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1 INTRODUCTION 

Compared with the finite element method’s convenience 
and flexibility in use, it has been plagued for a long time, by 
the inherent problems such as locking, poor derivative 
solutions, etc. It is well known that the accuracy of the FEM 
relies on the quality of the mesh and the element type. First, 
a good-quality of the mesh cannot be always achieved, 
especially when adaptive refinement and adaptive re-
meshing are required for 3D problems. It has also been 
found that only simple quadrilateral or hexahedral elements 
have achieved considerable success for explicit dynamic 
analysis. However, the use of such elements is limited by 
the mesh generation. In contrast, the truly meshless local 
Petrov-Galerkin (MLPG) approach has become very 
attractive as a very promising method for solving 3D 
problems. The MLPG concept was presented in [1]. The 
main advantage of this method, over the widely used finite 
element methods, is that it does not need any mesh, either 
for the interpolation of the solution variables or for the 
integration of the weak forms. The many research in 
solving PDEs demonstrates that the MLPG method, and its 
variants, have become some of the most promising 
alternative methods for computational mechanics.  
The MLPG method in the present study employs a local 
symmetric weak form (LSWF), the shape functions are 
obtained from the MLS approximation and the Heaviside 
function is used as the test function. Although the MLS 
approximations have some drawbacks in dealing with the 
essential boundary conditions, they can be straightforwardly 
applied to 3D cases, by using the numerical techniques 
developed for 2D problems. One of the major advantages of 
the MLS is that, the shape functions are constructed from 
the local points only, with the high order continuities. 
Hence, this method leads to lesser cost in assembling the 
system equations. In the general MLPG approach, the local 
test domains can be arbitrary, such as spheres, cubes, and 
ellipsoids in 3D. However, the local sub-domains become 
very complicated, for the points which are located on, or 
near, the global boundaries, because of the intersection 
between the simple sub-domain and the boundary surfaces. 
In the present study, a method is developed to define the 
local sub-domains as spheres, with the use of a 
transformation which maps a circle on a semi-sphere for 
numerical integrations. 
The MLPG method has been demonstrated to be quite 
successful in solving various partial differential equations. 
The MLPG concept was presented first by Atluri and Zhu 
[1]. They are solved elasto-static problems in two 
dimensional domains. Lin and Atluri [2] introduced an up 
winding scheme to analyze steady state convection–
diffusion problems, and Liu and Gu [3] coupled the MLPG 
method with either the finite element or the boundary 
element method to enhance the efficiency of the MLPG 
method. Ching and Batra [4] augmented the polynomial 
basis functions with singular fields to determine 
deformations and stress fields near the crack tip for 
generally 2D mixed-mode problems. Gu and Liu [5] and 

Batra and Ching [6] used the Newmark family of methods 
to analyze 2D transient elasto-dynamic problems. The 
bending of a thin plate has been studied by Gu and Liu [7] 
and Long and Atluri [8]. Although the several research 
successes in solving boundary value problems in two 
dimensional domains illustrate that the MLPG method and 
its variants are much comparative with the Galerkin finite 
element method, there are only a few works that study the 
application of the MLPG methods in 3D problems. Han and 
Atluri [9] used the MLPG approach for the solution of the 
3D problems in elasto-statics. They are also applied the 
MLPG method in 3D elastic fracture problem [10] and 3D 
elasto-dynamics problems [11]. 

2 THE MOVING LEAST SQUARES 

The MLS method of interpolation is generally considered to 
be one of the best schemes to interpolate random data with 
a reasonable accuracy. Although the nodal shape functions 
that arise from the MLS approximation have a very 
complex nature, they always preserve completeness up to 
the order of the chosen basis, and robustly interpolate the 
irregularly distributed nodal information. The MLS scheme 
has been widely used in domain discretization methods. 
With the MLS, the distribution of function u in s can be 
approximated as,  
u(x) = P T (x)a(x)   sx Ω∈∀                                                (1) 

where P T  (x) = [ 1p (x), 2p (x), ... , mp (x)]  is a monomial 
basis of order m; and a(x) is a vector  containing 
coefficients, which are functions of the global cartesian 
coordinates [x1, x2, x3], depending on the monomial basis. 
They are determined by minimizing a weighted discrete L2 
norm, defined, as:  

2

1

]ˆ)()()[()( ii
T

m

i
i uxxxwxJ −=∑

=

aP

]û)([]û)([ −⋅−⋅= xx T aPWaP                                             (2) 
Where iw (x) are the weight functions and iû are the 
fictitious nodal values. The stationarity of J in Eq. (2), with 
respect to a(x) leads to following linear relation between 
a(x) and û . 
A(x)a(x)=B(x) û                                                                 (3) 
Where matrices A(x) and B(x) are defined by 

PPA Wx T=)(  ,  Wx TPB =)(      xx Ω∂∈∀                                           (4) 

Once coefficients a(x) in Eq. (3) are determined, one may 
obtain the approximation from the nodal values at the local 
scattered points, by substituting them into Eq. (1), as  

û)()( xxu TΦ=        xx Ω∂∈∀                                              (5)  
Where Φ (x) is the so-called shape function of the MLS 
approximation, defined as, 

)()()()( 1 xxxx T BAP −=Φ                                                                                (6) 
The weight function in Eq. (2) defines the range of 
influence of node I. Normally it has a compact support. 
Numerical practices of [1, 2] have shown that a quadratic 
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spline weight function works well. Hence in this article, the 
quadratic spline weight function is used. Thus we have                   
 

( )

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

≥

≤≤−+−

=

irid

irid
ir
id

ir
id

ir
id

xiw
0

0
4

3
3

8
2

61

                         (7)

 

Where di is the distance between points x and nod xi and ri 
is the size of support for the weight functions. It can be seen 
that the quadratic spline weight function is C1 continuous 
over the entire domain.  

3 LOCAL SYMMETRIC WEAK-FORMS OF ELASTICITY 

Consider a linear elastic body in a 3D domainΩ , with a 
boundary Ω∂ . The solid is assumed to undergo infinitesimal 
deformations. The equations of balance of linear and 
angular momentum can be written as: 

i
ijiijijij f

ξ
σσσ

∂
∂

≡==+ ,, )(   ;   ;0                                             (8) 

Where ijσ  is the stress tensor, which corresponds to the 
displacement field ii fu  and  is the body force. The 
corresponding boundary conditions are given as follows,  

ii uu =            on  uΓ  

ijiji tnt ==σ     on  tΓ                                                                                          (9) 

Where iu  and it  are the prescribed displacements and 
tractions, respectively, on the displacement boundary uΓ  
and on the traction boundary tΓ , and in   is the unit outward 
normal to the boundary Γ . 
The strain-displacement relations are: 

)(
2
1

,, kllkkl uu +=ε                                                             (10) 

The constitutive relations of isotropic linear elastic 
homogeneous Solid are: 

lkijklklijklij uEE ,== εσ                                                      (11) 
Where 

)( jkiljlikklijijklE δδδδμδλδ ++=         
with λ and μ being the Lame’s constants. 

 A generalized local weak form of the differential equation 
(7) over a local sub-domain sΩ  can be written as: 
 

0)( , =Ω+∫Ω dvf
s

iijijσ                                                       (12) 

 
Where iu  and iv  are the trial and test functions, 
respectively. By applying the divergence theorem and the 

boundary conditions, Eq. (12) may be rewritten in a 
symmetric weak form as: 
 

∫∫ ∫∫ ΩΓ Γ
=Ω−−Γ+Γ+Γ

ssu sts

dvfvdvtdvtdvt iijiijiiii
L

ii 0)( ,σ                     (13) 

 
where suΓ is a part of the boundary sΩ∂ of sΩ , over which 
the essential boundary conditions are specified. In 
general, sss L∩Γ=Ω∂ , with sΓ  being a part of the local 
boundary located on the global boundary, and sL  being the 
other part of the local boundary which is inside the solution 
domain. ussu Γ∩Γ=Γ  is the intersection between the local 
boundary sΩ∂  and the global displacement boundary uΓ ; 

tsst Γ∩Γ=Γ  is a part of the boundary over which the 
natural boundary conditions are specified. Therefore, a local 
symmetric weak form (LSWF) in linear elasticity can be 
written as: 
 

∫∫ ∫∫∫ ΩΓ ΓΩ
Ω+Γ=Γ−Γ−Ω

ssu stss

dvfdvtdvtdvtdv iiiiii
L

iijiij )( ,σ                  (14) 

 
If a Heaviside step function is used as the test function for 
the nodes on the natural boundary or inside the domain, i.e., 

su
I

iu Γ∉)(  one may simplify Eq. (14) for )(I
iu  as: 

 

∫∫ ∫∫ ΩΓ Γ
Ω+Γ=Γ−Γ−

ssu sts

dfdtdtdt iii
L

i                            (15) 

 
If the penalty approach is used to impose essential boundary 
condition we have: 
 

 ∫∫∫ ∫∫∫ ΩΓΓ ΓΓ
Ω+Γ+Γ=Γ+Γ−Γ−

ssusu stsus

dfdudtdudtdt iiiii
L

i αα              (16) 

 
In this equation coefficient  1>>α is used to impose 
essential boundary condition. 

The shape of sub-domains in this study is chosen to be 
spherical and for numerical integrations, we use a 
transformation which maps a circle on a semi-sphere. 

4 RESULTS OF NUMERICAL EXAMPLES 

In this section the meshless local Petrov–Galerkin method 
is applied to compute three-dimensional elasto-static 
problems. Three problems in three-dimensional linear 
elasticity are solved to illustrate the effectiveness of the 
present method. The numerical results are discussed 
consequently. 

 

A. Example 1 
In this case a cube under the hydrostatic pressure is 
considered. The MLPG approach is applied for this elasto-
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static problem with boundary conditions are presented in 
figure 1 as 

0===

−===

τττ

σσσ

zyx

zyx p
                                                            (17) 

The analytical solutions for this problem are 
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                                                       (18) 

 
The node distribution with 27 nodes are presented in figure 
2 for the case of a=b=c=2. The displacements are 
presented in figure 3, figure 4 and figure 5 for the case of 

.
4.2

1,
6.3

1,1 === μλp  As shown in these figures, the MLPG 

results agree with the values obtained by analytical solution. 
The convergence of the MLPG approach is demonstrated in 
these figures. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B. Example 2 
The second example is a beam under pure bending as 
illustrated in figure 6. The node distribution with 225 nodes 
are presented in figure 7 for the case of L=24, b=2, h=2.           
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Fig. 2 The node distribution for Example 1 
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Fig. 3 Displacement of X direction at Z=-h/2 & Y=b 
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Fig. 4 Displacement of Z direction at X=L/2 & Y=b/2 
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Fig. 5 Displacement of Y direction at Z=-h/2 & Y=b
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The exact solutions for this problem are 
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Where  Iy is the bending stiffness of the plate, as,  

12

3bhI y = , 
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The displacements are presented in figure 8 to figure 11 for 
the plane stress case with E=1, v=0.2 and M=1. As shown 
in these figures, the MLPG results agree with the values 
obtained by analytical solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7 The node distribution for Example 2 
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Fig. 8 Displacement of X direction at X=L/2 & 
Y=b/2 
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Fig. 9 Displacement of X direction at Z=-h/2 & Y=b/2 
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Fig. 6 Geometric and boundary conditions for 
Example 2 
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Fig. 10 Displacement in Z direction at Z=h/2 & Y=b/2
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C. Example 3 
The cantilever beam under a transverse load problem is 
shown in figure 12. The exact solutions for this problem are 
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Where I is the bending stiffness of the plate, as  

12

3bhI = ,  
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The corresponding stresses are: 
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The problem is solved for the plane stress case with P=1, 
E=1, b=h=2, L=24 and ν=0.2. Regular uniform nodal 
configurations with nodal distances are used, as figure 13 

shows the configuration with a nodal distance of 1.0. The 
number of nodes is 225.  
First, a uniform tension load is applied to the free end of the 
cantilever beam. The problem is solved by using the 
mentioned MLPG method with MLS approximation. The 
numerical results are shown in figure 14 to figure 18, which 
agree with the analytical solution well.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 13 The node distribution for Example 3 
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Fig. 14 Displacement of X direction at X=L/2 & Y=b/2 
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Fig. 11 Displacement of Y direction at Z=-h/2 & Y=b/2 

Fig. 12 Cantilever beam with an end load 
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Fig. 15 Displacement of Y direction at X=L/2 & Y=b/2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5 CONCLUSION 

A meshless local Petrov-Galerkin (MLPG) method is 
developed for 3D static problems, based on the local 
symmetric weak forms. The MLS approximation is used for 
constructing the trial functions. The penalty approximation 
is used to impose essential boundary condition. A simple 
heaviside step function is chosen for test function. The 
numerical results demonstrate the high accuracy of this 
method while comparing with the exact solution. 
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