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Waste-Load Allocation Model for Seasonal River

Water Quality Management: Application of
Sequential Dynamic Genetic Algorithms

R. Kerachian! and M. Karamouz*

In this paper, an extension of classical waste-load allocation models for river water quality
management is presented to determine the monthly treatment or removal fraction of wastewater
to evaporation ponds. The dimensionality of the problem, which is due to a large number
of decision variables, is tackled by developing a new GA based optimization model, which is
called a Sequential Dynamic Genetic Algorithm (SDGA). This.is a deterministic multi-objective
optimization model, which is linked to an unsteady water quality simulation model. The model
minimizes the total losses incurred during the optimization time horizon, including the treatment
or removal fraction costs and the costs associated with the deviation from water quality standards.
The proposed model has been used for the water quality management and salinity reduction of
the Karoon River in Iran. The results show the proposed model can effectively reduce the
computational burden of the seasonal waste-load allocation problem. It is also shown that the
seasonal waste-load allocation can significantly-reduce the number and duration of standards

violations.

INTRODUCTION

Optimal waste-load allocation in river'systemshas been
given considerable attention in the literature. Waste
load allocation models determine the required. removal
fraction or treatment level at a set of point sources,
not only to maintain water quality standards, but also
to search the optimal values of other objectives, such
as the minimization of the treatment cost and the
magnitude or frequency of water quality violations.
Traditional waste-load allocation models have
been formulated to minimize the total effluent treat-
ment cost, while satisfying water quality standards
throughout the system (see [1-3] for more details).
Most of the classical models incorporate the uncer-
tainties of waste-load allocation problems by choosing
one set of design conditions that include particular low
flow values, such as the seven-day average low flow
with a 10-year return period (7Q10) and the maximum
observed water temperature. In recent efforts (such
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as those developed by Ellis [4], Burn [5] and Fujiwara
et al. [6]), some sources of uncertainty, such as decay
and reaeration rates have been explicitly considered.
In these works, the chance constraint method is used
to develop the stochastic waste-load allocation model
for low flow conditions. Sasikumar and Mujmadar [7]
developed a fuzzy linear optimization formulation for
classical waste-load allocation. They incorporated the
objective functions of different decision-makers as a
fuzzy utility function, but their model was linear and
deterministic. Takyi and Lence [8] used a multiple
realization approach to calculate the trade-off between
treatment cost and the reliability of maintaining the
river water quality standards. They used a heuristic
and a neural network technique to reduce the compu-
tational time required to solve multiple realization, but
their model was linear and non-seasonal.

In conventional waste-load allocation schemes,
static treatment levels are determined at individual
point sources that typically involve high capital invest-
ment. Variable strategies allow for different operations,
depending on the season, stream-flow, temperature and
current water quality levels [9]. The economic efficiency
of seasonal waste-load allocation models has been
demonstrated by Boner and Furland [10], Herbay et
al. [11], Ferrera and Dimino [12], Lence and Takyi [13]



118

and Takyi and Lence [14]. Because of the dimensional-
ity problem of the seasonal waste-load allocation due to
large number of decision variables in all previous works,
different scenarios have been developed to approximate
the seasonal treatment levels. Karamouz et al. [15]
proposed a GA based optimization model to estimate
the long-term average monthly treatment levels. In
this study, a new multi-objectives waste-load allocation
model is proposed, which can consider the tempo-
ral variations of climatic and hydrologic conditions
of the system and the qualitative and quantitative
characteristics of the point loads. In their model, the
monthly treatment or fraction removal policies can be
determined.

In this paper, varying assimilative capacity of
river systems are also explicitly considered in the
development of the removal fraction policies of point
sources using an unsteady water quality simulation
model.

Genetic algorithms (GAs), which were initially
introduced by Holland [16], have been converted to
a powerful and attractive optimization approach by
many investigators, but there have been limited pieces
of literature describing the application of GAs to water
quality management problems.

Ritzel et al. [17] developed a multi-objective
model using Genetic Algorithms for the groundwater
pollution problem. They showed that this search-based
optimization method can be effectively used for the
operation of complex water resources systems. Burn
and Yulianti [18] have shown the capabilities of genetic
algorithms for identifying solutions to classical waste-
load allocation problems. They showed. that GAs
provide the robust and non-inferior solutions for deter-
ministic waste-load allocation in low flow conditions.

In this study, the model proposed by Burn and
Yulianti [18] and Karamouz et al. [15] are extended
to provide the monthly removal fraction policies for
point loads, using a combination of simulation and a
new GA based optimization model. Other optimization
methods, such as dynamic programming, cannot be
easily used to solve monthly waste-load allocation
problems because of the dimensionality problems. In
the application of the dynamic programming method
in waste-load allocation problems, the decision vari-
ables can be the treatment efficiency (removal frac-
tion) of point loads and the state variables are the
concentration of water quality variables across the
river. Spatial dynamic programming can be easily
used for traditional waste-load allocation in low flow
conditions. In such a case, the temporal variation of
the quantitative and qualitative characteristics of the
system are not considered and there is only one state
variable, which is the concentration of water quality
variable just upstream or downstream of the point
load at each spatial stage of the system. In seasonal
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waste-load allocation problems, the state variable is
the spatial variation of the concentration of the water
quality variable along the river. Therefore, the state
of the system, at each time step (stage), can be shown
by a set of values for the concentration of the water
quality variable at just the upstream or downstream
of each point source along the river. In such a
case, the computational burden considerably limits the
application of DP models.

In this study, the significant dimensionality prob-
lem of the seasonal waste-load allocation is tackled
using a proposed Sequential Dynamic Genetic Algo-
rithm (SDGA) optimization model. In this new model,
the number of decision variables and the length of
chromosome (set of decision variables) are sequentially
increased and the capability of classical GA models in
solving the complex problems is effectively improved.
The SDGA can be easily linked to water quality
simulation models and can, also, incorporate different
conflicting ‘objectives. The model is used for TDS
load allocationsin the Karoon River. The results show
that the seasonal waste-load allocation can significantly
reduce the number and duration of violating the stan-
dards.

MODEL FORMULATION

In this section, formulation of a multi-objective opti-
mization model is presented for providing the monthly
waste-load allocation policies in a river system. This
optimization model determines the optimal removal
fraction at point sources to minimize two different
objectives, namely, the total treatment cost and the
loss associated with the positive deviation from water
quality standards. When evaporation ponds are used
instead of treatment plants, the model formulation is
as follows:

NS

Minimize Z; = ZC’(ai), (1)
i=1
WE [NR

Minimize Zo = Y [ Y (Vie)* ] | (2)
t=1 \j=1

Subject to :

Cjt :f(fiﬁi?Eiﬁquustwksﬂsfs) vj7t787 (3)

V. — Cjt — Cstd if (Cth — Cstd) >0
o 0 if (Cth — Cstd) <0 ’
Si,m+1 = Si,m + Qi7mxi,m - aili7m7 (5)

Si,m < aidmax7i7 (6)
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where:

WE number of weekly time steps (known),

NS number of point sources (known),

C(a;) removal fraction cost of point load i
during the planning horizon, which is equal
to the construction cost of evaporation
pond i with an area of a; ($, unknown),

NR number of check points along the river
(known),

V; the magnitude of the positive water quality
deviation from standards in point 7 at time
step ¢t (mg/L, unknown),

Cjt concentration of the water quality variable
in point j at time step ¢ (mg/L, unknown),

T; time series of monthly removal fraction
at point source ¢ (percent, unknown),

q; time series of the average monthly flow

rate of point load i before diversion to
evaporation ponds (m?/s, known),

G; time series of the concentration of water
quality variable in point load ¢
(mg/L, known),

7. time series of the daily flow rate of the
headwater (m?/s, known),
Cu time series of the daily concentration of

water quality variable in the headwater
(mg/L, known),

ks time series of decay and growth coefficients
in reach s of the river for non-conservative
constituents (1/day, known),

D, time series of dispersion coefficients in
reach s of the river (m? /s, Jknown);

Cstd standard level for the water quality
variable (mg/L, known),

qs time series of the average monthly lateral

flow due to local flows; surface and
groundwater interaction or water
withdrawal in reach s of the river
(m3 /s, known);

Cs time series of the average monthly quality
of g, (mg/L, known),
f a non-linear function that is defined using

an unsteady water quality simulation
model (known),

Lim monthly average depth of water loss due to
evaporation and infiltration in evaporation
ponds ¢ in month m (m/month, known),

Sim volume of evaporation pond at the end of
month m (m?3),

Qi m flow volume of point load ¢ in month m
before diversion to evaporation ponds
(m3, known),

dmax,; maximum depth of the evaporation pond

i (m, known).

Equation 1 defines the removal fraction cost of
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the system, during the planning horizon. Equation 2
defines the sum of the square of the weekly positive
violations from the water quality standards during
the planning horizon. Equation 3 defines the time
series of the concentration of the water quality variable
at each point, 7, which is evaluated using a one-
dimensional unsteady simulation model. In Equation 2,
negative violation (i.e., when total dissolved solids
(TDS) concentration is less than the TDS standard
level) is assumed to be zero (Equation 4). As the
evaporation and infiltration volumes of each evapora-
tion pond are related to its area, the maximum area
of each evaporation pond, i, is calculated, using a trial
and error process, considering the maximum depth of
each pond as (dmax,i)-

The resultsof this optimization-simulation model
can be used to/derive the monthly treatment or removal
policies at each point source, considering the long-term
quantitative.and qualitative conditions of the river and
the point loads:.

In this'study,; a combination of the e-constraint
method"and a proposed genetic algorithm is used
to provide the optimal solution considering different
objectives. The e-constraint method is one of the most
powerful techniques for generating the non-dominated
set, when the objective functions and constraints are
non-linear. In this method, the basic strategy is
to’ transform a multi-objective problem into a series
of single-objective problems that can be solved using
single objective optimization methods such as genetic
algorithms. The e-constraint method offers the advan-
tage of better control over search algorithms for the
non-dominated set. This method for a maximization
problem with m objectives can be summarized as
follows:

Step 1 Solve m individual maximization problems to
find the optimal solution for each of the indi-
vidual m objectives;

Step 2 Compute the value of each of the objectives
and determine the potential range of values for
each of the m objectives;

Step 3 Select a single objective (Z;,) to be maximized.
Transform the remaining m — 1 objectives in
the form of:

Zy>Ly, k=1,2,--- h—1h+1,---,m.

(7)

Add these new m —1 constraints to the original
set of constraints, where Lj represents the
right-hand-side values that will be varied;

Step 4 For each of the objectives and the associated
range of potential values, select the desired
level of resolution and divide the range into the
number of intervals determined by this level of
resolution in order to find Ly;
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Step 5 Solve the problem of Step 3 for every combi-
nation of right-hand-side values determined in
Step 4. These solutions form the approxima-
tion for the non-dominated surface. (For more
details see [19,20].)

In this study, the non-dominated solution of the e-
constraint method are calculated using the proposed
SDGA model.

SIMULATION MODEL FORMULATION

The basic equation of the water quality simulation
model developed in this study is based on a one-
dimensional advection-dispersion mass transport equa-
tion, which is numerically integrated over space and
time for each water quality constituent. This equation
includes the effect of advection, dispersion, dilution,
constituent reactions and interactions and the flow
sources and sinks. For any constituent concentration,
¢, the mass transport can be written as follows:

oM 9(A.Drge) 9 (Aguc) de

where:

M the pollutant mass in the control volume (M),
the distance along the river (L),

time,

the concentration of the pollutant (ML™3),

+  the cross sectional area (L?),

the dispersion coefficient (LT 1),

the mean velocity (LT™1),

the external source or sink (MT=1),

.  the computational element'length (L).
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Considering M = Ve, where V.is the incremental
volume (V' = A.,d,) and the steady state condition
of the flow in the stream, namely %—? =0, Equation 8
can be written as follows:

dc  9(A:DLEE) " O(Aguc) de S
ot~ A.0x A 0w dt VT

(9)

The terms on the right-hand side of the equation
represent dispersion, advection, constituent changes
and external sources/sinks, respectively. dc/dt refers
only to the constituent changes, such as growth and
decay and should not be confused with the term
Oc/dt, the local concentration gradient. The term
Oc/dt includes the effect of constituent changes, as well
as dispersion, advection, source/sinks and dilutions.
Changes that occur to individual constituents or par-
ticles independent of advection, dispersion and waste
input are defined by the term [21]:

de/dt = rc + p, (10)
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where 7 is the first order rate constant (7~!) and p is
the internal constituent sources and sinks (ML 3T~1)
(e.g., nutrient loss from algal growth, benthos sources,
etc.).

For numerical solution of the above equations, an
implicit backward finite difference method, developed
by Brown and Barnwell [21], is used in this study.

SEQUENTIAL DYNAMIC GENETIC
ALGORITHM

Genetic algorithms are adaptive methods trying to
imitate biological and genetic processes and can be
successfully applied to optimization problems. The
main field of application of GAs includes problems
with high complexity and non-linear behavior, such as
seasonal waste-load allocation. More details of genetic
algorithms can be obtained from publications such
as [22,23]. Genetic algorithms usually consist of the
following steps:

Step 1 Representation or encoding of the decision
variables/and joining them in a chromosome,
which is a string of encoded decision variables,

Step 2. Creating an initial population (first genera-
tion),

Step 3 Determination of the fitness of every chromo-
some (set of decision variables) in the current
population (fitness evaluation),

Step 4 Selection of the better chromosomes to mate
and perform the crossover operator for shuf-
fling the selected chromosomes (genetic opera-
tor 1),

Step 5 Performing mutation for selected chromosomes
(genetic operator 2),

Step 6 Repeating Steps 3 to 5 to obtain the optimal
or near optimal solutions.

In other words, GAs start with a population
of chromosomes and combines them through genetic
operators to produce better or fitter chromosomes.
GAs do not guarantee that a new solution will be
better than the ones before, but they guarantee that
the probability of being better is higher [24].

Simple Genetic Algorithms can be easily used
for seasonal waste-load allocation in short term plan-
ning [15], but the chromosome length and the di-
mensionality problems of the model are considerably
increased in a long-term river water quality manage-
ment. In this study, a new GA based optimiza-
tion algorithm is proposed, based on the sequential
game theory. In this new methodology that is called
Sequential Dynamic Genetic Algorithm (SDGA), the
number of chromosome genes (chromosome length) is
sequentially increased to effectively lead the initial
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feasible solutions to the global optimal solution. As
can be seen in Figure 1, in the first step, a small
record of quantitative and qualitative characteristics of
stream-flows and point loads (and, therefore, a small
chromosome length) are selected and the optimal levels
of the monthly removal fraction for point loads are
obtained using the traditional GA-based optimization
model. Then, the chromosome length is increased
sequentially and the optimum solution of the first step
is placed in the first part of the new chromosomes.
Each step (length of chromosomes) can vary from one
month to 1 or 2 years. The step length is determined,
based on the convergence characteristics of the GA
model. This sequential method effectively reduces the

Select the main objective
in constraint method

¥

Select the bound of the second
objective function (L2)

v
Generate an initial population using
a small record length (e.g., 1 year)
v

Simulate the temporal and spatial
variation of water quality variables

v

Determine the fitness function

for each chromosome j N
v

Increase the Selection of the better Change

planning chromosomes crossover bthed

oun

period and the

length of » -
chromosomes utation

Determining the optimized
removal fractions

Is the planning
period equal to the
total planning
horizon?

Save the non-inferior
solution

L 2
Is it the last No
non-inferior point?
¥ Yes
Calculate the trade-off
curve between objectives

End

Figure 1. The flowchart of multi-objective Sequential
Dynamic Genetic Algorithms (SDGA).
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computational burden of GA-based models in the long-
term planning and management of water resources.
As shown in Figure 1, this proposed SDGA model is
used in the s-constraint multi-objective method and
each optimal solution of the SDGA model provides one
non-dominated point on the trade-off curve of the two
objectives.

In this study, different components of the SDGA
model for waste-load allocation in river systems have
been developed with the following characteristics.

Decoding and Creating an Initial Population

The prior requirement for coding a problem is to
represent every potential solution by finding a suitable
representation of the parameters of the problem and
joining them in a string. The common representation
method is to use the binary values. An overview of
other possible methods is given in [23]. The encoded
parameter is referred to a gene and a string of genes
(chromosome) represents one possible solution to the
problem. A solution vector represents the required
pollutant removal level at each point source in different
months of the planning horizon. Therefore, each
chromosome consists of NS x NY x12 genes, where N S
is:the number of point sources and NY is the number
of years in the planning horizon.

Over the last 10 years, various encoding methods
have been proposed to provide effective GA models. In
this study, binary coding is used to represent treatment
levels. In this binary coding, 00, 01, 10, 11 are used
to represent 0, 0.25, 0.50 and 0.75 treatment levels,
respectively. Burn and Yulianti [18] have used a similar
encoding method. In the binary encoding method,
the large jumps in variable values between generations,
proposed by Goldberg [25], can be limited using gray
coding. In this method, which has been used in
this study, the binary representation of each variable
changes in each sequence with no more than one binary
digit. This binary encoding and discretization of deci-
sion variables can reduce the computational burden of
the seasonal waste-load allocation problem effectively.
Details of encoding methods can be obtained in the
work of Gen and Cheng [23].

The initial population of chromosomes is selected
randomly. These strings are, then decoded to cor-
responding nodal removal fractions to calculate the
fitness value of each chromosome in the population.

Fitness Evaluation and Selection of
Chromosome

The actual evolutionary process consists of several
steps. In the first step, the fitness of each chromosome
(the goodness of each solution) in the population is de-
termined. In the second step (the selection phase), the
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better chromosomes for next generations are selected.
Mimicking the biological process of the survival of the
fittest, as stated by Burn and Yulianti [18], the solution
that has higher fitness is more likely to be selected. In
the next step, the selected chromosomes are shuffled or
recombined using crossover and mutation reproduction
operators.

In this study, the fitness of each chromosome in
the population is calculated using an unsteady water
quality simulation model. The simulation model, which
will be described in the next section, calculates the
daily concentration of different water quality variables
along the river. The fitness of each chromosome is
calculated, based on the required removal cost or the
loss corresponding to violating water quality standards.

One of the important operators that are generally
used in the GA-based optimization is the niche oper-
ator [25-27]. In the simple GAs, selection drives the
evolving population toward a uniform distribution of
the copies of the most fitted chromosomes that could
reduce the diversity of the population and cause a
premature convergence. Niching induces restoration
pressure to balance the convergence pressure of the
selection. Investigators have proposed many differ-
ent methods for the niche operator. Goldberg and
Richardson [28] have detailed a practical scheme that
directly uses the sharing metaphor to induce niche and
species. In this method, a sharing function is defined
to determine the neighborhood and degree of sharing
for each chromosome in the population. The basic
idea of the fitness sharing method is to restrict the
unlimited growth of certain individuals by enforcing
each chromosome to share its fitness with other nearby
chromosomes in the same niche. In the fitness sharing
method proposed by Goldberg and Richardson' [28],
the fitness of each chromosome in the population is
modified according to the following fitness sharing
scheme:

Modified fitness function of choromosome

fitness function of choromosome n
. SENCED

Sh(d;n)
=1

J

where npop is the population size in each generation
and Sh() is the sharing function of a measure of
distance, (d;,), between two chromosomes, j and n.
The measure of distance between two chromosomes, j
and n, (djy), is determined as follows:

ngens
; ((Pij - Pi )/(Pmaxi - Pmini))z

d]n = ’
ngens

Vj € choromosome population, (12)
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where:
P;; value of gene i in chromosome j,
F; value of gene ¢ in chromosome n,

Prax; [Pmin; ~ maximum/minimum value of gene i
in all of the chromosomes,
total number of genes in each

chromosome.

ngens

The sharing function is as follows:

Sh(d]n) = {1 B (d]n/Lmin) i djn < Lmin VJ, n,

0 otherwise (13)
where L, is a constant controlling the size of niches
(see [29] for more details). The chromosomes separated
by Luyin do not degrade the fitness of each other.

Useful selection methods, such as Roulette Wheel,
Tournament,” Linear Ranking, Exponential Ranking
and Truncation Selection and their properties, were
discussed by Cantu’-Paz [30]. The more general
methods are the Tournament and Roulette Wheel
selection. In thefirst method, a group of individuals are
chosen randomly and the individual with the highest
fitness is selected for inclusion in the next generation.
This process is repeated until appropriate numbers of
individuals are selected for the new generation. The
Roulette Wheel selection is the simplest method that
selects the best chromosome according to the ratio of
the fitness of each chromosome to the sum of all the
fitness values related to all chromosomes.

In this paper, the Tournament selection, which is
widely used in literature such as [31], is selected for the
SDGA model.

Crossover and Mutation

The reproduction operators, known as crossover and
mutation, create new chromosomes. Crossover opera-
tors randomly take one pair that performs well from
the mating pool and by exchanging important building
blocks between two chromosomes, a new pair is ob-
tained. It is assumed that the good performance of a
chromosome is due to good sub-chromosomes, namely,
the crossover operator combines the good building
blocks (with better fitness) of chromosomes, which is
likely to provide better solutions. Michalewicz [22]
described three crossover methods, namely, one-point,
two-point and uniform crossover, but there is no con-
sensus among investigators whether there is a generally
superior crossover method. Crossover occurs between
two selected chromosomes with a specific probability
(P.). In other words, the probability of the crossover
of two selected chromosomes is P.. The one-point
crossover, which has been selected for this study,
randomly chooses a position (gene) in the chromosome,
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and new chromosomes are obtained by swapping all
genes after that position. In binary encoding, the
crossover should occur only at gene boundaries to
protect the splitting of genes. Each gene consists of
two bits in this study.

Mutation is an important process that can provide
diversity and new genetic information to the population
and prevents premature convergence to local optimal
solutions. The mutation operator changes randomly
the bit value (e.g., number one becomes zero and vice-
versa) with a probability of P, [23].

CASE STUDY

The Karoon River, being more than 450 km long
(between the Gotvand Dam and the Persian Gulf) and
with an annual average discharge of 11891 MCM, is
the biggest river in Iran, located in the southwestern
part of the country. A part of the river that is located
downstream of the Gotvand Dam supplies the water
demands of more than 700,000 hectares of agricultural
networks, eight cities and several industries. The
domestic and agricultural waste-loads and agricultural
return flows, as well as interaction between the river
and aquifer, have severely decreased the water quality
of the river. Recent investigations on the river have
shown that concentrations of most of the water qual-
ity variables, such as Total Dissolved Solids (TDS),
Chemical Oxygen Demand (COD), Coliform bacteria;
total phosphorus, Cd, and Ni, have deviated adversely
from the stream water quality standards and more than
90 percent of industrial efluents, agricultural or agro-
industrial return flows violate the effluent standards.
As salinity is the most devastating problem of the sys-
tem, TDS concentration is considered as.an indicator
of the water quality variable [32].

In this study, an important section of the Karoon
River, with a length of 190 km, between the Gotvand
Dam and the Ahvaz metropolitan-area, is considered
to evaluate the effectiveness of the seasonal policies
developed by the multi-objective GA-based waste-load
allocation model for river water quality management.
Some important cities, such as Gotvand, Shooshtar,
Mollasani, Weis and Ahvaz are located in the study
area and their domestic demands are supplied from
the river. The river also provides the water demands
of two major agro-industries and several strategic steel
and petrochemical heavy industries in this region and
two important cities, Khoramshahr and Abadan, at the
downstream end of the river.

As shown in Figure 2, there are two important
tributaries, namely, the Dez and Gargar Rivers. The
Gargar is actually a branch of the main river, but is
considered as two tributaries for modeling purposes.
As water treatment plants in the cities cannot remove
the salinity of the water supplied from the river, it
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Figure 2. A part of the Karoon River system located in
the study area [15].

has caused many complaints from the people in the
study area. Therefore, water pollution control projects,
such as the relocation or transfer of agricultural return
flows to evaporation ponds, have been proposed and
implemented.

The TDS concentration of the groundwater in
the study area varies from 1500 to 9000 mg/L and
groundwater resources are rarely used for water supply
purposes. The high potential of evaporation (more
than 3200 mm/year) and considerable cost of TDS
removal, justify the diversion of a fraction of the point
loads flow rate to the evaporation ponds, as a practical
method for the Karoon River pollution reduction.

In this study, considering the spatial distribution
of discharge points, 10 point loads, including the return
flows of agriculture networks and agro-industrial sec-
tors, are used for waste-load allocation in the Karoon
River. The location and characteristics of these point
loads are presented in Figure 2 and Table 1.

The daily data of river flow and the monthly
quantitative and qualitative data of the point loads
have been used in this study for the period 1992-2001.
Even though the available data of the quality and
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Table 1. The characteristics of point loads of the Karoon River in the study area.

Point Location (Km) Average Annual | Average Conc.
Loads (Distance from Discharge of TDS
the Gotvand Dam) (m?/sec) (mg/lit)
P1 3 5.52 2102
P2 10 0.094 2004
P3 46 0.04 1901
P4 50 0.045 1889
P5 124 0.535 6155
P6 131 0.127 2093
pP7 146 0.159 1911
P8 152 0.07 2691
P9 179 0.004 1457
P10 186 0.22 2508

quantity of point loads is monthly, the time step of
the simulation model is selected to be daily to consider
the short-term variations of the quality and quantity
of the headwater. Local flows and their quality and
the quantitative-qualitative interaction between the
river and the aquifer have been estimated using the
mass balance of water and total dissolved solids. The
water quality simulation model has been developed and
calibrated using the observed qualitative and quantita-
tive data of the river, point loads and the estimated
discharge and quality of the local and return flows. As
an example, Figure 3 shows the observed and simulated
concentration of TDS along the river in the month:of
July, which is a critical month, due to less river flow,
high volume of withdrawal and return flows. As can
be seen in this figure, the simulation model can be
used for the evaluation of water quality management
policies. The proposed model is applied to the Karoon
River to obtain the optimal monthly removal fraction
policies at the point sources considering different objec-
tives, namely, minimization of the construction cost of

1300
Simulated concentration
1200} ® Observed concentration
1100}
1000
900}

800}

TDS concentration (mg/L)

n

7 Y

N 2 " n

400« o 4 . T N
0 50 100 150
Distance from Gotvand dam (km)

Figure 3. The observed and simulated concentration of
TDS in month of July, 1999.

evaporation ponds and the loss of violation from water
quality standards. In this study, each gene, which
shows the removal fraction, has two bits. Therefore, for
a'10-year planning horizon, each chromosome has 1200
genes and 2400 bits for 10 point loads. In order to find
a more stable solution, the probability of mutation and
crossover were obtained using a trial and error process
a80.009 and 0.8, respectively. As mentioned before, the
optimal volume of evaporation ponds is calculated us-
ing a search-based optimization model and considering
the time series of removal fractions (corresponding to
simulating chromosomes) and monthly evaporation and
infiltration rates. The maximum water depth of each
evaporation pond has been limited to 2 m, suggested as
a standard of practice in the region. The construction
cost of the evaporation ponds is also considered, based
on the ongoing cost in Iran.

RESULT AND DISCUSSION

In this study, in the e-constraint multi-objective
method, minimization of the deviation of TDS con-
centration from water quality standards is considered
as the main objective. As the river is supplying the
drinking water of the cities and villages located in
the study area, the maximum concentration of TDS
is considered as 1200 mg/L. In the proposed SDGA
model, at each step, the fraction of the planning
horizon and the chromosome length is increased as
one year or 120 genes, respectively. The number
of generations at each step of the SDGA model is
considered to be 150.

Figure 4 shows the fitness improvement and re-
duction of the total loss due to deviations from the wa-
ter quality standard in the last step of the calculation of
the SDGA model (with full length chromosomes). The
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Figure 4. Fitness improvement in the last step of SDGA
evolutionary process.

GA-based optimization model has found the optimal,
or near optimal, solution after 150 generations.

To control the global optimality of the solution,
as mentioned by Gen and Cheng [23], the evolutionary
process is evaluated with a high probability of mutation
and with a high number of generations. As shown in
Figures 4 and 5, increasing P, from 0.009 to 0.1 results
in instability of the solutions, but does not provide a
solution with a smaller violation loss (a violation loss
less than the dashed lines in Figures 4 and 5). It
is also demonstrated that by increasing the number
of generations, the minimum loss is not improved,
therefore, a global, or near to global, minimum-has
been reached. In this study, the effects of population
size and the probability of crossover are also controlled.
Having a larger population in each generation does
not improve the fitness of the optimal solution, but
it can reduce the required number of generations to
find the global or near global selutions.. Furthermore,
decreasing the probability of crossover (P, ) can increase
the required number of generations for finding the
optimal solution.

The runtime of the/described’ model is about
5 hours using a Pentium IV (1400 MHz) computer.
To evaluate the effectiveness of the SDGA model in

23700000
23600000

23400000
23300000

23200000
23100000

quality standard

23000000
22900000

The loss of violation from water

22800000 . . L . 2 e . . N
0 50 100 150 200 250 300 350 400 450 500

Generation number

Figure 5. Fitness improvement in evolutionary process
with high mutation probability (P, = 0.1).

125

reducing computational time, it has been compared
with the traditional genetic algorithm optimization
model. As mentioned before, the SDGA can provide
the optimal solution after 150 iterations in the last
step of computations when the chromosomes have their
maximum length. As shown in Figure 6, the traditional
GAs can provide this solution with 3000 generations
and a computational time of about 2.5 times the
proposed method. Therefore, the SDGA can effectively
reduce the computational time of classical GAs.

The e-constraint method provides the trade-off
curve between the selected objectives. As can be seen
in Figure 7, the violation from the standard level is
unavoidable because of the high TDS concentration
in the headwater (in some months in the planning
horizon), local flows and interactions between surface
and saline groundwater in certain months during the
computational time horizon.

In general, frequency, duration and magnitude of
the violation of water quality standards are perfor-
mance indicators that present the reliability, resiliency
and vulnerability of pollution management policies.
The reliability indicator describes how likely or of-

3.00E4-08
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2.00E+408
1.50E+08 ;
1.00E4-08

5.00E407

The loss of deviation from standard

0.00E+00IlllllllllllllllIIllIIIlIIIIIII
350 850 1350 1850 2350 2850 3350

Generation number

Figure 6. Fitness improvement in traditional GA model
(chromosome length = 1200 genes, P, = 0.009).
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Figure 7. Trade-off curve between TDS removal cost
versus the loss associated with violating the standard level
of 1200 mg/L.
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Figure 8. Trade-off curve between construction cost of
evaporation ponds and number of violations (day) during
planning horizon.

ten the water quality goals may be achieved, while
resiliency and vulnerability indicators represent how
quickly the water quality systems recovers from a fail-
ure and the severity of the consequences of violations
of water quality standards, respectively. As shown in
Figure 8, by increasing the construction costs of the
evaporation ponds, the number of days, within which
the river water quality in the study area violates from
the water quality standards, is decreased from 127
to 52 days. In such a case, the average duration of
water quality violation, which is an indicator of the
resiliency of the system, is decreased from 32 to 15 days
(Figure 9). As the maximum violation is not directly
considered as an objective function of the model, the
maximum violation reduction is equal to 30 mg/L.
Figures 7, 8 and 9 could help the decision-makers. to
select the most favorable solution, based on their own
set of priorities.

Table 2 presents the statistical characteristics of
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Figure 9. Trade-off curve between construction cost of
evaporation ponds and the average duration of violation
periods (day).

the monthly removal fraction for different point
sources. Theproposed GA-based waste-load allocation
model can'provide the optimal value of the monthly
removal fractions at each point source and the optimal
area and the depth of evaporation ponds. The values
of .standard deviation present the variations of the
monthly removal fractions. High variations of the
average monthly removal fraction of each point load
and, also, the high values of the standard deviation
of the monthly removal fractions show the significance
of considering the seasonal waste-load allocation ap-
proach.

The statistical characteristics of the removal frac-
tion of point sources in the month of July and the
optimal volume of evaporation ponds corresponding to
an arbitrary point, A, in Figure 6, are presented in
Tables 3 and 4. The high variation of the average
monthly removal fractions and, also, the high value
of their standard deviations, shows the significance of

Table 2. The statistical characteristics of the monthly removal fraction of point source P1, downstream of the Gotvand

Dam, corresponding to the arbitrary point, A, in Figure 7.

Jan. | Feb. | Mar. | Apr.

May.

Jun. | July | Aug. | Sep. | Oct. | Nov. | Dec.

Average Removal
Fraction (%)

35 40 30 30

35 52 48 52 40 40 43 27

Standard Deviation

(%)

26 24 23 26

24 20 32 25 31 31 28 24

Table 3. Statistical characteristics of the monthly removal fraction of point sources in the month of July, corresponding to

the arbitrary point, A, in Figure 7.

Point Load P1 P2 P3

P4 P5 P6 P7 P8 P9

P10

Average Removal
Fraction (%)

48 50 35

38 23 33 38 35 23 48

Standard Deviation

(%)

32 20 32

32 25 24 34 27 18 28
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Table 4. The optimal area of evaporation ponds corresponding to the arbitrary point, A, in Figure 7.

Point Load | P1 | P2 P3 P4

P5 | P6 | P7| P8 | P9 | P10

Area (km?) | 9.8 | 0.18 | 0.07

0.09

1.28 | 0.22 | 0.4 | 0.18 | 0.01 | 0.49

the seasonal waste-load allocation, because, in the con-
ventional waste-load allocation methods, the treatment
plants (or, in this case, the evaporation ponds) are
designed based on the critical condition of the system.

Based on the results of the model, the optimal
monthly removal fraction polices have been developed
for each point source. Table 5 presents the removal
fraction policies derived for arbitrary point source P1,
downstream of the Gotvand Dam, corresponding to
point A in Figure 7. The equations in Table 5 provide
the removal fraction policies at each point source, based
on the quantitative and qualitative characteristics of
the point load and the river at a section just upstream
of the wastewater discharge point. As can be seen
in this table, increasing the mass transport rate in
the stream flow and the point load will increase the
required removal fraction.

SUMMARY AND CONCLUSION

In this paper, the model developed by Burn and Yu-
lianti [18] is extended to include the seasonal variations
of the quantitative and qualitative characteristics of the
river and point sources. It is also demonstrated that

the proposed SDGA optimization model can provide
a robust and acceptable solution for a deterministic
monthly waste-load allocation problem. This problem
would be very difficult to solve using other optimization
methods, such as the family of dynamic programming
models, due to computational difficulties. The pro-
posed model uses the long-term qualitative and quanti-
tative data of the river and its pollutants to derive the
monthly fraction removal of the point sources. The
proposed algorithm is.applied to the monthly data
of the Karoon/River system in Iran. The algorithm
has been tested using different probability for genetic
algorithmsoperators,and different population sizes, to
reach theglobal or near global optimal solutions.

The approach can readily handle discrete decision
variablesand can effectively identify the trade-off
between objectives, which are the removal cost and
the sum of the square of the violations from water
quality standards. The trade-off curves that show the
variations of reliability, resiliency and vulnerability of
the model based on different values of construction
costs, can be a useful means for decision-makers to
select the most favorable treatment levels considering
the two objectives.

Table 5. The monthly removal fractionspolicies for point load P; downstream of the Gotvand Dam, corresponding to the

arbitrary point, A, in Figure 7.

Month Policy R
January T fan. = 1 X 10_5q17Ja11_ X €1, Jan. + 1.1 X 10_4q07;|an_ X €, Jan. 0.8
February T freb, = 34 X 10_4q1,Feb_ X €1, Feb. + 1 X 10_4q07Feb_ X €0, Feb. 0.85
March TfMars= 13 X 107%q1 Mar. X €1 Mar. + 1 X 10740 Mar. X Co,Mar. 0.80
April Tfapr. = 2.6 X 10_3q1,Apr, X ¢1,Apr. + 1.1 X 10_4qo,Apr, X €o,Apr. 0.80
May 7 fray = 22 X 10741 May X €1,May + 1.2 X 107%¢0, May X Co,May 0.96
June 7 fyun. = 36 X 107%q1 Jun. X €1 3un. + 1 X 107%¢0 Jun. X €0, Jun. 0.92
July e =12 x 10741 gui. X €1,3u. + 2 X 10730 yu1. X €0 Jul. 0.86
August T faug. = 53 X 107%¢1 Aug. X C1,Aug. + 1 X 107%¢0, Aug. X €0, Aug. 0.91
September | rfs., =2.8 x 10_4q1758p_ X €1,8ep. + 1.3 X 10_4q075ep, X €0,Sep. 0.84

October T foct. = 36 X 107%q1 0ct. X €1,0ct. + 1.1 X 10740, 0ct. X €0,0ct. 0.86
November | rfxov. = 169 x 10_4q1,N0\,_ X €1 Nov. + 13 X 10_5q0,N0\,_ X €o,Nov. — 2.14 | 0.81
December | rfpec. =45 X 107%¢1 pec. X €1 pec. + 10 X 107°¢p pec. X €0 Dec. 0.84

r ft = removal fraction of point source P1 in month ¢ (percent),

q1,+ = streamflow of point source P1 at month ¢ (m3/s),

qo,+ = streamflow in upstream of point-load P1 at month ¢ (m3/s),

co,t = concentration in upstream of point-load P1 at month ¢ (mg/L),

R = correlation coefficient.
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The proposed model can be easily applied to a
problem with more point sources, smaller time steps
and a longer time horizon. The results show that the
removal of all the point sources will not completely
improve the quality of the streamflow, due to inter-
action between the river and saline groundwater, local
flows and the low quality of headwater during some
months of the planning horizon. Therefore, waste-
load allocation models may not have a considerable
effect on the improvement of water quality in the study
area. However, the results of this study show that the
proposed model can be easily used for water quality
management of river systems and can provide optimal
monthly operating polices. The results also show the
significant value of using the modified genetic algorithm
in reduction of the burden of dimensionality of the
seasonal waste-load allocation problems.

This is, perhaps, the first time that monthly
waste-load allocation policies are determined by linking
the simulation and optimization models, considering
the dynamic characteristics of the system. Another
promising area of investigation is the development
of monthly fraction removal policies, considering the
uncertainties of system parameters and the vagueness
of the water quality criteria and standards.
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NOMENCLATURE

A, cross sectional area (m?)

a; area of evaporation pond i (m?)

Cjt concentration of the water quality
variable in point j at time step ¢
(mg/L)

C(ai) removal fraction cost of point load ¢

during the planning horizon, which
is equal to the construction cost of
evaporation ponds, 7, with area of a;

(3)

Cstd water quality standard level (mg/L)

dm ax,t

Lmin

S

= =2 =

R
NS

ngens

npop

=

R. Kerachian and M. Karamouz

time series of the quality of 7** (mg/L)
time series of the concentration of
water quality variable in point load ¢
(mg/L)

time series of the daily concentration
of the headwater (mg/L)

time series of dispersion coefficients in
reach s of the river (m?/day)
dispersion coefficient (m?/day)

measure of distance between two
chromosomes, 7 and n

depth of evaporation pond, ¢ (m)
maximum depth of the evaporation
pond, i (m)

computational element length (m)

a non-linear function that is defined

using .an unsteady water quality
simulation model

time series of decay and growth
coefficients in reach s of the river for
non-conservative constituents (1/day)

kth right-hand-side value

monthly average depth of water loss
due to evaporation and infiltration
in evaporation ponds, 7, in month m
(m/month, known)

specific distance criterion

pollutant mass in the control volume
(kg)

number of objective functions
number of time steps

number of checkpoints along the river
number of point sources

number of genes (parameters) in each
chromosome
population size in each generation

internal constituent sources and sinks
(mg/m?s)

probability of crossover

value of gene i in chromosome j
value of gene ¢ in chromosome n
probability of mutation

maximum values of gene ¢

minimum values of gene ¢

flow volume of point load, 7, in month
m before diversion to evaporation
ponds (m?, known)

time series of the flow rate of point
load, ¢, before diversion to evaporation
ponds (m?/s)
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time series of the lateral flow due to
local flows, surface and groundwater
interaction or water withdrawal in
reach s of the river (m?/s)

time series of the daily flow rate of the
headwater (m?/s)

first order rate constant (1/day)

removal fraction of point source P1 in
month ¢ (percent)

external source or sinks (mg/s)

volume of evaporation pond at the end
of month m (m?)

sharing function

time (s)

mean velocity (m/s)
incremental volume (m?)

the magnitude of water quality
deviation from standards in point j at
time step ¢ (mg/L)

number of weekly time steps

time series of monthly removal fraction
at point source, i (percent)

distance along the river (m)

kth objective function
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