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Abstract. In this paper, by using the Frobenius theorem a rela-
tion between Lie subalgebras of the Lie algebra of a top space T
and Lie subgroups of T (as a Lie group) is determined. As a result
we can consider these spaces by their Lie algebras. We show that a
top space with finite number of identity elements is a C∞ principal
fiber bundle, by this method we can characterize top spaces.

1. Introduction

Lie groups were initially introduced as a tool to solve or simplify ordi-
nary and partial differential equations, and found numerous applications
in Physics. Top spaces are smooth manifolds, in contrast with the case
of more general Lie groups. The notion of top spaces as a generaliza-
tion of Lie groups (Examples 1.7 and 1.8) was introduced by Molaei
in 1998. In this generalized setting, several authors (Araujo, Molaei,
Mehrabi, Oloomi, Tahmoresi, Ebrahimi, etc.) studied various aspects
and concepts of generalized groups and top spaces, [1, 4, 5, 8]. Each Lie
group is a top space, but there are top spaces which are not Lie groups.
Note that top spaces with finite number of identity elements have been
characterized by diffeomorphic Lie groups, [10].
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There is a relation between Lie algebra of a top space T with finite
number of identity elements and the one-parameter subgroups of T , in
general this relation is not one to one, [11].

In the first section of this paper we introduce top spaces, which are
generalizations of Lie groups [12], left invariant vector fields on top
spaces, and Lie algebra of a top space.

Section 2 is devoted to the determination of Lie subalgebra of a Lie
algebra of a top space T and Lie subgroups of T (as a Lie group, which
is discussed in [11]).

In section three we study the principal fiber bundles whose bundle
space is a top space. This generalization is different structure from prin-
cipal fiber bundle with structural Lie groupoid which has introduced by
A. Haefliger [7], and has studied by Gheorghe Ivan [6].

Now we recall the definition of a top space from [10].

Definition 1.1. A non-empty Hausdorff smooth d-dimensional manifold
T is called a top space if there is an action ”.” on T such that t.s ∈ T ,
for every t, s ∈ T and satisfies the following conditions:

From now on, we show t.s by ts.

(1) (rs)t = r(st), for all r, s, t ∈ T ;
(2) For each t ∈ T , there is a unique e(t) ∈ T such that:

te(t) = e(t)t = t.
(3) For all t, s ∈ T , e(ts) = e(t)e(s).
(4) For each t ∈ T , there is an s ∈ T such that ts = st = e(t), s is

shown by t−1.
(5) The mappings

m1 : T × T → T and m2 : T → T
(t, s) 7→ ts t 7→ t−1

are smooth mappings.

Remark 1.2. e(t) is called the identity of t.

Remark 1.3. In a Lie group the identity element is unique, but in a
top space the identity element of an element is dependent on the given
element.

Remark 1.4. The inverse of each element t of a top space, i.e. m2(t),
is unique, then by t−1 we mean the inverse of t.

Example 1.5. The Euclidean subspace R∗ = R − {0} of the Euclidean
space R with the product (a, b) 7→ a|b| is a top space.
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Fiber bundles and Lie algebras of top spaces 591

Example 1.6. Each Lie group is top space.

Example 1.7. There exists a product on the n−torus Tn such that Tn

is a top space, which is not a Lie group, [11].

Example 1.8. The d-dimensional Euclidean space Rd with the product:

((a1, . . . , ad), (b1, . . . , bd)) 7→ (da1+
∑

bi
d , . . . , dad+

∑
bi

d )
is a top space which is not a Lie group.

Note: In this paper the symbol ∗ shows the derivative of mapping.
A C∞-vector field Y on a top space T is called a left invariant vector
field, if (Lt)∗t(Y (s)) = (Y oLt)(s), where t, s ∈ T , Lt : T −→ T is defined
by Lt(s) = ts, and (Lt)∗s is the derivative of Lt at s.

In fact Y is a left invariant vector field on a top space T if and only
if (Lt)∗e(s)(Y (e(s))) = Y (te(s)), for all t, s ∈ T .
For example the subspace R − {0} of the Euclidean space R with the
product (a, b) 7→ a|b| is a top space, a C∞-vector field Y on R − {0} is
a left invariant vector field if and only if Y : R− {0} → R is defined by
Y (u) = αu, for some constant number α ∈ R.
The set of all left invariant vector fields on a top space T with the Lie
bracket is called Lie algebra of T and usually denoted by T . The Lie
algebras of top spaces were considered in paper, [11].

Here we present two crucial theorems which characterize some top
spaces, [10].

Theorem 1.9. Suppose that T is a one-dimensional top space and the
cardinality of e(T ) is finite, if e−1(e(t)) is connected, for all tεT , then
T is isomorphic to ⊕card(e(t))Ai, where Ai = R1orAi = S1, [10].

Theorem 1.10. If T is a two-dimensional top space and e−1(e(t))is a
connected set, for all tεT , then T is isomorphic to ⊕Ai, where Ai =
R2, Ai = T2, Ai = R× S1 or the identity connected component T t

0 of the
group of affine motions of the real line on Lie group e−1(e(t)), where
e−1(e(t)) = {s ∈ T | e(t) = e(s)}, [10].

Let T be a top space and G be a topological group, a covering map
P : T → G is called a top space covering map of G, if P satisfies in the
following condition:

P (t1t2) = P (t1)P (t2), for all t1, t2 ∈ T ,

see [11].
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Theorem 1.11. Let P : T → G be a top space covering for a topological
group of G. Then there is a correspondence (but not necessarily one to
one) between the one-parameter subgroups of G and the one-parameter
subgroups of T , [11].

This theorem, which has been proved in [11], determines the set of
one-parameter subgroups in a top space with respect to a topological
group.

The main corollary of theorem 1.8 is the following:

Corollary 1.12. For a connected top space T , connected topological
group G and a top space covering P : T → G, there exists a unique Lie
group structure on T such that e(t0) is the identity element, for some
t0 ∈ T , and the Lie algebra of T (as a Lie group) is equal to the Lie
algebra of T (as a top space), [11].

2. Lie algebras of top spaces

In this section by G we mean a topological group.

Definition 2.1. Let T be a top space with the finite number of identities.
A top space S is called a subtop space of T , if there is a one to one C∞

map i : S → T with the following conditions:

(1) i∗ is one to one;
(2) i(s1s2) = i(s1)i(s2), for all s1, s2 ∈ S.

Example 2.2. The Euclidean space R with the product (a, b) 7→ a is a
top space. The subspace (0, 1) with the same product, is a subtop space,
because the inclusion i : (0, 1)→ R satisfies the conditions of definition
2.1.

By using the Frobenius theorem we present a theorem, which deter-
mines a relation between two structures of T , in the first structure T is
a top space with finite number of identities and in the second one T is
a Lie group, which is considered in Corollary 1.12. Note that these two
structures depend on a top space covering.

Theorem 2.3. Let P : T → G be a top space covering for a Lie group
G. Every subtop space of T corresponds to a Lie subalgebra of the Lie
algebra T , and every Lie subalgebra of the Lie algebra T corresponds to
a Lie subgroup of T (as a Lie group, which is considered in Corollary
1.12).
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Fiber bundles and Lie algebras of top spaces 593

Proof. Let H be a subtop space of T , and h be the Lie algebra of H.
We define h̃ = {X | x ∈ h}, where X(t) = (Lt)∗t(x(e)), e is the identity
element of T (as a Lie group in Corollary 1.12), it is easy to show that

h̃ is a vector space and it is closed under the Lie bracket. Since the Lie
algebra of T (as a top space) is equal to the Lie algebra of T (as a Lie

group), h̃ is a Lie subalgebra of the Lie algebra T (as a top space).
Conversely, let T be a Lie algebra of T and h be a subalgebra of

T . Since h is a vector space, there are C∞ left invariant vector fields
X1, X2, . . . , Xd such that

h = span(X1, . . . , Xd).

So Θ(t) = span(X1(t), . . . , Xd(t)) is an involutive C∞ distribution on T ,
for all t ∈ T . Frobenius theorem implies that there is a unique maximal
connected integral submanifold H of T (as a Lie group in Corollary 1.12)
containing the identity element e. We know that H is a Lie subgroup,
[2]. �

Corollary 2.4. Let T be a top space with finite number of identities
and P : T → G be a top space covering for a Lie group G. Let T be the
Lie algebra of T , for every X ∈ T there is a one-parameter subgroup of
T (as a Lie group in Corollary 1.12) generated by X; that is, there is a
curve ζ : R→ T such that:

(1) ζ(t1 + t2) = ζ(t1)ζ(t2);
(2) X(ζ(s)) = ζ∗(s).

Note: In Corollary 2.4, if we consider T as a top space with finite
number of identities, then for every left invariant vector field X we can
find |e(T )| one-parameter subgroups of T , [11].

Now, we recall a main lemma in the theory of manifolds, which char-
acterizes the tangent space of the product of manifolds at a point.

Lemma 2.5. Let M,N and P be manifolds, θ : M ×N :−→ P be a C∞

map and θm, θn be defined by:
θm : N → P by θm(n) = θ(m,n);
θn : M → P by θn(m) = θ(m,n).
Then θ∗(s+t) = (θn)∗(s)+(θm)∗(t), for s+t ∈ (M×N)(m,n), s ∈Mm

and t ∈ Nn, [2].

By the above lemma we deduce:
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Note that, in this paper by
o⋃

we mean disjoint union.

Lemma 2.6. Let κ : T → T be defined by κ(t) = t−1, where T is a
connected top space with finite number of identities. Moreover let s ∈ Tt.
Then (κ)∗(s) = −(Rt−1)∗o(Lt−1)∗(s), where Rt is the right multiplication
by t ∈ T , and (κ)∗ is the derivative of κ.

Proof. First we define two maps α and β by:
α : T → T × T by t 7−→ (t, t)
β : T × T → T by (t1, t2) 7−→ t1t2.

βo(1× κ)oα is constant, for all t ∈ e−1(e(s)), (β)∗o(1× κ)∗o(α)∗ = 0,
because:

Card(e(T )) <∞ and T =
o⋃

e(t)∈e(T )

(e−1(e(t))), see [11].

Let s ∈ Tt. Then
0 = (β)∗o(1× κ)∗o(α)∗

= (β)∗o((1∗(s) + (κ)∗(s))
= (β)∗(s+ (κ)∗(s))
= (Rt−1)∗(s) + (Lt)∗((κ)∗(s)). (Lemma 2.5)

Then we have (Lt)∗((κ)∗(s)) = −(Rt−1)∗(s).
By multiplying (Lt−1)∗ from the left side, we get (κ)∗(s) = −(Lt−1)∗o(Rt−1)∗(s).
Since

(Lt−1)∗o(Rt−1)∗(s) = (Lt−1oRt−1)∗(s)
= (Rt−1oLt−1)∗(s)
= (Rt−1)∗o(Lt−1)∗(s),

(κ)∗(s) = −(Rt−1)∗o(Lt−1)∗(s).
�

Corollary 2.7. Let Y be an element of the Lie algebra T . Then (κ)∗Y
is right invariant.

There is a parallel formulation of Lie algebra of a top space in terms
of right invariant vector fields. (κ)∗ determines a connection with our
formulation.

3. Fiber bundles of top spaces

In this section by constructing a fiber bundle we characterize top
spaces. This fiber bundle has top space as a bundle space [10], and en-
able us to construct many different fiber bundles with this structure.
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Now we present the main theorem of this section.

Theorem 3.1. Let T be a top space with finite number of identity el-
ements. Then there exists a C∞ principal fiber bundle with the bundle
space T , and the structural group e−1(e(t0)), where t0 ∈ T .

Proof. If M = T , then we show that (T, e−1(e(t0)),M) is a C∞principal
fiber bundle, where T is the bundle space , M is the base bundle and
t0 ∈ T . We know that e−1(e(t0)) is a Lie group with identity element
e(t0). Let T × e−1(e(t0)) −→ T be defined by (t, s) 7→ ts. Then this C∞

mapping is a free action, because :
If s ∈ e−1(e(t0)), s : T −→ T is defined by s(t) = ts, then it is enough

to show that s is diffeomorphism. If t1, t2 ∈ T and s(t1) = s(t2), then
we have the following process:

s(t1) = s(t2)

t1s = t2s (by definition)

t1e(t0) = t2e(t0) (by multiplying s−1 from the right side)(3.1)

by multiplying e(t1) from the right side we get

t1e(t0)e(t1) = t2e(t0)e(t1)

(t1e(t1))e(t0)e(t1) = t2e(t0)e(t1)

t1 = t2e(t0)e(t1) (because e(t1)e(t0)e(t1) = e(t1))

by multiplying e(t2) from the right side we obtain that

t1e(t2) = t2e(t0)e(t1)e(t2)

t1e(t2) = t2 (because e(t2)e(t0)e(t1)e(t2) = e(t2))(3.2)

by replacing t1 with t2, we deduce t2e(t1) = t1. It is enough to show
that t1, t2 ∈ e−1(e(t1t2)).

(3.1) implies t1e(t0) = t2e(t0). So (t1e(t1t2))e(t0) = (t2e(t1t2))e(t0).
Therefore

t1(e(t1t2)e(t0)e(t1t2)) = t2(e(t1t2)e(t0)e(t1t2)).
So

(t1e(t1t2)) = (t2e(t1t2)),
(3.2) and t2e(t1) = t1 imply:

t1 = t2.
Thus s is an injective map.
Since
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596 Farhangdoost

e(t1t2)t2 = e(t1)(e(t2)t2) = e(t1)t2
by(3.2)

= e(t1)(t1e(t2)) = t1e(t2)
by(3.2)

= t2
and

t2e(t1t2) = (t2e(t2))e(t1)e(t2) = t2(e(t2)e(t1)e(t2)) = t2,

t2 ∈ e−1(e(t1t2)).
With the same method t1 ∈ e−1(e(t1t2)).
It is easy to show that s is a surjective mapping. The inverse function

theorem for manifolds implies that s is a diffeomorphism. Therefore
e−1(e(t0)) acts (smoothly) on T from the right side.

Now we show that this action is a free action:
If ts = t, then t−1(ts) = t−1t. So e(t)s = e(t).
Therefore e(t0)e(t)s = e(t0)e(t).
So
e(t0)e(t)(e(t0)s)e(t0) = e(t0)e(t)e(t0) since e(t0)e(t)e(t0) = e(t0) and

s ∈ e−1(e(t0)), s = e(t0).
Let t ∈ T and [t] = {ts|s ∈ e−1(e(t0))}, it is easy to show that

[t] = e−1(e(t0)).
Since

⋃
t0∈T

e−1e(t0) = T, T is a quotient space with the quotient map

π : T −→ T , defined by t 7→ tt0.
Now we show that T is locally trivial:
If t ∈ T , Ut = e−1(e(tt0)) and Card(e(T )) < ∞, then Ut is an open

subset of T and π−1(Ut) = e−1(e(t)),
we define FUt : e−1(e(t)) −→ e−1(e(t0)) by t0 7→ e(t0)t1e(t0),

Rs ◦ FU = se(t0)t1e(t0) = e(t0)st1e(t0) = FU ◦Rs(t1),
where Rs : T −→ T, s ∈ e−1(e(t0)), is defined by Rs(t) = ts.
Therefore (T, e−1(e(t0)), T ) is a C∞principal fiber bundle. �

Now we give new some easy proofs for corollaries of this theorem
which have been proved in [10] by difficult proofs.

Corollary 3.2. Let T be a top space with finite number of identity
elements. Then e−1(e(t)) are diffeomorphic, for all t ∈ T .

Proof. Obviously, in principal fiber bundle, every fibers e−1(e(t)) are
diffeomorphic, then e−1(e(t)) are diffeomorphic, for all t ∈ T . �

Arc
hive

 of
 S

ID

www.SID.ir

www.sid.ir


Fiber bundles and Lie algebras of top spaces 597

Corollary 3.3. If T is a top space with the finite number of identity

elements, then T =
◦⋃

t∈T
(e−1(e(t))), where e−1(e(t)) are diffeomorphic

Lie groups, for all t ∈ T .

Proof. Since (T, e−1(e(t0), T ) is a C∞ principal fiber bundle, every fibers
are isomorphic to Lie group e−1(e(t)) and so they are Lie groups diffeo-
morphic to e−1(e(t0)) . �

Theorems 1.9 and 1.10 imply that

Corollary 3.4. Every one-dimensional top space with finite number of
identity elements is a C∞principal fiber bundle, with the structural group
R or S1, but not both of them.

Corollary 3.5. If T is a two-dimensional top space, then T is a C∞

principal fiber bundle with structural group G, where G = R2,T2,R× S1
or identity connected component T t

0 of the group of affine motions of the
real line on Lie group e−1(e(t)), where t ∈ T .

Conclusion: In this paper we present a relation between the Lie
subalgebras of the Lie algebra of a top space T and subtop spaces of T .
Moreover a relation between two structure of T , i.e. Lie subalgebras of
the Lie algebra T and Lie subgroups of the Lie group T , is deduced.
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