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M. A. LUBIANO, M. MONTENEGRO, A. B. RAMOS-GUAJARDO,
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Abstract. Data obtained in association with many real-life random experi-

ments from different fields cannot be perfectly/exactly quantified. Often the
underlying imprecision can be suitably described in terms of fuzzy numbers/
values. For these random experiments, the scale of fuzzy numbers/values en-

ables to capture more variability and subjectivity than that of categorical data,
and more accuracy and expressiveness than that of numerical/vectorial data.
On the other hand, random fuzzy numbers/sets model the random mechanisms
generating experimental fuzzy data, and they are soundly formalized within

the probabilistic setting. This paper aims to review a significant part of the
recent literature concerning the statistical data analysis with fuzzy data and
being developed around the concept of random fuzzy numbers/sets.

1. Introduction

In [53] the father of Fuzzy Logic, Professor Lotfi A. Zadeh, entitled a discus-
sion to an invited paper in the journal Technometrics by stating that “Probability
Theory and Fuzzy Logic are complementary rather than competitive”. This ti-
tle/sentence guide, among many others in the literature (see, for instance, Viertl
and Hareter [51], for a methodological approach to the statistical analysis of fuzzy
data, Ramezanzadeh et al. [42], for a more concrete problem involving random
fuzzy data and Taheri and Kelkinnama [47] for a quite recent fuzzy linear regres-
sion analysis), the study in this paper.
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In this way, this paper combines ideas, concepts and results from both theories.
However, the paper is not trying either to compare them or to replace any of them
by the other. Random fuzzy sets take advantages of the skills of both theories and
join them for a kind of consortium. More concretely, the two types of underlying
uncertainties (namely, randomness and fuzziness) have been modeled by using their
own tools, and they have been integrated into the model of random fuzzy sets (or
fuzzy random variables in Puri and Ralescu’s sense) with a different mission: ran-
domness concerns the generation of experimental data, whereas fuzziness concerns
the nature of the information provided by the data.

Statistics is the science of collecting, organizing, analyzing and interpreting ex-
perimental data. Available data in performing random experiments are tradition-
ally supposed to be able to be expressed by using the scale of real numbers (or,
more generally, the scale of vectorial values with real-valued components).

Nevertheless, in the real world we can find valuations/perceptions/judgements/rat-
ings/classifications/etc. associated with random experiments and leading to data
which cannot be appropriately expressed by using real/vectorial values. Usually
these data are statistically treated and analyzed as categorical ones, but the meth-
ods for the statistical analysis can only exploit a limited information in most of
the cases. An alternative approach to deal with many of these data is based on
expressing them by using the richer and wider scale of fuzzy numbers (or, more
generally, the scale of fuzzy values). The suitability of this fuzzy scale is to be
commented and illustrated after recalling the concept of fuzzy number/value.

The aim of this paper is to overview the main basic concepts and ideas around
random fuzzy numbers/sets and summarize some of the recent statistical develop-
ments to analyze experimental fuzzy data. In Section 2 we will motivate the use
of, and we will present the key concepts and some guidelines to describe or collect,
fuzzy data. In Section 3 we will recall the concept of random fuzzy number/set
and related preliminaries. In Section 4 we will present a summary on the already
existing statistical methodology to analyze fuzzy data on the basis of random fuzzy
numbers/sets, and we will illustrate one of the methods with a real-life example.
Finally, we will comment about open problems and future directions.

2. Motivating and Modeling Experimental Fuzzy Data

A basic notion in dealing with imprecise data produced by a random experiment
is that of a fuzzy number (or more generally, that of fuzzy value). In this section we
first recall this notion, and motivate its application with some real-life examples.
Finally, we abstract the ideas in the examples to state some guidelines to express
and collect experimental fuzzy data.

2.1. The Scale of Fuzzy Numbers/Values. The concepts of fuzzy numbers and
fuzzy values are formalized as follows:

Definition 2.1. A fuzzy number is a mapping Ũ : R → [0, 1] so that for each

α ∈ (0, 1] the α-level set Ũα = {x ∈ R : Ũ(x) ≥ α} is a nonempty compact

interval. A fuzzy value is a mapping Ũ : Rp → [0, 1] (with p ∈ N) so that for each
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α ∈ (0, 1] the α-level set Ũα = {x ∈ Rp : Ũ(x) ≥ α} is a nonempty compact convex
set of Rp.

The space of fuzzy numbers will be denoted by Fc(R), and the space of fuzzy
values will be denoted by Fc(Rp).

Definition 2.2. A fuzzy number/fuzzy value is said to be bounded if the 0-level

set Ũ0 = closure{x ∈ Rp : Ũ(x) > 0} is a nonempty compact set. The space of
bounded fuzzy numbers will be denoted by F∗

c (R), and the space of bounded fuzzy
values will be denoted by F∗

c (Rp).

Equivalently, fuzzy numbers and values can be formalized as [0, 1]-valued up-
per semicontinuous functions with convex bounded α-levels for all α ∈ (0, 1], and
attaining at least once the maximum value 1 (i.e., normal fuzzy sets).

Of course, real/vectorial/interval/set-valued data can be viewed as particular
fuzzy numbers or values, by simply identifying them with the associated indicator
functions.

To support its applicability, it is relevant to look at the interpretation of fuzzy

numbers/values. Thus, a fuzzy number/value Ũ models an ill-defined quantity or

property on R/Rp, so that for each x ∈ R/Rp the value Ũ(x) can be interpreted

as the ‘degree of compatibility’ of x with the property ‘defining’ Ũ (or ‘degree of

membership’ of x to Ũ).
In dealing with imprecise-valued data, like those coming from valuations/percep-

tions/judgements/ratings/classifications/etc., the scale of fuzzy numbers/values

• is much more expressive and mathematically manageable, and its flexibil-
ity allows to capture better the inherent diversity, variability (and hence
subjectivity), than that of categories (or associated ranks in case of ordinal
data), which are usually constrained to a reduced list of possible values or
labels;

• it enables a more accurate description of the real perceptions/ratings/etc.,
and captures better the intrinsic imprecision than the scale of real/vectorial
values;

• the usual arithmetic for fuzzy numbers and values (as shown later) pays
attention to the ‘location’ and ‘shape’ of values (which are crucial for the
meaning, characterization and application of fuzzy values);

• ‘distances’ can be defined between fuzzy numbers/values which take into
account both ‘location’ and ‘shape’.

2.2. Motivating Real-life Examples. As real-life examples motivating the use
of fuzzy numbers we will consider the next ones:

Example 2.3. Hesketh and collaborators (see [20, 21]) have conducted the psy-
chometric random experiment of rating people’s perception on different aspects
concerning an occupation.

Due to randomness, perceptions vary from respondent to respondent. Moreover,
perceptions are intrinsically imprecise-valued and they could be properly expressed
in terms of fuzzy numbers.
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Instead of considering a single-point rating system, which may not accurately
reflect the extent to which a respondent is prepared to consider a range of possibil-
ities around a preferred/compatible point, experts have considered that the fuzzy
scale captures respondent’s preparedness to endorse a range of options while re-
taining information about the ‘most preferred’ point (which was referred to as the
‘∨’ pointer). Responses were stated on [0, 100] (from low to high).

Based on previous psychometric studies, five anchors were developed to mea-
sure prestige and three to measure sex-type. Figure 1 reproduces the form that
respondents have filled in the experiment by Hesketh et al. [20].

Not very well paid                Very well paid 

This occupation                            This occupation  

requires no education                                                                                                               requires a high  

for entry             level of education 

Most people think                       Most people think  

this occupation                                                                                                                            this occupation  

has low status                             has high status 

              

Most people think                        Most people think  

this occupation does                                                                                                                   this occupation  

not have much power             has much power 

              

Most people do not                       Most people think  

think highly of people                                                                                                              highly of people 

in this occupation                        in this occupation 

              

Most people think                       Most people think  

this occupation                                                                                                                            this occupation  

suits men                                              suits women 

              

Men usually                                    Women usually                                                                                                           

choose                                                                                               choose  

this occupation                             this occupation 

              

Generally                                                        Generally  

considered                considered 

men’s work                                           women’s work 

           

   

                                  0                         100    

                            Left                         Right  

             

             

Figure 1. Verbal Anchors Used on the Five Prestige and Three

Sex-Type Scales (Hesketh et al. [20])

Respondents were then asked how they thought people generally viewed each
occupation in relation to the scale. The opportunity was used to ensure that re-
spondents understood that the fuzzy rating represented their estimate of how people
generally view occupations. It should be noted that the fuzzy numbers scale al-
lows fuzzy ratings to be elicited from respondents who have no knowledge of the
mathematics underpinning Fuzzy Logic.

Given these directions in Figure 2 we can see the response provided by a re-
spondent to the question “How attractive do you find a (given) occupation?” (cf.,
Hesketh et al. [21])
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This response could be interpreted that 70 is the ‘∨’ point (or preferred percep-
tion), 45 to 85 is the ‘acceptable area’ around the ‘preferred perception’ (or interval
of points which are compatible to a greater or lesser extent with respondent’s per-
ception) and the compatibilities for the remaining points have being obtained by
using ‘linear interpolation’, leading to the triangular fuzzy number Tri(45, 70, 85).

Extremely unattractive                                                          Extremely attractive 

Figure 2. Example of a Response to the Question About How Attractive

the Respondent Finds a Given Occupation (Hesketh et al. [21])

Example 2.4. Colubi and González-Rodŕıguez from the SMIRE Research Group,
and other collaborators from the INDUROT (Research Institute of the University of
Oviedo, Spain), have conducted the environmental random experiment of rating the
quality and other aspects of trees in a reforestation which was performed more than
two decades ago in Valle del Huerna (an area between the provinces of Asturias and
León, in the North of Spain). For more details, see Colubi [3], González-Rodŕıguez
et al. [14].

Due to randomness, ratings vary from tree to tree (and also from expert to
expert). Moreover, ratings of the quality are intrinsically imprecise-valued and
they could be properly expressed in terms of fuzzy numbers.

Instead of considering usual Likert’s 1-5 or 1-7 codings, environmental experts at
the INDUROT have been informed about the possibility of rating quality by using
bounded fuzzy numbers on [0, 100] (0 meaning the lowest quality, 100 meaning the
highest one). To ease the graphical representation, environmental experts have been
recommended to draw trapezoidal fuzzy numbers in a form like that in Figure 3,
by stating for each qualified tree the 1-level (or closed interval of values which are
viewed as being ‘fully compatible’ with their rating of the quality of the tree), the
0-level (or closed interval of values such that all those in the corresponding open
interval are viewed as being ‘compatible to some extent’ with their rating of the
quality of the tree), and finally the two closed intervals have been ‘interpolated’ by
using linear interpolation to build the trapezoidal fuzzy rating.

Figure 4 shows the rating of the quality of a birch (Betula celtiberica species)
provided by an expert which means that the expert considers that 35 to 40 are
fully compatible with her/his rating, 27.5 to 42.5 are compatible to a greater or
lesser extent, and the remaining values have a gradual (in accordance with a linear
graduation) degree of compatibility with her/his rating, leading to the trapezoidal
fuzzy number Tra(27.5, 35, 40, 42.5).

Although we can think, especially from a theoretical perspective, about fuzzy
values in higher dimension, most of real world examples to which the studies in the
paper would be directly applicable will be one-dimensional ones.

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

6 A. Blanco-Fernández, M. R. Casals, A. Colubi, N. Corral, M. Garćıa-Bárzana, M. A. Gil, ...

2.3. Collecting Experimental Fuzzy Data: Guidelines to Express Them.
By abstracting the ideas in describing data in the two former examples, we can state
some guidelines which are easy to explain and friendly to understand and handle
by practitioners (cf., González-Rodŕıguez et al. [16]). Given an imprecise datum
(opinion/valuation/rating/perception/etc.) which is to be described by means of a
fuzzy value, the steps to follow in accordance with the suggested guidelines are:

(1) Practitioners (experts/researchers/. . .) first state the general support (or
set of values which could be considered as a ‘reference range’, in which 0-
levels of all the data will be included in) as the set of values which could
be potentially compatible with all the data.

(2) Practitioners (experts/researchers/. . .) state the 0-level as the set of values
which are considered to be compatible with the given datum to some extent.

(3) Practitioners (experts/researchers/. . .) state the 1-level as the set of values
which are considered to be fully compatible with the given datum.

(4) These two level sets are finally ‘interpolated’ to get a fuzzy value.

To guarantee practitioners to be free to make their descriptions, the suggested
hints are not constrained to a particular shape for the fuzzy values. Nevertheless,
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Species:                                                    Tree #:  

Species:                                                    Tree #:  

Species:                                                    Tree #:  

Figure 3. Form to be Filled by Environmental Experts to Rate

the Quality of Threes From a Reforestation
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Figure 4. Example of a Rating of the Quality of a Birch in

a Reforestation Study

the type of interpolation indicated in (4) is often chosen in case p = 1 from a list
of manageable functions (e.g., linear, S-curves, Z-curves, and so on).

3. Statistics with Fuzzy Data: Preliminaries

In performing statistics with fuzzy data within a probabilistic setting (so that
all the posterior methodology is formally sound and well-supported) there will be
three key tools, namely, the arithmetic between fuzzy numbers/values, the distances
between them, and the model for the random mechanism generating fuzzy data. In
this section we will present these three tools.

3.1. Arithmetic with Fuzzy Data. The elementary arithmetic operations re-
quired for the statistical fuzzy data analysis are the sum and the product by scalars.
These two operations can be approached either by applying directly Zadeh’s (also
called the maximum-minimum) extension principle [52] or, equivalently and based
on the results by Nguyen [38], as the level-wise extension of the usual set-valued
arithmetic.

Given two fuzzy values Ũ , Ṽ ∈ Fc(Rp), the sum of Ũ and Ṽ is defined as the

fuzzy value Ũ + Ṽ ∈ Fc(Rp) such that

(Ũ + Ṽ )(t) = sup
(y,z)∈Rp×Rp : y+z=t

min
{
Ũ(y), Ṽ (z)

}
or, equivalently, for each α ∈ [0, 1]:

(Ũ + Ṽ )α = Minkowski sum of Ũα and Ṽα =
{
y + z : y ∈ Ũα, z ∈ Ṽα

}
.

Given a fuzzy value Ũ ∈ Fc(Rp) and a real number γ, the product of Ũ by the

scalar γ is defined as the fuzzy value γ · Ũ ∈ Fc(Rp) such that

(γ · Ũ)(t) = sup
y∈Rp : y=γt

Ũ(y) =


Ũ
(

t
γ

)
if γ ̸= 0

11{0}(t) if γ = 0

or, equivalently, for each α ∈ [0, 1]:

(γ · Ũ)α = γ · Ũα =
{
γ · y : y ∈ Ũα

}
,

which corresponds to consider level-wise the natural product of a set by a scalar.
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Remark 3.1. The space of fuzzy values endowed with Zadeh’s arithmetic, (Fc(Rp),
+, ·), has not a linear (but a semilinear-conical) structure. This is due to the fact

that, whatever Ũ ∈ Fc(Rp) may be, then Ũ + (−1) · Ũ ̸= 11{0} (where the indicator
11{0} is the neutral element for the fuzzy sum) but in the very special case in which

Ũ reduces to the indicator function of a singleton.

A relevant consequence from the nonlinearity is that there is no ‘difference oper-
ation’ between fuzzy values which is simultaneously well-defined and preserving the
main properties of the difference between real/vectorial values in connection with
the sum. In fact, there exists a difference notion (Hukuhara’s one [22]) satisfying
the last condition, but it cannot be defined for many fuzzy values.

On the other hand, it should be pointed out that although fuzzy values are for-
malized as [0, 1]-valued functions, one cannot treat directly fuzzy data as functional
ones, in the way which they are usually handled in Functional Data Analysis. This
is due to the fact that the above-presented arithmetic does not coincide with the
usual arithmetic with functions, and when we apply the functional arithmetic on
Fc(Rp) outputs are quite often out of this space and the fuzzy meaning is always
lost.

3.2. Metrics Between Fuzzy Values. The two last concerns have been substan-
tially overcome in developing statistics with fuzzy data by incorporating suitable
distances between these data. On one hand, distances will allow to ‘translate’ the
equality of fuzzy values (which in the case of real values is frequently expressed in
terms of their difference being equal to 0) into the distance between these values
being equal to 0. On the other hand, appropriate distances will allow us also to
‘identify’ fuzzy data with functional ones through the so-called support function
(see Puri and Ralescu [39, 40]).

In the literature one can find many useful metrics between fuzzy numbers and
a few ones between fuzzy values. Valuable references on this point can be found,
for instance, in Klement et al. [23], Bertoluzza et al. [2], Diamond and Kloeden [7],
Körner and Näther [25] and more recently, Trutschnig et al. [49] and Sinova et
al. [46].

Regarding L2 type metrics, they become quite convenient in connection with
mean values (as we will see later) as well as in connection with the extension
of the Least Squares approach to deal with fuzzy data. Among these metrics a
generalized family of them have been introduced recently by Trutschnig et al. [49]
taking Bertoluzza et al.’s and Körner and Näther’s ones as inspiration.

For more details and sound arguments justifying the connection between the
space of fuzzy values and Hilbert spaces which will be considered hereafter, readers
can see González-Rodŕıguez et al. [16]. Let H = Hilbert space of the L2-type
real-valued functions defined on Sp−1 × (0, 1] with respect to λp and λ (with λp =
normalized Lebesgue measure on Sp−1 = unit sphere in Rp, and λ = Lebesgue

measure on (0, 1]). Let F2
c (Rp) = {Ũ ∈ Fc(Rp) : sŨ ∈ H}, where sŨ is the support

function of Ũ (see Puri and Ralescu [40]) which can be defined by

sŨ = mid sŨ + spr sŨ ,

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

Random Fuzzy Sets: a Mathematical Tool to Develop Statistical Fuzzy Data Analysis 9

where mid sŨ (u, α) denotes the mid-point/center of the projection of Ũα over the

direction u ∈ Sp−1, spr sŨ (u, α) denotes the spread/radius of the projection of Ũα

over the direction u, Sp−1 = unit sphere in Rp. Of course, F∗
c (Rp) ⊂ F2

c (Rp), the
last one being much wider than the first one. On F2

c (Rp) we can define

Definition 3.2. Let θ ∈ (0,+∞) and let φ be an absolutely continuous probability
measure on ([0, 1],B[0,1]) with the mass function being positive in (0, 1). Then, the

θ, φ-distance is defined as the mapping Dφ
θ : F2

c (Rp)×F2
c (Rp) → [0,+∞) such that

it associates with Ũ , Ṽ ∈ F2
c (Rp) the value Dφ

θ (Ũ , Ṽ ) such that(
Dφ

θ (Ũ , Ṽ )
)2

=

∫
(0,1]

∫
Sp−1

[
mid sŨ (u, α)−mid sṼ (u, α)

]2
dλp(u) dφ(α)

+ θ

∫
(0,1]

∫
Sp−1

[
spr sŨ (u, α)− spr sṼ (u, α)

]2
dλp(u) dφ(α).

Remark 3.3. Due to the meaning of mid sŨ and spr sŨ , for each level the choice
of θ allows us to weight the effect of the deviation between spreads (which could be
intuitively translated into the difference in ‘shape’ or ‘imprecision’) in contrast to
the effect of the deviation between mid’s (which can be intuitively translated into
the difference in ‘location’).

On the other hand, the choice of φ enables to weight the relevance of differ-
ent levels (i.e., the degree of ‘imprecision’, ‘subjectivity’, ‘variability’,...), and this
measure has no stochastic but weighting mission.

From an interpretational perspective and for practical purposes, because of be-
ing the most frequent situation in statistical analysis of real-life fuzzy data, it is
interesting to examine the particular case of fuzzy numbers, that is, p = 1, and to
show alternative expressions of the Dφ

θ metric for some choices of θ.
In general, in case p = 1 the metric Dφ

θ can be expressed in terms of the squared
Euclidean distances between the centers (mids) and the squared Euclidean distances
between the radius (spreads) of the interval level sets of the involved fuzzy numbers.

More precisely, given two fuzzy numbers Ũ , Ṽ ∈ F2
c (R)

Dφ
θ (Ũ , Ṽ ) =

√∫
[0,1]

([
mid Ũα −mid Ṽα

]2
+ θ ·

[
spr Ũα − spr Ṽα

]2)
dφ(α).

If θ = 1, Dφ
θ is equivalent to weighting only and uniformly the two squared

Euclidean distances between the extreme points of the level sets (i.e., the δ2 metric
by Diamond and Kloeden [7]), so that

Dφ
1 (Ũ , Ṽ ) =

√∫
[0,1]

(
1

2

[
inf Ũα − inf Ṽα

]2
+

1

2

[
sup Ũα − sup Ṽα

]2)
dφ(α).

If θ = 1/3, Dφ
θ is equivalent to weighting uniformly all the squared Euclidean

distances between the convex linear extreme points of the level sets, so that

Dφ
1/3(Ũ , Ṽ ) =

√√√√∫
[0,1]

( ∫
[0,1]

[
Ũ

[ν]
α − Ṽ

[ν]
α

]2
dλ(ν)

)
dφ(α)
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with
Ũ [ν]
α = ν sup Ũα + (1− ν) inf Ũα.

More generally, if θ ∈ (0, 1], then (see Gil et al. [11], Trutschnig et al. [49]) there
exist a weighting measure W formalized as a nondegenerate probability measure
on ([0, 1],B[0,1]) with

∫
[0,1]

dW (ν) = .5 and θ =
∫
[0,1]

(2ν − 1)2 dW (ν), such that

Dφ
θ (Ũ , Ṽ ) =

√√√√∫
[0,1]

( ∫
[0,1]

[
Ũ

[ν]
α − Ṽ

[ν]
α

]2
dW (ν)

)
dφ(α),

which coincides with Bertoluzza et al.’s metric [2].
The θ, φ-metric holds several valuable metric properties, and it allows us to

establish a R̊adstrom-type isometry enabling us to identify each fuzzy number with
a functional data and to connect one-to-one arithmetics and metrics.

Theorem 3.4. Let θ ∈ (0,+∞) and let φ be an absolutely continuous probability
measure on ([0, 1],B[0,1]) with the mass function being positive in (0, 1). Then, Dφ

θ

satisfies that

i) Dφ
θ is an L2-type metric on F2

c (Rp).

ii)
(
F2

c (Rp), Dφ
θ

)
is a separable metric space.

iii) The support function s : F2
c (Rp) → H (with s(Ũ) = sŨ ) states an isomet-

rical embedding of F2
c (Rp) with the fuzzy arithmetic and Dφ

θ onto a closed
convex cone of H with the functional arithmetic and an appropriate distance
which can be found detailed in [16].

Remark 3.5. An immediate and crucial implication from iii) in the later theorem

is that any fuzzy value Ũ ∈ F2
c (Rp) can be identified by the corresponding function

sŨ , and this identification is accompanied by the correspondences between the

arithmetics and L2 metrics. Consequently, data in the setting of fuzzy values with
the fuzzy arithmetic and the metricDφ

θ can be systematically translated into data in
the setting of functional values with the functional arithmetic and the metric based
on the associated norm. In this way, although fuzzy data should not be treated
directly as functional data, they can be treated as functional data by considering
the identification via the support function.

As a relevant implication for statistical purposes, several developments in Func-
tional Data Analysis could be particularized to fuzzy data by using the adequate
identifications and correspondences. However, it should be guaranteed that the
resulting elements/outputs are not out of the cone s

(
F2

c (Rp)
)
. Otherwise, ad hoc

techniques should be developed, as we will show in the next section.

Regarding L1 type metrics, we have recently considered some well-known ones
and introduced a generalized one in exploring a more robust statistical analysis (cf.,
Sinova et al. [45, 46]).

3.3. Random Fuzzy Numbers/Sets. Random fuzzy numbers (or, more gener-
ally, random fuzzy sets) is a well-stated and supported model within the proba-
bilistic setting for the random mechanisms generating fuzzy data. They integrate
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Random Fuzzy Sets: a Mathematical Tool to Develop Statistical Fuzzy Data Analysis 11

randomness and fuzziness, so that the first one affects the generation of experimen-
tal data, whereas the second one affects the nature of experimental data which are
assumed to be intrinsically imprecise.

Because of being a soundly established model within the probabilistic setting,
especially in which concerns its formalization as random elements (i.e., as Borel-
measurable mappings), most of the ideas, concepts, and tools in the statistical
analysis of real-valued data make sense in handling experimental fuzzy data when
they are assumed to be generated by a random fuzzy set. It has been our main
policy, which will be shortly summarized in Section 4, to preserve as many as pos-
sible of the ideas, concepts and tools from traditional statistics, and to incorporate
ideas, concepts and tools from Fuzzy Logic to model data and handle them math-
ematically without affecting the stochastic terms.

Random fuzzy sets have been often referred to in the literature as fuzzy ran-
dom variables in Puri and Ralescu’s sense, the notion being introduced in [41].
As mappings defined from the sample space of a probability space modeling a
random experiment to the space of real numbers/values, random fuzzy sets asso-
ciate a fuzzy value with each experimental outcome and fit many real-life classifica-
tion/qualification processes associated with valuations/ratings/opinions/judgements
leading to data which can be properly described by means of fuzzy values.

The notion of random fuzzy set can be formalized in several equivalent ways.
Thus,

Definition 3.6. Given a probability space (Ω,A, P ), a mapping X : Ω → F2
c (Rp) is

said to be a random fuzzy set (in particular, in case p = 1 we can name it a random
fuzzy number), for short RFS (RFN in case p = 1), if (see Puri and Ralescu [41])
for all α ∈ (0, 1] the α-level set-valued mapping

Xα : Ω → Kc(Rp) = {nonempty compact convex sets of Rp}, ω 7→ (X (ω))α ,

is a compact convex random set (that is, Xα is a Borel measurable mapping w.r.t.
A and the Borel σ-field generated by the topology induced by Hausdorff metric on
Kc(Rp)).

Alternatively, it can be formalized in different equivalent ways like, for instance
(see Colubi et al. [4], González-Rodŕıguez et al. [16]),

Theorem 3.7. Given a probability space (Ω,A, P ) and a mapping X : Ω →
F2

c (Rp), X is an RFS if and only if

i) X is a Borel measurable mapping w.r.t. A and the Borel σ-field generated
by the topology induced by the metric Dφ

θ on F2
c (Rp).

ii) sX : Ω → H is an H-valued random element, that is, a Borel measurable
mapping w.r.t. A and the Borel σ-field generated by the topology induced
by the metric associated through the isometrical embedding in Theorem 3.4.

On the basis of these equivalences a relevant implication can be drawn: due to
the Borel-measurability of RFSs, one can properly refer in this setting to notions
like the distribution induced by an RFS, the stochastic independence of RFSs, and
so on, which will be crucial terms in formalizing the statistical analysis.
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Remark 3.8. It should be pointed out that Kwakernaak [27, 28] and Kruse and
Meyer [26] defined a concept of fuzzy random variable in case p = 1, which is in
fact equivalent from a mathematical perspective to Puri and Ralescu’s one. How-
ever, the concept was introduced to model an essentially different mechanism, in
which data are supposed to be generated from a real-valued random variable as-
sociated with a random experiment, but these values not being crisply but fuzzily
perceivable.

This essential difference is not just a matter of motivation, but the main issue
is that it strongly affects the aim of the statistics to be developed around. In
this way, although distributions and parameters could be defined in some senses
in connection with the fuzzy random variable through Zadeh’s extension principle,
the objective of statistical developments refer usually to the distribution and pa-
rameters of the underlying original (and imperfectly perceived) real-valued random
variable. The objective of statistical developments in the next section will only
refer to the distribution and parameters of the random fuzzy set, since either there
is no underlying real-valued random variable behind the process -as happens when
we deal with judgements, valuations, ratings, and so on- or the interest is just to
be focussed on the fuzzy perception.

In analyzing fuzzy data two main types of summary measures/parameters may
be distinguished:

• fuzzy-valued summary measures, like the mean value of an RFS or the me-
dian of an RFN as measures for the central tendency of their distributions;

• real-valued summary measures, like the variance of an RFS as a measure for
the mean error/dispersion of the distributions of the RFS, or the covariance
as a measure of the (absolute) ‘linear’ dependence/association of RFSs.

The most commonly used definition for the mean value of an RFS is the Aumann-
type one introduced by Puri and Ralescu [41], which is formalized as follows:

Definition 3.9. Given a probability space (Ω,A, P ) and an associated RFS X
such that sX ∈ L1(Ω,A, P ), the (Aumann-type) mean value of X is the fuzzy value

Ẽ(X ) ∈ F2
c (Rp) such that for all α ∈ (0, 1](

Ẽ(X )
)
α
= Aumann integral of Xα

=

{∫
Rp

X(ω) dP (ω) for all X : Ω → Rp, X ∈ L1(Ω,A, P ), X ∈ Xα a.s. [P ]

}
.

Equivalently, the mean value of X is the fuzzy value Ẽ(X ) ∈ F2
c (Rp) such that

sẼ(X ) = E(sX ).

If X is an RFN such that sX ∈ L1(Ω,A, P ), we have that for each α ∈ (0, 1](
Ẽ(X )

)
α
= [E(inf Xα), E(supXα)] .

Due to the properties of the support function and the Hilbertian random ele-
ments, the mean value of an RFS satisfies the usual properties of linearity and it is
the Fréchet’s expectation w.r.t. Dφ

θ , which corroborates the fact that it is a central
tendency measure. In this way,
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Proposition 3.10. If X is an RFS associated with the probability space (Ω,A, P ),

and the distribution of X is degenerate at Ũ ∈ F2
c (Rp) (i.e., X a.s. [P ]

= Ũ), then

Ẽ(X ) = Ũ .

Proposition 3.11. Ẽ is affine equivariant (i.e., equivariant under ‘linear’ trans-

formations), that is, if γ ∈ R, Ũ ∈ F2
c (Rp) and X is an RFS associated with the

probability space (Ω,A, P ) and such that sX ∈ L1(Ω,A, P ), then

Ẽ(γ · X + Ũ) = γ · Ẽ(X ) + Ũ .

Proposition 3.12. Ẽ is additive (i.e., equivariant under the sum of RFSs), that
is, for RFSs X and Y associated with the same probability space (Ω,A, P ) and such
that sX , sY ∈ L1(Ω,A, P ), we have that

Ẽ(X + Y) = Ẽ(X ) + Ẽ(Y).

Proposition 3.13. Ẽ is coherent with the usual fuzzy arithmetic, in the sense that
if X is an RFS associated with the same probability space (Ω,A, P ) and such that
the set of the RFS values is finite or countable, that is, X (Ω) = {x̃1, . . . , x̃m, . . .}
⊂ F2

c (Rp), then

Ẽ(X ) = P ({ω ∈ Ω : X (ω) = x̃1}) · x̃1 + . . .+ P ({ω ∈ Ω : X (ω) = x̃m}) · x̃m + . . .

Proposition 3.14. Ẽ is the ‘Fréchet expectation’ of X w.r.t. Dφ
θ , that is,

Ẽ(X ) = arg min
Ũ∈F2

c (Rp)
E

([
Dφ

θ (X , Ũ)
]2)

,

so that the mean is the fuzzy value leading to the lowest mean squared Dφ
θ -distance

(or error) w.r.t. the RFS distribution, and this corroborates the fact that it is a
central tendency measure.

Although there are other definitions for the mean value of an RFS, the Aumann-
type one is coherent with the considered arithmetic (as outlined in Proposition 3.13),
and it is supported by Strong Laws of Large Numbers for RFSs (cf., Colubi et al. [6],
Terán [48], and others). The mean value is the almost sure limit (w.r.t. different
metrics) of the ‘sample fuzzy mean’, and the result for the metric Dφ

θ could be also
derived from that for Hilbert space-valued random elements. Thus,

Proposition 3.15. Let (Ω,A, P ) be a probability space, X : Ω → F2
c (Rp) an

associated RFS such that sX ∈ L1(Ω,A, P ) and
{
Xn

}
n
a sequence of pairwise in-

dependent RFSs being identically distributed as X (i.e., (X1, . . . ,Xn) being a simple
random sample from X for each n ∈ N). If Xn denotes the ‘sample fuzzy mean’,

that is, Xn =
1

n
· (X1 + . . .+ Xn) , then, lim

n→∞
Dφ

θ

(
Xn, Ẽ(X )

)
= 0 a.s. [P ].

Conversely, if
{
Xn

}
n
, with Xn : Ω → F2

c (Rp), is a sequence of pairwise in-
dependent RFSs which are identically distributed as an RFS X , and there exists

Ũ ∈ F2
c (Rp) so that lim

n→∞
Dφ

θ

(
Xn, Ũ

)
= 0 a.s. [P ], then, sX ∈ L1(Ω,A, P ) and

Ũ = Ẽ(X ).
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As for the real-valued case, the mean value of an RFN is very sensitive to changes
in values and to extreme values (see Sinova et al. [45] for some empirical analysis
about). In this respect, when a more robust measure for the central tendency is
wanted one can consider (among other approaches) the extension of the median
of a real-valued random variable. A key problem in carrying such an extension is
derived from the fact that there is no universally acceptable total ordering between
fuzzy numbers. Consequently, the extension cannot be based on the approach to
the median as a middle position value, but the notion can be extended as a value
minimizing a mean L1 distance to the distribution of the RFN. By following this
approach, Sinova et al. [45] have introduced the following notion for the median of
an RFN

Definition 3.16. Given a probability space (Ω,A, P ) and an associated RFN X
with values in F∗

c (R), the (1-norm inf/sup-type) median of X is the fuzzy value

M̃e(X ) ∈ F∗
c (R) = such that for all α ∈ (0, 1](

M̃e(X )
)
α
= [Me(inf Xα),Me(supXα)] ,

where in case either Me(inf Xα) or Me(supXα) are not unique the usual criterion
of selecting the mid-point of the interval of medians is applied.

Due to the properties of the median of a real-valued random variable, the 1-norm
inf/sup-type median of an RFN preserves the main properties for the median of
random variables and minimizes the mean L1 distance associated with the 1-norm
inf/sup-type, that is, it is a central tendency measure. In this way (see Sinova et
al. [45]),

Proposition 3.17. If X is an RFN associated with the probability space (Ω,A, P ),

and the distribution of X is degenerate at Ũ ∈ F∗
c (R), then

M̃e(X ) = Ũ .

Proposition 3.18. M̃e is affine equivariant, that is, if γ ∈ R, Ũ ∈ F∗
c (R) and X

is an RFN associated with the probability space (Ω,A, P ), then

M̃e(γ · X + Ũ) = γ · M̃e(X ) + Ũ .

Proposition 3.19. M̃e(X ) minimizes the mean ρ1-distance w.r.t. the distribution
of X , that is,

E
(
ρ1(X , M̃e(X ))

)
= min

Ũ∈F∗
c (R)

E
(
ρ1(X , Ũ)

)
,

where

ρ1(Ũ , Ṽ ) =
1

2

∫
(0,1]

(∣∣∣inf Ũα − inf Ṽα

∣∣∣+ ∣∣∣sup Ũα − sup Ṽα

∣∣∣) dα.

The last proposition indicates that the median is a fuzzy value leading to the
lowest mean ρ1-distance (or error) w.r.t. the RFN distribution, and this corrob-
orates the fact that it is a central tendency measure. In fact, Sinova et al. [45]
have introduced the median of an RFN as any fuzzy number minimizing the mean
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ρ1 distance w.r.t. the distribution of the RFN, the value in Definition 3.16 being
a convenient easy-to-use solution for the minimization problem and showing good
properties supporting its statistical robustness.

On the other hand, the median is the almost sure limit w.r.t. ρ1 of the ‘sample
fuzzy median’, as stated in [45], in accordance with which

Proposition 3.20. Let X be an RFN associated with a probability space (Ω,A, P )
and satisfying for each α that Me

(
inf Xα

)
and Me

(
supXα

)
are actually unique. Let{

Xn

}
n
be a sequence of pairwise independent RFNs being identically distributed as

X . If
̂̃
Me(X )n denotes the ‘sample fuzzy median’ of the simple random sample

(X1, . . . ,Xn) from X , then we have that

lim
n→∞

ρ1

( ̂̃
Me(X )n, M̃e(X )

)
= 0 a.s. [P ].

In formalizing the variance of an RFS the Fréchet’s approach will be considered
(see Lubiano et al. [33], Körner and Näther [25]). In this approach the variance
is conceived as a measure of the ‘error’ in approximating/estimating the values
of the RFS through the corresponding mean value, this error being quantified in
terms of a squared metric. A real-valued quantification of the ‘dispersion’ of an
RFS w.r.t. its fuzzy mean will enable to compare random elements, populations,
samples, estimators, etc. by simply ranking real numbers. By considering the
θ, φ-metric

Definition 3.21. Given a probability space (Ω,A, P ) and an associated RFS X
such that sX ∈ L2(Ω,A, P ), the (θ, φ)-Fréchet variance of X is defined to be the
real number

σ2
X = E

([
Dφ

θ

(
X , Ẽ(X )

)]2)
or, equivalently,

σ2
X = Var(sX ) = Var(mid sX ) + θVar(spr sY).

Due to the properties of the support function and the Hilbertian random ele-
ments, the (θ, φ)-Fréchet variance of an RFS satisfies the usual properties for this
concept. In this way,

Proposition 3.22. σ2
X ≥ 0 with σ2

X = 0 if, and only if, there exists Ũ ∈ F2
c (Rp)

such that X = Ũ a.s. [P ].

Proposition 3.23. If γ ∈ R, Ũ ∈ F2
c (Rp) and X is an RFS associated with the

probability space (Ω,A, P ) and such that sX ∈ L2(Ω,A, P ), then

σ2
γ·X+Ũ

= γ2 · σ2
X .

Proposition 3.24. For RFSs X and Y associated with the same probability space
(Ω,A, P ) and such that sX , sY ∈ L2(Ω,A, P ) and being independent, we have that

σ2
X+Y = σ2

X + σ2
Y .
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The covariance for two RFSs could be defined by using the ideas in Körner and
Näther [25]. Thus, since the space H has linear structure, then the covariance can
be defined on it, although external operations are required leading finally to the
following equivalent notion:

Definition 3.25. If X , Y are RFSs such that sX , sY ∈ L2(Ω,A, P ), the (θ, φ)-
covariance between X and Y is defined as the real number

σX ,Y = Cov(sX , sY) = Cov(mid sX ,mid sY) + θCov(spr sX , spr sY).

The covariance of two RFSs satisfies the following useful properties:

Proposition 3.26. σX ,X = σ2
X and σX ,Y = σY,X .

Proposition 3.27. For RFSs X and Y associated with the same probability space
(Ω,A, P ) and such that sX , sY ∈ L2(Ω,A, P ) and being independent, we have that

σX ,Y = 0.

Proposition 3.28. If X and Y are RFSs associated with the probability space
(Ω,A, P ) and such that sX ,sY ∈ L2(Ω,A, P ), then

σ2
X+Y = σ2

X + σ2
Y + 2σX ,Y .

Proposition 3.29. If X , Y and Z are RFSs associated with the probability space
(Ω,A, P ) and such that sX ,sY , sZ ∈ L2(Ω,A, P ), then

σX+Y,Z = σX ,Z + σY,Z .

Remark 3.30. Although the covariance preserves many of the properties for real-
valued random variables, it should be pointed out that properties like those related
to linear transformations of the RFSs are not satisfied in general. In this way,
σa·X ,Y ̸= a σX ,Y .

4. Statistics with Fuzzy Data: an RFSs-based Methodology

In developing Statistics with fuzzy data there are several key distinctive features
which should be pointed out, namely,

• the lack of a ‘difference’ between fuzzy values which is simultaneously well-
defined and preserves the main properties of the difference between real
numbers;

• the lack of a universally accepted total ordering between fuzzy data.

Furthermore, when Statistics are based on the concept of RFS, some additional
problems arise, like

• the lack of realistic general ‘parametric’ families of probability distribution
models for RFSs;

• the lack of Central Limit Theorems for RFSs which are directly applicable
for inferential purposes (actually, there exist some CLTs for RFSs according
to which the normalized distance sample-population fuzzy mean converges
in law to the norm of a Gaussian random element but with values often out
of the cone).
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To overcome these drawbacks a crucial role will be played by the use of appro-
priate metrics between fuzzy data, like the θ, φ-distance. Another crucial role for
the inferential approach to Statistics will be played by the existence of CLTs for
Hilbert space-valued random elements, and mainly the bootstrapped CLTs ones
(see, for instance, Giné and Zinn [13]).

In this section we will present a brief overview of some of the inferential statistical
developments with fuzzy data based on RFSs. The aim of these developments will
be to draw conclusions about the distribution of the involved RFSs over populations
on the basis of the information supplied by samples of (fuzzy) observations (often
referred to as realizations of random samples) from these RFSs.

4.1. Estimating Parameters/Measures of the Distribution of RFSs. One
of the relevant inferential problems is to estimate the parameters or measures asso-
ciated with the distribution of an RFS on the basis of the information provided by
a sample of independent data from it, that is, a realization from a simple random
sample from the RFS.

As for the real/vectorial-valued case, this can be done by considering either
‘point’ or ‘region’ estimation. In this respect, one should take into account that
parameters or measures associated with the distribution of an RFS are usually
fuzzy- or real-valued, so that the terms ‘point’ and ‘region’ estimation should be
understood as fuzzy and fuzzy region estimation.

The parameters receiving the most attention has been the Aumann-type fuzzy
mean and the θ, φ-Fréchet variance for which concerning the ‘point’ estimation it
has been proved (sometimes for the case p = 1 although it can be easily extended,
cf., Lubiano et al. [30, 31, 32], Garćıa et al. [9]) that

Proposition 4.1. Let X be an RFS associated with a probability space (Ω,A, P ).
Consider a simple random sample (X1, . . . ,Xn) of size n (i.e., X1, . . . , Xn i.i.d.
RFSs) from X . Then,

i) if sX ∈ L1(Ω,A, P ), the sample fuzzy mean satisfies that

− it is an ‘unbiased’ fuzzy-valued estimator of Ẽ(X ) (i.e., the fuzzy mean
of Xn[ · ] over the space of all possible samples of n independent obser-

vations from X equals Ẽ(X ));
− for most of the metrics D on F2

c (Rp), Xn is a ‘strongly consistent’

fuzzy estimator of Ẽ(X ) (that is, the sequence of random variables{
D
(
Xn, Ẽ(X )

)}
n
converges a.s. to 0);

ii) if sX ∈ L2(Ω,A, P ), the sample θ, φ-Fréchet variance satisfies that
− it is a ‘biased’ (although asymptotically unbiased) real-valued estimator

of σ2
X , since for sample size n the mean of the θ, φ-Fréchet variance

over the space of all possible samples of n independent observations
from X equals (n− 1)σ2

X /n;
− it is a ‘strongly consistent’ estimator of σ2

X (i.e., the sequence of the
sample θ, φ-Fréchet variances converges a.s. to σ2

X ).

The preceding results have been examined for both finite and general popula-
tions. Similar results have been discussed for other parameters/measures of RFNs,
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like the 1-norm inf/sup median (see Sinova et al. [45]) or the fuzzy- and real-valued
inequality indices or measures of the relative dispersion (see, for instance, Alonso
et al. [1], López-Garćıa et al. [29], Gil et al. [10]).

In connection with the ‘region’ estimation, when the parameters/measures con-
sidered have been real-valued ones, limit theorems based on the Large Sample The-
ory have been stated and approximate confidence intervals have been constructed.
In case of fuzzy-valued ones, the way to proceed is not an immediate one since the
notion of ‘confidence region’ cannot be directly applied.

An approach to this respect has been recently suggested by González-Rodŕıguez
et al. [19] to estimate the Aumann-type fuzzy mean of an RFN, although the idea
behind could be applied to other parameters/measures. Thus, for a given confidence

coefficient τ ∈ (0, 1) the confidence ball of Ẽ(X ) with respect to Dφ
θ is defined to be

given by

CRτ =
{
Ũ ∈ F2

c (R) : Dφ
θ (Xn, Ũ) ≤ δτ

}
,

where δτ should satisfy the following coverage condition:

P
(
Dφ

θ (Xn, Ẽ(X )) ≤ δτ

)
≥ τ.

Due to the lack of realistic general parametric models for RFNs, it is not pos-
sible to find in general a δτ fulfilling the coverage condition. Nevertheless we may

choose δτ as the τ -quantile of the distribution of Dφ
θ (Xn, Ẽ(X )), which could be

approximated by the corresponding bootstrap τ -quantile. In fact, given a simple
random sample (X1, . . . ,Xn) from X , González-Rodŕıguez et al. [19] have suggested
to proceed as follows:

Algorithm 4.2.

Step 1: Fix the confidence coefficient τ ∈ (0, 1), and the number B of boot-
strap replications.

Step 2: Obtain B bootstrap samples (X ∗
[b]1, . . . ,X

∗
[b]n) with b ∈ {1, . . . , B}

from the simple random sample (X1, . . . ,Xn), and for each b compute its
corresponding sample mean, X ∗

[b]n.

Step 3: Compute for each b ∈ {1, . . . , B} the distance between the sample

mean and each bootstrap sample mean, d∗b = Dφ
θ

(
Xn,X ∗

[b]n

)
.

Step 4: Choose δτ as one of the τ -quantiles of the sample (d∗1, . . . , d
∗
B) (that

is, choose δτ so that at least 100 τ % of the computed distances are smaller
or equal than δτ and at least 100(1 − τ) % of the computed distances are
greater or equal than δτ ).

In most of the developed studies above, simulations have been performed to show
the empirical accuracy and suitability of the introduced methods.

4.2. Testing Hypotheses About Parameters/Measures of the Distribution
of RFSs. The problem of testing hypotheses on the distribution of a random
element is for sure the most discussed one in Inferential Statistics. This problem
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often involves estimation either as a first step or as the basis to develop testing
procedures.

The aim of the problem when it is referred to RFSs is to conclude whether a
given hypothesis (called null hypothesis) about the distribution(s) of the RFS(s)
could be accepted or should be rejected on the basis of the information provided by
a sample of independent data from it, that is, a realization from a simple random
sample from the RFS(s).

As for the real/vectorial-valued case, hypotheses could either concern parame-
ters/measures of the distribution of the RFS(s) or concern the distribution itself. So
far, the available literature on testing hypothesis about the distribution of RFS(s)
consider null hypotheses related to parameters/measures of its distribution.

In case the parameter is fuzzy-valued, ‘two-sided’ hypotheses (understood and
formalized as equalities of two or more fuzzy values) have been considered. The
one-sided hypotheses make not a general sense in terms of inequalities between
fuzzy data, due to the lack of a universally accepted ranking between them. Some
research is being currently developed in the direction of comparing fuzzy values
beyond the equality, although this research has not been yet published.

The problem of testing null two-sided hypotheses about the population mean(s)

of RFS(s) has received a deep attention along the last years. In this subsection we
will summarize some of the already published developments, and we will detail one
of them for a more clear explanation on the methodology and used tools.

The one-sample case of testing about the mean of an RFS takes H
[1s]
0 : Ẽ(X )

= Ũ ∈ F2
c (Rp) as the null hypothesis, where X : Ω → F2

c (Rp) is supposed to be an

RFS for which the ‘population’ fuzzy mean Ẽ(X ) exists, and Ũ is a pre-specified

fuzzy value. To test H
[1s]
0 a realization of a simple random sample (X1, . . . ,Xn)

(i.e., a sample of independent fuzzy observations/data) is considered.

To test H
[1s]
0 , this equality of fuzzy values has been first translated into the

equivalent equality of real numbers Dφ
θ

(
Ẽ(X ), Ũ

)
= 0. The methods which have

been carried out are the following:

• Test T1: Test for ‘normal’ RFSs (see Montenegro et al. [35]), where

the normality is understood in Puri and Ralescu’s sense [40] (i.e, X = Ṽ

+ N (0, I), where Ṽ ∈ F∗
c (Rp)). Although it is an exact and easy-to-apply

method, the assumption for the RFS to be normal in Puri and Ralescu’s
sense is quite restrictive and unrealistic.

• Test T2: Asymptotic test for general RFSs (see Körner [24], Montenegro
et al. [35]) based on the CLTs for generalized space-valued random elements.
Although the method is not that restrictive, the asymptotic distributions of
the statistics usually involve unknown parameters, and large sample sizes
would be required.

• Test T3: Bootstrap test for general RFSs (see Montenegro et al. [35] for
the simple RFSs and González-Rodŕıguez et al. [18] for general ones). Sim-
ulation studies have shown that estimating eigenvalues/covariance function
in asymptotic methods in Test 2 entails a substantial loss of precision
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w.r.t. the nominal significance level of the test. The use of Dφ
θ and the

Generalized Bootstrapped CLT by Giné and Zinn [13] enables to consider
bootstrap techniques. Simulations also have shown empirically that for
small/medium samples the bootstrap method usually outperforms the as-
ymptotic one, whereas for large sample sizes the improvement is not so
remarkable, but the bootstrap approach still provides the best approxima-
tion to the nominal significance level.

Furthermore, the probability of rejecting the null hypothesis under alternative
assumptions converges to 1 as n → ∞ (i.e., bothTest 2 andTest 3 are consistent).

In fact, given a realization (x̃1, . . . , x̃n) of a simple random sample (X1, . . . ,Xn)
from X , González-Rodŕıguez et al. [18] have recommended to proceed as follows:

Algorithm 4.3.

Step 1: Compute for the available sample of fuzzy data the value of the statis-
tic

Tn(x̃1, . . . , x̃n) =

[
Dφ

θ

(
1

n
· [x̃1 + . . .+ x̃n] , Ũ

)]2/
Ŝ 2
n (x̃1, . . . , x̃n)

where

Ŝ 2
n (x̃1, . . . , x̃n) =

1

n− 1

n∑
i=1

[
Dφ

θ

(
x̃i,

1

n
· [x̃1 + . . .+ x̃n]

)]2
.

Step 2: Fix the bootstrap population to be {x̃1, . . . , x̃n}, and obtain a re-
alization (x̃∗

1, . . . , x̃
∗
n) of the simple random sample (X ∗

1 , . . . ,X ∗
n) from the

bootstrap population.
Step 3: Compute the value of the bootstrap statistic

T ∗
n(x̃

∗
1, . . . , x̃

∗
n) =

[
Dφ

θ

(
1

n
· [x̃∗

1 + . . .+ x̃∗
n] ,

1

n
· [x̃1 + . . .+ x̃n]

)]2
Ŝ 2
n (x̃

∗
1, . . . , x̃

∗
n)

.

Step 4: Steps 2 and 3 should be repeated a pre-fixed large number B of times

to get a set of B estimates, denoted by {T ∗(1)
n , . . . , T

∗(B)
n }.

Step 5: Compute the bootstrap p-value as the proportion of values in {T ∗(1)
n ,

. . . , T
∗(B)
n } being greater than Tn(x̃1, . . . , x̃n).

To illustrate the preceding algorithm we will apply it to a real-life example which
has been analyzed also in previous papers for different purposes (see, for instance,
Sinova et al. [45]).

Example 4.4. In most of academic institutions it is a common practice to perform
surveys among students to evaluate their satisfaction or to rate the level of different
courses which are delivered at them. For this purpose questionnaires are designed
to gather their students’ opinions and judgements. Most of these questionnaires
are based on a pre-specified response format, often related to a Likert scale.
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In agreement with the policy which has been argued along this paper, a survey
was carried out during the II Summer School of the European Centre for Soft Com-
puting (Mieres, Spain) in July 2008. For each course, students attending it, who
in this case were familiar with fuzzy numbers because of the courses belonging to
a specialized teaching program, were inquired to represent their opinion/valuation
about some aspects of each course.

A form similar to the one in Example 2.4 was supplied for students to fill. To ease
the drawing of the fuzzy numbers the use of trapezoidal numbers Tra(i0, i1, s1, s0)
were suggested. One of the questions to be answered referred to the ‘motivation
of the course’ and the answers from the 29 students attending it were collected in
Table 1.

Stud. i0 i1 s1 s0 Stud. i0 i1 s1 s0 Stud. i0 i1 s1 s0
1 50 60 70 80 11 80 90 90 100 21 56 60 64 70
2 34 40 41 46 12 10 30 40 60 22 30 40 40 50
3 21 23 34 40 13 65 70 70 75 23 10 20 20 30
4 70 80 90 100 14 20 30 30 40 24 60 65 75 80
5 50 60 70 80 15 60 70 70 80 25 70 76 84 90
6 75 80 90 100 16 44 47 53 71 26 80 90 90 100
7 70 74 86 90 17 60 70 80 90 27 55 65 74 80
8 52 60 60 64 18 50 60 70 80 28 70 80 100 100
9 50 55 60 70 19 60 67 72 80 29 69 100 100 100
10 60 70 80 90 20 90 100 100 100

Table 1. Answers on the Question ‘Motivation of the Course’ Provided

by a Sample of 29 Students Attending It

Let X denote the RFN ‘motivation of the considered course’ defined on the
population Ω of potential students for the course, and consider the null hypothesis

H0 : Ẽ(X ) = Tra(50, 60, 70, 80)

which is to be tested on the basis of the available sample of fuzzy data supplied by
the n = 29 students and gathered in Table 1.

Then, the bootstrap test in Algorithm 4.3 (with θ = 1/3, φ = Lebesgue measure
on [0, 1], and B = 10000) leads to a p-value (i.e., the minimum significance level at
which the null hypothesis would be rejected) equal to .648, whence we can conclude
that H0 could be accepted at the most usual the significance levels. Figure 5 shows
the sample mean value (on above) and the hypothetical population mean (on below)
in this example.

The two-sample case of testing about the means of two RFSs takes H
[2s]
0 :

Ẽ(X ) = Ẽ(Y) as the null hypothesis, where X ,Y : Ω → F2
c (Rp) are supposed

to be RFSs for which the ‘population’ fuzzy means Ẽ(X ) and Ẽ(Y) exist. To test

H
[2s]
0 two (either independent or linked) realizations of simple random samples from

the two RFSs are considered.

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

22 A. Blanco-Fernández, M. R. Casals, A. Colubi, N. Corral, M. Garćıa-Bárzana, M. A. Gil, ...
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Figure 5. Sample Mean Value (on Above) and Hypothetical

Population Mean (on Below) in Example 4.4

To testH
[2s]
0 , this equality of fuzzy values has been first translated into the equiv-

alent equality of real numbers Dφ
θ

(
Ẽ(X ), Ẽ(Y)

)
= 0. As for the one-sample case

the developed methods have been the Test T1-type (see Montenegro et al. [34]),
the Test T2-type for independent samples (see Montenegro et al. [34]) and the
Test T3-type for dependent samples (see González-Rodŕıguez et al. [17]). The
conclusions which have been drawn are similar to those for the one-sample case,
the bootstrap approach being the most convenient one.

Finally, the k-sample case of testing about the means of k RFSs takes H
[ks]
0 :

Ẽ(X1) = . . . = Ẽ(Xk) as the null hypothesis, where X1, . . . ,Xk : Ω → F2
c (Rp) are

supposed to be RFSs for which the ‘population’ fuzzy means Ẽ(Xi) exist. To test

H
[ks]
0 , k (either independent or dependent) realizations of simple random samples

from the k RFSs are considered.
To testH

[ks]
0 , this equality of fuzzy values has been first translated into the equiv-

alent equality of real numbers
∑k

i=1

[
Dφ

θ

(
Ẽ(Xi), Ẽ

(
1
k · [X1 + . . .+ Xk]

))]2
= 0.

The developed methods have been the Test T1-type (see Gil et al. [12]), the Test
T2- and Test T3-type for independent samples from simple RFNs (see Gil et
al. [12]), the Test T2- and Test T3-type for independent sample from general
RFSs (see González-Rodŕıguez et al. [16]), and the Test T3-type for dependent
samples (see Montenegro et al. [36]). The conclusions which have been drawn are
similar to those for the one- and two-sample case, the bootstrap approach being the
most convenient one. The one-way ANOVA test for RFSs have been also extended
to the factorial ANOVA (see Nakama et al. [37]).

On the other hand, concerning the testing of hypotheses about real-valued pa-
rameters, some methods have been recently stated in connection with the vari-
ances. In this way, the problem of testing null hypotheses about the population
Fréchet variances of RFS(s) has been discussed in detail in the one-sample (see

Ramos-Guajardo et al. [43]) and in the two- and k-sample cases (see Ramos-
Guajardo et al. [44]).
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4.3. Other Statistical Developments. Other statistical problems involving RFSs

have been studied. Among them, the linear regression and the classification will be
now shortly described.

Regarding the linear regression analysis between two RFSs, González-Rodŕıguez
et al. [14] have faced the following problem:

Let X ,Y : Ω → F2
c (Rp) be two RFSs associated with the probability space

(Ω,A, P ) and fulfilling the fuzzy arithmetic-based Linear Model Y = a ·X +ε, where
a ∈ R and ε : Ω → F2

c (Rp) being an RFS associated with the same probability

space and such that Ẽ(ε|X ) = B ∈ F2
c (Rp). Assume that the Fréchet variances

for the three involved RFSs are finite, the two first ones not vanishing. Then, the

population regression function corresponds to Ẽ(Y|X ) = a · X + B. It should be
noted that under the linear model assumption the (random) Hukuhara difference
Y−Ha·X (where for each ω ∈ Ω, a·X (ω)+Y(ω)−Ha·X (ω) = Y(ω)) is well-defined.

Let
(
(X1,Y1), . . . , (Xn,Yn)

)
be a random sample from (X ,Y). The goal of the

problem is to find the θ, φ-least-squares estimators of the parameters a and B of
the considered linear model on the basis of the sample information, that is,

Minimize
1

n

n∑
i=1

[Dφ
θ (Yi, a · Xi +B)]

2
,

subject to a ∈ A = {a ∈ R : Yi −H a · Xi exists for all i = 1, . . . , n}.
Since sample data are supposed to be generated from the fuzzy arithmetic-based

linear model, it would be possible to find an exact solution which can be found in
detail in González-Rodŕıguez et al. [14].

A rather different approach and model for the so-called LR fuzzy numbers have
been presented in Ferraro et al. [8]. Whereas in [14] the regression coefficients affect
the explanatory RFS as a whole, in [8] linear models are separately considered for
each of the terms characterizing the explanatory LR RFN. A different metric has
been used by taking into account these characterizing terms, and solutions have
been found for the problem.

In connection with the classification of fuzzy data, Colubi et al. [5] have recently
developed a density-based criterion involving random fuzzy sets. The problem can
be stated as follows: let (Ω,A, P ) be a probability space and assume that for
each individual a fuzzy datum is observed, each individual belonging to one of k
different categories g1, . . . , gk. As available learning sample there is a group of n
independent individuals along with the corresponding fuzzy data. The goal is to
find a rule allowing us to classify a new individual in one of the k groups on the
basis of the associated fuzzy datum. Given a fuzzy value x̃ ∈ F2

c (Rp), the suggested
Ball-based classification criteria for fuzzy data in [5] can be summarized as follows:

Algorithm 4.5.

Step 1: Compute the distance between the datum to be classified x̃ and the
set of training fuzzy data, that is,

dj,g = Dφ
θ (x̃,Yj,g) for all j ∈ 1, . . . , ng and all g ∈ {1, . . . , k}.

Step 2: Fix a value for δ > 0 and compute for each g ∈ {1, . . . , k},
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nδ,g =

ng∑
j=1

I[0,δ](dj,g).

Step 3: Estimate the membership probabilities pg = P (G = g|X ∈ B(x̃; δ))
by means of

P̂ (G = g|X ∈ B(x̃; δ)) =
nδ,g∑k
l=1 nδ,l

,

G : Ω → {1, . . . , k} being the classification rule.

Step 4: Assign x̃ to the group g(x̃) ∈ {1, . . . , k} of highest estimated proba-
bility.

One of the main issues in this method is to find an appropriate way to fix the
value for δ. A possible simple and suitable choice is to consider the maximum of the
sample deviations in each group, trying to ensure that the balls are large enough
to contain data points of at least one group.

5. Concluding Remarks

Random fuzzy sets have been shown to be a well-formalized notion within the
probabilistic setting and using it to model imprecise data enables to preserve most of
the key concepts and ideas in Statistical Reasoning. The methodology for statistical
analysis of fuzzy data can be directly applied to analyze interval and set-valued data.

Most of the concepts and methods described in the paper can be computed and
applied by using a recently developed R-package called SAFD (Statistical Analysis
of Fuzzy Data), which has been designed by Lubiano and Trutschnig [50] to perform
statistical computations with RFSs. It is being periodically updated.

Based on some tools from Probability and Fuzzy Set Theories, and more precisely
on the basis of a characterizing fuzzy representation of real-valued random variables
by González-Rodŕıguez et al. [15], an integral methodology to develop statistical
inferences on the distributions of real-valued random variables has been derived.
This methodology is based on the Aumann-type mean of the fuzzified random
variable and it shows convenient properties (like strong consistency and others)
because of being mean-based.

A lot of theoretical developments on both the statistical analysis of fuzzy data
and the implications to distributions of real-valued random variables remain to be
performed (e.g., regarding empirical studies: to consider a sensitivity analysis w.r.t.
the choice of the metric for the first type of studies).
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[9] D. Garćıa, M. A. Lubiano and M. C. Alonso, Estimating the expected value of fuzzy random
variables in the stratified random sampling from finite populations, Information Sciences, 138

(2001), 165–184.
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[12] M. A. Gil, M. Montenegro, G. González-Rodŕıguez, A. Colubi and M. R. Casals, Bootstrap

approach to the multi-sample test of means with imprecise data, Comp. Stat. Data Anal., 51
(2006), 148–162.
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multi-sample test for fuzzy means, In: Abst. 2nd Workshop ERCIM WG Comput. & Statist,
(2009), 102.

[37] T. Nakama, A. Colubi and M. A. Lubiano, Factorial analysis of variance for fuzzy data, In:

Abst. CFE’10 & ERCIM’10, (2010), 88.
[38] H. T. Nguyen, A note on the extension principle for fuzzy sets, J. Math. Anal. Appl., 64

(1978), 369–380.
[39] M. L. Puri and D. A. Ralescu, Differentials of fuzzy functions, J. Math. Anal. Appl., 91

(1983), 552–558.
[40] M. L. Puri and D. A. Ralescu, The concept of normality for fuzzy random variables, Ann.

Probab., 11 (1985), 1373–1379.
[41] M. L. Puri and D. A. Ralescu, Fuzzy random variables, J. Math. Anal. Appl., 114 (1986),

409–422.
[42] S. Ramezanzadeh, M. Memariani and S. Saati, Data envelopment analysis with fuzzy random

inputs and outputs: a chance-constrained programming approach, Iranian Journal of Fuzzy

Systems, 2 (2005), 21–29.
[43] A. B. Ramos-Guajardo, A. Colubi, G. González-Rodŕıguez and M. A. Gil, One sample tests

for a generalized Fréchet variance of a fuzzy random variable, Metrika, 71 (2010), 185–202.

www.SID.ir

www.SID.ir


Arc
hive

 of
 S

ID

Random Fuzzy Sets: a Mathematical Tool to Develop Statistical Fuzzy Data Analysis 27

[44] A. B. Ramos-Guajardo and M. A. Lubiano, K-sample tests for equality of variances of

random fuzzy sets, Comp. Stat. Data Anal., 56 (2012), 956–966.
[45] B. Sinova, M. A. Gil, A. Colubi and S. Van Aelst, The median of a random fuzzy number.

The 1-norm distance approach, Fuzzy Sets and Systems, 200 (2011), 99-115.
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