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Abstract: To achieve an excellent thermal-mechanical performance of CMCs, it is 
necessary to analyze and design the thickness of the multi-layered interphases for 
an optimized TRS distribution. An optimization was performed with a new version 
of the particle swarm optimization, the BSG-Starcraft Radius PSO linked to a 
finite element software. 
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• The initial stresses of all nodes are assumed as 
zero at the sintering temperature, and TRS 
generated in the subsequentcooling process. 

• The model is assumed to cool from sintering 
temperature to room temperature, with a 
uniform temperature field. In practice, 
temperature of the model is decreased, and 
ANSYS finite element software is used to 
calculate the TRS in the model. 

 
The primary objective is the optimization of TRS 
distribution in the multi-layered interphases and matrix 
from the viewpoints of the deposition thickness of each 
interphase layer. The diameter of the SiCfiber is 10 mμ  
and the thickness of the SiC matrix is 2 mμ . The upper 
bound of each interphase layer thickness is 0.6 mμ . In 
practice, the thicknesses of multi-layered interphases 
are usually limited to 0.1 mμ  or more for oxidation 
resistance considerations and reduction of the 
complexity of the CVI fabrication process. Therefore, 
in the present study the lower bound for each 
interphase layer thickness is set to 0.3 mμ . Material 
properties of the constituents are given in Table 1. 

3 OPTIMIZATION PROCESS OF THERMAL 
RESIDUAL STRESSES 

The optimization problems presented in the present 
study include the following 3 cases: 

1. Minimization of the maximum hoop TRS 
within the interphases and matrix 

2. Minimization of the maximum radial TRS 
within the interphases and matrix 

3. Minimization of the maximum axial TRS 
within the interphases and matrix 

From a mathematical point of view, this problem can 
be formulated as: 

 

ሺ ܲሻ ቐ
݉݅݊ ݂ሺܺሻ

ܺ ݁ݎ݄݁ݓ  ൌ ሺ݀ଵ, ݀ଶ, ݀ଷ, ݀ସሻ
 0.3   ݄ݐ݅ݓ ݀  0.6

 

 
In this expression, f(X) is the objective function i.e., the 
maximum residual axial, radial or hoop thermal stress 
within the interfaces and matrix. The vector X is the 
vector defining the design variables: the thicknesses of 
the interfaces. There are constraints concerning the 
upper and lower bounds of each interfaces as specified 
in section 2.  
In this problem, the evaluation of the objective function 
for the given values of the design variables requires a 
finite element analysis. So, the optimization technique 
was linked to the finite element model introduced in 
section 2. This optimization process is shown in Fig. 3. 
To solve this complex nonlinear optimization problem, 
a meta-heuristics approach is adopted. The power of 
meta-heuristics comes from the fact that they are robust 
and can deal successfully with a wide range of problem 
areas, and especially in structural optimization. 
 

Fig. 3 Optimization process 
 

 

Table 1 Properties of the constituents 

Constituent E11(GPa) E33(GPa) G12(GPa) G23(GPa) ν12 ν23 α11(10-6/ ºC) α33(10-6/ºC) 

SiCfibre 200 200 80 80 0.12 0.12 3 3

PyC 
interphase 

12 30 4.3 2 0.4 0.12 28 2 

SiC 
interphase 

350 350  145.8 145.8 0.2 0.2 4.6 4.6 

SiC matrix 
 

350 350 145.8 145.8 0.2 0.2 4.6 4.6 
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In this work, an original improvement of particle 
swarm optimization was used. Indeed, in the past, this 
problem was already solved with a classical PSO 
algorithm in ref [4], where the CPU time has been 
noticed to be an important issue. In this context, the 
evaluation of the cost function for the given values of 
the design variables requires a finite element analysis. 
This work can be very time consuming from CPU point 
of view, especially when the finite element models are 
large and have a considerable number of design 
parameters. This improvement can drastically reduce 
the CPU time by avoiding needless iterations: BSG-
Starcraft Radius PSO. However, a comprehensive 
description of this algorithm can be found in ref [5]. 

 
Table 2 Objective functions and design variables 

 Case 1 Case 2 Case 3

TRS (GPa) 0.22 -0.068 0.12

0.6 0.6 0.6

0.6 0.5 0.6

0.3 0.6 0.3

dସ (µmሻ 0.6 0.3 0.3

4 RESULTS AND DISCUSSIONS  

The final optimized interphases thicknesses and the 
value of the objective functions are listed in table 2. 
The maximum hoop TRS has been decreased to 
0.22 GPa by means of handling the interphases 
thickness. It can be observed that the thicknesses of the 
first, second and last layer of interface increases 
steadily up to their upper bounds, while the thickness of 
the third layer of interface decreases dramatically to its 
lower bound. The maximum radial TRS has been 
decreased to -0.068 GPa, where the maximum axial 
TRS has been decreased to 0.12 GPa.  

5 CONCLUSION 

In this paper, a finite element model of RVC for 1-D 
unidirectional C/SiC composites with multi-layer 
interfaces is firstly generated and finite element 
analysis is realized to determine the TRS distributions. 
Then, an optimization scheme which combines a new 
PSO algorithm with the finite element analysis is used 
to reduce the TRS in the C/SiC composites by 
designing the multi-layer interfaces thicknesses.   
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