ⊆ Iz(Γ, �), and so e ∈ Zt(Γ, �). Also, if
δ ∈ Zt(Γ, �), then eδ ∈ Zt(Γ, ·) and δ = eδ2, and so eδ ∈ Sv(Γ, ·). Thus,

δ = eδ2 = (eδ)2 = (eδy)x = (eδ)xy = x(eδ)y = x(eδy),
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for some y ∈ Γ. Therefore, (Γ, �) is grouplike. Now, if δ ∈ Iz(Γ, �),
then eδ ∈ Iz(Γ, ·), so e = e(eδ) = eδ and δ ∈ Inv(e, ·). Conversely, if
δ ∈ Inv(e, ·), then eδ = e, δ ∈ Z(Γ, �) (because δ � x = eδx = ex = xe =
x(eδ) = exδ = x � δ), and δ � δ � x = eδ2x = ex = eδx = δ � x. Also,
putting y = δ2x′, we have

y � x = eδ2x′x = δ2e = δ � δ
x � y = x � (δ2x′) = x � (δ2 � x′) = x � (x′ � δ2) = eδ2 = δ � δ.

Therefore, Inv(e, ·) = Iz(Γ, �). But, (H1) implies � = ·, and so Inv(e, ·) =
Iz(Γ, �) = Iz(Γ, ·). □
Remark 2.8. There exists a short proof for the above theorem, but we
give the proof for introducing the dual grouplike as follows.
For every grouplike (Γ, ·, e), we have the grouplike (Γ, �, e), where x·ey :=
x � y = exy.

Dual grouplike: We call the grouplike (Γ, ·e, e) dual grouplike of (Γ, ·, e).
It is an important fact that in the dual grouplikes, the two hypothesis and
the following identities hold:

Iz(Γ, ·) ⊆ Iz(Γ, ·e) = Inv(e, ·) = Inv(e, ·e) = (e, ·) = (e, ·e),
where (e, ·) [respectively (e, ·e)] is the class congruence of e in (Γ, ·) [re-
spectively (Γ, ·e)].
We will show that (H1) is correct only for class united grouplikes which
is a very vast class of grouplikes and contains a large class of group-
likes namely, f -grouplikes. However, the followings are some examples
of grouplikes which do not satisfy the hypotheses (H1) and (H2):
All non-null semigroups S such that Zt(S) = {0} are such grouplikes
(note that Inv(e) = Inv(0) = S , Iz(S) = Null(S) ̸= S and Izt(S) =
Sv(S) = {0}). Specially, the semigroup S = {0} ∪ (1,+∞) which is a
sub-semigroup of the multiplicative real semigroup. So, it is a standard
grouplike that does not satisfy (H2) and (H1). Also, Ω in Example 2.4
is a non-standard grouplike which does not satisfy (H2).
Note that if Γ satisfies the hypothesis(H2), then Γ is standard (because
It(Γ) ⊆ Inv(e) = Iz(Γ) ⊆ Z(Γ) so It(Γ) = Zt(Γ) = {e}).
More explanations are mentioned in the last section of this paper. Of
course, the following question remains unanswered here:
Question. Does the inverse-like hypothesis (H2) imply the identity-like
hypothesis (H1)? (the answer seems to be negative.)

Now, we state several equivalent conditions of (H1) for grouplikes.
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Lemma 2.9. For every grouplike (Γ, ·, e) the following statements are
equivalent:
(i) Γ satisfies the identity-like hypothesis;
(ii) εxy = xy, for every x, y ∈ Γ and ε ∈ Iz(Γ);
(iii) ε0xy = xy, for every x, y ∈ Γ and some ε0 ∈ Iz(Γ);
(iv) eΓ = Γ2;
(v) Iz(Γ)Γ = Γ2;
(vi) Γ is equal to its dual grouplike;
(vii) Γ is a class united grouplike (see Theorem 2.11);
(viii) Γ2 is a subgroup of Γ;
(ix) xΓ = Γ2 [Γx = Γ2], for every x ∈ Γ.
Moreover, if (H2) holds, then the following conditions are equivalent to
(i)-(ix):
(x) γxy = xy [xy = xyγ], for every x, y ∈ Γ and some γ ∈ Γ;
(xi) Γ2 has a left [right] identity;
(xii) Γ2 is a sub-monoid of Γ (i.e. Γ2≤̇Γ and Γ2 is a monoid).

Proof. If xy ∈ Iz(Γ)Γ2 or xy ∈ eΓ, then xy = ez, for some z ∈ Γ so
exy = ez = xy.
If Γ2 is group, then eΓ ≤ Γ2 ≤ Γ and so Γ2 = eΓ (because eΓ is a
maximal subgroup).
If (H1) holds and x ∈ Γ, then Γ2 = eΓ = (xx′)Γ = x(x′Γ) ⊆ xΓ. So
xΓ = Γ2.
Also, if (x) and the hypothesis (H2) hold, then putting x = y = e we
have γe = e thus γ ∈ Inv(e) = Iz(Γ). Therefore xy = γxy = exy, for
every x, y.
The above explanations together with Lemma 2.5 and Theorem 2.11
complete the proof. □
Note. If (Γ, ·, e) satisfies the identity-like hypothesis, then it satisfies
the weak cancelation properties, which are

txy = tzw ⇒ xy = zw , xyt = zwt ⇒ xy = zw : ∀x, y, z, w, t ∈ Γ.

Also, we have
x ∼e y ⇔ zx = zy ⇔ xz = yz,

for every x, y, z ∈ Γ.

2.1. Class united grouplikes. We call G a class group, if G is a group
for which all its elements are nonempty disjoint sets. Every quotient
group is a class group and it can be shown that for every cardinal number
a ̸= 0, there exists a class group G with the cardinal number a (if we
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accept the generalized continuum hypothesis).
We call every function Ψ : ∪G → G a class function, if x ∈ Ψ(x), for
every x ∈ ∪G. Because of our assumption for G, the surjective class
function Ψ always exists and is unique. We use the notation Ψ(x) = Ax,
when A ∈ G and x ∈ A = Ψ(x). Now, if φ is a choice function from G to
∪G (φ(A) ∈ A), then it is injective, Ψφ = 1G , φ = φΨφ and Ψ = ΨφΨ
(so, Ax = Aφ(Ax), for every x ∈ ∪G).
Now, let E be the identity element of the class group (G, ◦) and define
the binary operation � = �φ in ∪G by

x �φ y = x � y = φ(Ψ(x) ◦Ψ(y)) = φ(Ax ◦Ay) : ∀x, y ∈ ∪G,

where Ψ is the unique class function and φ is an arbitrary choice func-
tion.
First, we have

x � (y � z) = φ(Ax ◦Aφ(Ay◦Az)) = φ(Ax ◦ (Ay ◦Az))

= φ((Ax ◦Ay) ◦Az) = φ(Aφ(Ax◦Ay) ◦Az) = (x � y) � z.
Therefore, x � (y � z) = (x � y) � z = φ(Ax ◦Ay ◦Az). Now, if ε ∈ E, then
ε�ε = φ(E). Putting e = φ(E), we have e�e = e and e�x = x�e = φ(Ax),
for every x ∈ G. So, e ∈ Zt(∪G, �). Now, if δ ∈ Zt(∪G, �), then δ = δ �δ =
φ(Aδ ◦Aδ) ∈ Aδ ◦Aδ. If x ∈ ∪G, then putting y = φ(Aδ ◦Aδ ◦B), where
B is the inverse element of A = Ax in G, then we have

x � y = φ(Ax ◦Aφ(Aδ◦Aδ◦B)) = φ(Ax ◦Aφ(B◦Aδ◦Aδ))

= φ((Ax ◦B) ◦ (Aδ ◦Aδ)) = φ(Aδ ◦Aδ) = δ.

Similarly, y �x = δ. Therefore, ∅ ̸= Zt(∪G, �) ⊆ Sv(∪G, �), and so (∪G, �)
is a grouplike. Hence, we can state the following definition.

Definition 2.10. Let (G, ◦) be a class group with the identity element
E and ΨG : ∪G → G be the unique class function and φ be a given choice
function from G. We call the algebraic structure (∪G, �φ, φ(E)) φ-class
united grouplike. Also, we say a grouplike (Γ, ·) is class united, if there
exists a class group (G, ◦) and a choice function φ such that ∪G = Γ and
�φ = · .

Theorem 2.11. (A) For every class united grouplike the identity-like
and the inverse-like hypotheses hold. Hence, a grouplike is class united
if and only if it satisfies the hypothesis (H1).
(B) (General form of grouplikes satisfying the identity-like hypothesis) A
magma (Γ, ·) is a grouplike with the identity-like hypothesis if and only
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if it there exist a class group G and a choice function φ : G → ∪G such
that Γ = ∪G and · = �φ.

Proof. (A): Consider (G, ◦), E, φ, � = �φ as above, and put e = φ(E).
Then

(2.2) e � x � y = φ(Ae ◦Ax ◦Ay) = φ(E ◦Ax ◦Ay) = φ(Ax ◦Ay) = x � y,
for every x, y ∈ ∪G. Hence, if (Γ, ·) is class united, then its standard
identity-like is equal to φ(E), and so (2.2) guarantees that Γ satisfies
(H1). Conversely, if in (Γ, ·, e) the hypothesis (H1) holds, then putting
(G, ◦) = (Γ, ◦), φ(x) = ex, we have ∪G = Γ, φ is a choice function from
G and �φ = ·, because

x �φ y = φ(x ◦ y) = φ(xy) = exy = x · y,

for every x, y ∈ ∪G = Γ. So, Γ is class united.
Part (B) is concluded from (A) and Definition 2.10. □

Note. Theorem 2.11 implies that every dual grouplike is class united.
Hence, every grouplike gives us a class united grouplike.

Theorem 2.12. Let a be a given infinite [respectively finite] cardinal
number and (G, ·, e) be an arbitrary group such that a ≥ |G| [respectively
a > |G|]. Then, there exists a proper grouplike (Γ, �, e) with cardinal a
such that G ⊊ Γ, �|G×G = ·, G = e � Γ and G is homomorphic image of
Γ under a semigroup endomorphism in Γ. Moreover, if b is an arbitrary
cardinal number such that b ≤ a [respectively b < a−|G|+1], then there
exists such proper grouplike for which |Iz(Γ)| = b. Also, we can find
such a Γ for which (Γ, �, ϵ) is proper grouplike with ϵ ̸= e ∈ Iz(Γ).

Proof. For a given group G, consider an arbitrary family of disjoint sets
{Ag}g∈G such that Ag∩G = ∅, for every g ∈ G. Now, put Gg = Ag∪{g}
(∀g ∈ G) and G = {Gg|g ∈ G}. We show an element A of G by A = Ax

for every x ∈ A, so A = Ax = Gx = Ax ∪{x} if x ∈ A∩G. Therefore, G
is a set of nonempty disjoint classes Gg and |G| = |G|. So, there exists
a bijection φ : G → G such that φ(Ge) = e. Define the binary operation
◦ on G by Ax ◦ Ay = φ−1(φ(Ax)φ(Ay)). Hence, (G, ◦) is a group and
isomorph to G. Now, putting Γ = ∪G, we have G ⊆ Γ. Note that
φ : G → Γ is a choice function such that φ(A) ∈ A ∩G, for every A ∈ G
and φ(G) = G. Therefore, we have class united grouplike (Γ, �φ) = (Γ, �)
such that

x � y = φ(Gx ◦Gy) = φ(Gx)φ(Gy) = x · y ; ∀x, y ∈ G.
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So, �|G×G = ·. Also,
e � Γ = {φ(Ge ◦Ax)|x ∈ Γ} = {φ(Ax)|x ∈ Γ} = {φ(Ag)|g ∈ G} = G.

In addition, the function Ψ : Γ → Γ, defined by Ψ(x) = e � x, is a
semigroup homomorphism and Ψ(Γ) = G. Notice that Iz(Γ) = Ge,
|Γ| =

∑
g∈G |Gg| and we are free to choice every Gg with a given cardinal

≥ 1. Therefore, we can get the results. For the last part, if we take Ae

and the bijection φ such that φ(Ge) = ϵ ̸= e, then ϵ is the standard
identity-like of Γ. □

Now, we want to state an isomorphism equivalent condition for a
grouplike to be class united grouplike. Hence, we introduce grouplike
homomorphisms after proving a lemma.

Lemma 2.13. Let X1, X2 be magmas and Γ1, Γ2 be grouplikes.
(i) If µ : X1 → X2 is magma epimorphism, then µ(χ(X1)) ⊆ χ(X2),
for all the cases χ = Z, It, Zt,Nz, Iz, Izt, Sq, Sv. So, if µ is bijection
(magma isomorphism), then µ(χ(X1)) = χ(X2), for all the cases.
(ii) If µ : (Γ1, ·, e1) → (Γ2, ·, e2) is magma homomorphism, then

(2.3) µ(e1) = e2 ⇔ µ(e1) ∈ Iz(Γ2).

Moreover, if the hypothesis (H2) is correct for Γ2, then

µ(e1) = e2 ⇔ µ(e1) ∈ Iz(Γ2) ⇔ µ(Iz(Γ1)) ⊆ Iz(Γ2).

Proof. If χ(X1) = ∅, for some cases of χ, then it is trivial. So, we
consider the nonempty cases. Choose ε1 ∈ Nz(X1) and put ε2 = µ(ε1).
If x2 ∈ X2, then x2 = µ(x1), for some x1 ∈ X1 and

(ε22)x2 = µ((ε21)x1) = µ(ε1(ε1x1)) = ε2(ε2x2).

Analogously, we can show that xε2 = ε2x = ε22x = ε2(ε2x) = (xε2)ε2 =
xε22, for every x2 ∈ X2. So, µ(ε1) ∈ Nz(X2). The proof of other parts
of (i) are similar.
The identity µ(e1) = µ(e1)

2 and Lemma 2.5 imply (2.3). Now, if ε1 ∈
Iz(Γ1), then µ(ε1)µ(e1) = µ(e1). Hence, if µ(e1) ∈ Iz(Γ2), then µ(e1) =
e2 and the hypothesis (H2) implies µ(ε1) ∈ Inv(e2) = Iz(Γ2). □

Considering Lemma 2.13, we state the following definition of grouplike
homomorphism and sub-grouplikes.

Definition 2.14. Let Γ1, Γ2 be grouplikes. We call µ : Γ1 → Γ2 grou-
plike homomorphism, if it is magma homomorphism and µ(Iz(Γ1)) ⊆
Iz(Γ2). A grouplike homomorphism is a grouplike isomorphism, if it is
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a bijection. Also, we say Γ1 is isomorphic to Γ2 and denote by Γ1
∼= Γ2,

if there exists a grouplike isomorphism (equivalently, magma isomor-
phism) between them. We call a subset H of Γ sub-grouplike and denote
by H ⊑ Γ, if it satisfies the following properties:
(a) H≤̇Γ ; (b) h′ ∈ H, for all h ∈ H (i.e.,

∪
h∈H Inv(h) ⊆ H).

Note that if H ⊑ Γ, then Iz(Γ) ⊆ H. For, if h ∈ H, then h′ ∈ H,
thus e = hh′ ∈ H, and so Iz(Γ) ⊆ Inv(e) ⊆ H. Therefore, if Γ satisfies
(H2), then Iz(Γ) is the smallest sub-grouplike of Γ. In fact,

Γ satisfies the inverse-like hypothesis ⇔ Iz(Γ) ⊑ Γ ⇔ Iz(Γ) ⊑min Γ.

Now, let µ : Γ1 → Γ2 be grouplike homomorphism and put

ker(µ) := {x ∈ Γ1|µ(x) ∈ Iz(Γ2)} , Sker(µ) := {x ∈ Γ1|µ(x) = e2},
and call Sker(µ) standard kernel of µ. Since µ(e1) = e2, then these are
nonempty. Also, if x, y ∈ ker(µ), then µ(xy) = e2. So

Sker(µ)≤̇ ker(µ)≤̇Γ1 , e1 ker(µ)≤̇ ker2(µ)≤̇Sker(µ)≤̇Γ1.

On the other hand, e2 = µ(x)µ(x′) = µ(x′)µ(x), for every x, and so

µ(Inve1(x)) ⊆ Inve2(µ(x)).

Therefore, if x ∈ ker(µ), then µ(Inve1(x)) ⊆ Inve2(µ(x)) = Inve2(e2).
Now, if the hypothesis (H2) holds for Γ2, then µ(Inv(x)) ⊆ Iz(Γ2), and
so Inv(x) ⊆ ker(µ). Therefore, if the hypothesis (H2) holds for Γ2, then
Sker(µ)≤̇ ker(µ) ⊑ Γ1.
For a nice example of grouplike isomorphism, consider two constant
non-zero real numbers b and β and define µ : (R,+b) → (R,+β), by

µ(x) = β
b x. It is easy to check that

µ(x+b y) = µ(x) +β µ(y) = β(
x+ y

b
)1 : ∀x, y ∈ R,

µ(Iz(R,+b)) = Iz(R,+β) , ker(µ) = Iz(R,+b) = bZ , Sker(µ) = {0}.
So, every real b-grouplike is isomorphic to the real grouplike.

Lemma 2.15. A grouplike (Γ, �, e) is class united if and only if there
exists a φ-class united grouplike (∪G, �φ) such that (Γ, �) ∼= (∪G, �φ).
Proof. Let µ : (∪G, �φ) → (Γ, �) be an isomorphism and x, y ∈ Γ, x =
µ(z), y = µ(w), for some z, w ∈ ∪G. Then

e � x � y = µ(φ(E) �φ z �φ w) = µ(z �φ w) = x � y.
Hence, Theorem 2.11 implies that (Γ, �) is class united grouplike. The
converse is clear. □
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Remark 2.16. Let Γ be a class united grouplike. Recall that all the
equivalent conditions of Lemma 2.9 and the following important proper-
ties hold:

(a) e is the unique idempotent element of Γ.
(b) Γ is zero grouplike if and only if it contains the zero element if and
only if it is null grouplike.
(c) Γ contains a left or right identity if and only if it is monoid if and
only if Γ is group.
(d) Every left and right coset of Γ is its subgroup (xΓ ≤ Γ and Γx ≤ Γ,
for every x ∈ Γ).
Figure 3 shows the inclusion relation for the mentioned subsets of class
united grouplikes.

3. Some other related topics for semigroups

Here, we show that the introduced concepts and subsets in the topic
grouplikes can be used for studying semigroups (even magmas and groups)
in general. In fact, the concepts neutral-likes, identity-likes and solvable
elements and also the basic subsets Z(S), It(S), Nz(S), Sv(S), and
Sq(S) play important roles and can help us in studying such algebraic
structures. Of course, the other mentioned subsets Zt(S), Iz(S), Izt(S)
and Sz(S), are obtained by their products or intersections. The follow-
ings are some of their basic properties:

(3.1)

Nz(S)Nz(S) = Zt(S) ⊆ Nz(S) , Nz(S)It(S) ⊆ It(S),
Iz(S)Iz(S) = Izt(S) ⊆ Iz(S),

Sv2(S) ⊆ Sv(S) , Sv(S)Z(S) ⊆ Sv(S),
Sq(S)Z(S) ⊆ Sq(S) , Sv(S) ⊆ Sz(S).

Note that if δ1, δ2 ∈ Nz(S), then (δ1δ2)
2 = δ21δ

2
2 = δ1δ

2
2 = δ1δ2 belongs

to Zt(S) = Zt(2)(S) = Zt2(S) ⊆ Nz2(S).
Now, considering the above relations and the fact “H2 ⊆ H if and only
if H≤̇S or H = ∅”, we are led to the next important lemma.

Lemma 3.1. For every semigroup, we have:
(i) Nz(S)Zt(S) = Zt(S) = Nz2(S) = Nz(2)(S) = Zt2(S) = Zt(2)(S).
(ii) Nz(S) ̸= ∅ ⇔ Zt(S) ̸= ∅ ⇔ Zt(S) △ Nz(S)⊴̇Z(S)⊴̇S.
(iii)

Nz(S)Iz(S) = Nz(S)Izt(S) = Izt(S) = Iz(S)Zt(S)

= Iz(S)Izt(S) = Iz2(S) = Iz(2)(S) = Izt2(S) = Izt(2)(S).

Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir


Grouplikes 81

(iv) Iz(S) ̸= ∅ ⇔ Izt(S) ̸= ∅ ⇔ Izt(S) △ Iz(S) △ Nz(S)⊴̇Z(S)⊴̇S.
(v)

Sv(S) ̸= ∅ ⇔ Sz(S) ̸= ∅ ⇔ Sq(S) ̸= ∅
⇔ Sv(S) △ Sz(S) △ Z(S) , Sv(S) △ Z(S).

So, if S is commutative, then Sq(S) △ S and Sv(S) △ S.

Proof. We have

Nz(S)Zt(S) = Nz(S)(Z(S) ∩ It(S)) ⊆ Nz(S)Z(S) ∩Nz(S)It(S)

⊆ Z(S) ∩ It(S)

= Zt(S) = Zt2(S) ⊆ Nz(S)Zt(S).

Also,

Nz(S)Iz(S) = Nz(S)(Nz(S) ∩ Sq(S)) ⊆ Nz2(S) ∩Nz(S)Sq(S)

⊆ Zt(S) ∩ Sq(S) = Izt(S) ⊆ Nz(S)Iz(S).

Other parts of the proof are similar to the above parts or are easy. □

Figure 1. Semigroup and Commutative Semigroup

Note. One can see the interesting comprisal relations for semigroups,
grouplikes, class united grouplikes and groups in figures 1-4, separately.
In the diagrams, wherever two arrows meet togethers, then the result-
ing set is the intersection, exactly. If Izt(S) ̸= ∅ (e.g., 0 ∈ S), then
all the above normal sub-semigroups and ideals exist. In view of the
above lemma, we see that if Zt(S) ̸= ∅ [respectively Izt(S) ̸= ∅], then
it has a property stronger than Zt(S) △ Nz(S) [respectively Izt(S) △
Iz(S), Izt(S) △ Nz(S)] which is Nz(S)-periodic [respectively Iz(S)-
periodic and Nz(S)-periodic]. Also, Z(S)Sq(S) = Sq(S)Z(S) ⊆ Sq(S)
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means that Sq(S) is upper Z(S)-periodic (note that, in general, neither
Sq(S) ⊆ Z(S), nor Z(S) ⊆ Sq(S)). We have introduced and studied
such subsets as periodic and upper periodic subsets of semigroups in [4].
This way, a new topic about a large class of subsets of semigroups con-
taining all sub-semigroups, ideals and periodic subsets, is introduced. In
fact, the upper periodic subsets can be considered as a generalization of
the conception ideals. Also, a unique direct representation for upper and
lower T -periodic subsets, when T is an invertible element of S, is proved
and applying it all sub-semigroups of S containing the fixed element T
are classified to three classes.

Now, a corollary of the above lemma and some previous results follows
here.

Figure 2. Grouplikes and Commutative Grouplikes

Corollary 3.2. For every semigroup S, the following statements are
equivalent.
(i) S is grouplike;
(ii) ∅ ̸= Nz(S) ⊆ Sq(S);
(iii) Iz(S) = Nz(S) and one [all] of the subsets Izt(S), Zt(S), Iz(S)
Nz(S) is [are] nonempty;
(iv) ∅ ̸= Zt(S) ⊆ Sv(S);
(v) Zt(S) and Izt(S) are singletons;
(vi) Zt(S) is a singleton subset of Sv(S);
(vii) S has an ideal subgroup containing all its central idempotents;
(viii) S contains a minimum ideal which is also its maximal subgroup
and Zt(S) is a singleton.
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Note that if Izt(S) is a singleton, then it dose not imply S is a grouplike.
For instance, consider ([0,+∞), ·) or the following example.

Example 3.3. This example show that none of the following conditions
(alone) implies S is a grouplike.
(a) Iz(S) = Nz(S) (equivalently, Nz(S) ⊆ Sq(S)), e.g., Iz((0,+∞),+) =
Nz((0,+∞),+) = ∅.
(b) Izt(S) is a singleton, e.g., Izt({0} ∪ [1,+∞), ·) = {0} (because
Zt({0} ∪ [1,+∞), ·) = {0, 1}).
(c) Zt(S) is a singleton, e.g., Zt([1,+∞), ·) = {1}.
(d) Iz(S) ̸= ∅ (or Iz(S) is singleton), e.g., the example (b).

Figure 3. Class United Grouplikes and Commutative
Class United Grouplikes

The following lemma and its corollary state some minimal conditions
for a semigroup to be a grouplike.

Lemma 3.4. If a semigroup (S, ·) satisfies the following conditions, then
it is a grouplike:
(1) There exists ε ∈ S such that

ε2x = εx = xε [analogously, xε2 = xε = xε] : ∀x ∈ S.

(2) If e is an idempotent element satisfying (1) and x ∈ S, then there
exists y ∈ S such that yx = e [analogously, xy = e].

Proof. Let ε be an arbitrary element satisfying (1) and put e = ε2. Then,
e ∈ Zt(S) and so for a given x ∈ S, there exists y ∈ S such that yx = e.
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Also, there exists z ∈ S such that zy = e. Now, we have (ey)x = e2 = e
and

x(ey) = e(xy) = (zy)(xy) = z(yx)y = zey = ezy = e2 = e.

Therefore, (S, ·) is a grouplike. □

Corollary 3.5. (a) A monoidlike (S, ·) is a grouplike if and only if
for every e ∈ Zt(S) and x ∈ S there exists y ∈ S such that yx = e
[analogously, xy = e].
(b) A standard monoidlike (S, ·, e) is grouplike if and only if for every
x ∈ S there exists y ∈ S such that yx = e [analogously, xy = e].

Now, we like to see what happens if a grouplike (Γ, ·, e) has the zero.
It implies 0 = e, because 0 ∈ Zt(Γ). Therefore, a grouplike is a zero
grouplike if and only if it contains the zero. In this case, Γ satisfies
the hypothesis (H2) if and only if Γ is a null grouplike (because Γ =
Inv(0) = Iz(Γ)).
Also, what happens if (Γ, ·, e) has a left [respectively right] identity ℓ
[respectively r].

Figure 4. Group and Commutative Group

In this case, we have ℓ ∈ Inv(e) [respectively r ∈ Inv(e)] (because it is
idempotent). Hence, if the hypothesis (H2) holds, then ℓ [respectively r]
is the same (unique) idempotent identity-like, and so Γ = eΓ is a group.
Therefore, (Γ, ·) is both grouplike and monoid if and only if it is a group
(because 1 ∈ Zt(Γ)).

In further studies of semigroup theory and grouplikes, considering some
of the following classes of semigroups may be useful:
(A) The semigroups S such that Iz(S) ̸= ∅ (e.g., all homogroups that are
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semigroups containing an ideal subgroup, and specially all grouplikes).
In this case, all the normal sub-semigroups and ideals exist and

Izt(S) △ Iz(S) △ Nz(S)⊴̇Z(S)⊴̇S.

(B) All grouplikes (Γ, ·, e) satisfying one (some) of the following condi-
tions:
- Inv(e) = Iz(Γ) (e.g., all class united grouplikes).
- Inv(e) = Iz(Γ) ∪ It(Γ) (e.g., all grouplikes with the hypothesis (H2)).
- Inv(e) = It(Γ) (e.g., all bands B with zero such that Zt(B) = {0}).
- Inv(e) = {e} (e.g., all groups).
- It(Γ) = Zt(Γ) (i.e., standard grouplikes).
- |Iz(Γ)| = 1 (e.g., all groups).
- |Iz(Γ)| = 1 and Sv(Γ) = Sq(Γ) = Γ (e.g., all abelian groups).

We close by an example illustrating some of the mentioned subsets.

Example 3.6. Consider the semigroup S and its power set P (S) = 2S

and P ∗(S) = 2S \ {∅}. Then, (P (S), ·) is the semigroup of all subsets of
S with the same product of subsets of S and P ∗(S)≤̇P (S). Clearly, ∅ is
the zero of P (S). If S = M is monoid, then M is the zero of P ∗(S) and

{N |N≤̇1M} ⊆ It(P ∗(M)) ⊆ {H|H≤̇M},
Izt(P ∗(M)) = Sv(P ∗(M)) = {M},

where N≤̇1M means N is a sub-monoid of M .
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