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 In this study, the method of molecular dynamics simulation is performed to investigate the shockwave 
propagation in a solid. The simulation cell contains 51840 atoms at 5 K interacting by means of a 
pairwise potential. The shockwave is generated using the motion of a piston with different velocities in 
the solid and the resulted shockwave velocity is in good agreement with the experimental data and the 
Hugoniot curve. The piston hit the sample from one side of the simulation box, at speeds ranging from 
1.2 to 1.3 times the speed of sound in solid argon at the chosen density. Some thermodynamics 
properties such as density, temperature and pressure are measured during propagation of shockwave. It 
is found that those thermodynamics properties (density, temperature and pressure) remarkably and 
significantly increase when the shockwave passed through the solid. We also show that creating initial 
strain in the solid up to 6.5% can enhance the pressure increment in the solid up to 9%. The results can 
be useful in enhancing the shockwave power by giving a detailed microscopic description of the 
process. 
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Fig. 1 Potential function behavior versus interatomic distance for 
Buckingham and Lennard-Jones potential functions[22,26] 
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Fig. 2 Snapshots of shockwave propagation (after piston hit) from one 
side to other side at three different times. a) at time 2ps b) at time 4ps 
(stop time of piston) c) at time 7ps 
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Fig. 3 Shockwave velocity (Us) versus piston velocity (Up) 
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Fig. 4 Linear relationship between shockwave velocity and piston 
velocity (y-intercept shows the sound velocity in solid) 
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Fig. 5 Density profile along z direction at different times 
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Fig. 6 Temperature profile along z direction at different times 
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Fig. 7 Pressure profile along z direction at different times 
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Fig. 8 Force applying direction for creating initial strain   
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Fig. 9 Maximum pressure profile versus four initial strains in the solid 
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Fig. 10 Maximum pressure incensement percentage versus initial strain 
compared to zero initial strain  
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