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Abstract – Let R and S be reduced rings with identities whose idempotents are central, and let M be an 

(R, S)-bimodule such that annr (M)=0. In this paper, we determine first the structure of automorphisms of 

the triangular ring, 
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S
MR

T
0

, and then, for all automorphisms βα , of T we determine the structure 

of (α,β)-derivations of T. 
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1. INTRODUCTION 
 

Recently many authors have considered )β,α( - derivations and generalized )β,α( -derivations of 
rings. We refer the interested readers to [1] and [2] and the references therein. 

Motivated by [3], we describe the )β,α( -derivations of the triangular matrix ring 
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whose components satisfy certain conditions.  

Let R and S be reduced rings with identities whose idempotents are central, M be an ),( SR -

bimodule such that annr (M)=0, and T be the triangular ring 
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I denotes the identity matrix and jiE ,  denotes the usual unitary matrix. The zero matrix and the 
identically zero functions are denoted by 0, and we assume that the ring automorphisms conserve 
identities. If f and h are automorphisms of R and S respectively, by an (f, h)-automorphism of M we 
mean an additive bijective mapping g on M such that for all )()()()(,,, shmgrfrmsgSsMmRr =∈∈∈ . 

Clearly, if f and g are the identity automorphisms, then g is an ),( SR -bimodule automorphism. 
It is easy to see that if f and h are automorphisms of R and S, respectively, and g is an (f, h)- 
automorphism of M, then the mapping 
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is an automorphism of T. Φ is called the automorphism induced by f , g, and h. If A is an invertible 
matrix in T, then the inner automorphism induced by A is denoted by InnA. If βα ,  are 
automorphisms of T, then by an derivation−),( βα of T, we mean an additive mapping d on T such 
that for each . )()()()()(,, yxdydxxydTyx βα +=∈ ...If α is the identity mapping, d is a 

derivation−β  and if βα , are both identities, d is a derivation of T. For each TC ∈ , the mapping 
TTIC →:  given by PCCPPIC −=)(  is easily seen to be a derivation of T. IC  is called the inner 

derivation induced by C. We determine first the structure of automorphisms of T, and then the 
structure of ),( βα -derivations of T. This result has attracted the attention of mathematicians in the 
fields of ring theory and functional analysis. 
 

2. THE STRUCTURE OF AUTOMORPHISMS OF T 
 
Theorem 2. 1. Let the ring T be as above and let α be an automorphism of T. Then there exist 
automorphisms f and h of R and S, respectively, an (f, h)-automorphism g of M, an invertible matrix 

TA∈ , and an automorphism Φ of T induced by f, g, and h such that for each TP∈ , 
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Proof: Let 
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some elements of R, M, and S, respectively, and MMgRMk →→ :,: , and SMt →:  are some 

functions determined by α. We have 
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Also, 
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From (1), (2), and (3) it follows that 
 

),()(,)()(,, 22 mbtmtmakmkbbaa ====  
 

.0)(,0)( == bmtamk  
 

Since the idempotents of R and S are central, then these relations imply that .0== tk  So 
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Now, let Mt ∈  be arbitrary. Then 
 

).()()1()(0 121221121112 EtsEstEEaEtg αα ==−=  
 

So, 01 =ts  for all .Mt ∈  Thus by assumption, 01 =s , and, by (4), .1=a  
Next, we prove that g is onto. Let Mm∈  and assume that 
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Since α is one-to-one, we have 02 =x , 02 =z , and since R and S are reduced, 0=x  and .0=z  
Thus, 121212 )()( mEEmEmg =′=′ α , proving that g is onto. 

Now, we show that .0=b  Let .Mm∈  Since ,1=a  
 

)()()()()( 221222121212 EmEEmEmEEmg αααα ===  
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Therefore, 0)( =bmg  for all .Mm∈ Since g is onto and annr (M)=0, it follows that b=0. 
Consequently, for each Mm∈  we have 
 

                         .)()(,
10

0
)(,

00
1

)( 1212
1

22
1

11 EmgmE
m

E
m

E =






 −
=








= ααα                      (5) 

 
Let Rx∈  and set .
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for some function .: RRf →  Similarly, applying α to 222222 xEExE = , where Sx∈ , we observe 
that there exists a function h on S such that 
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Since α is additive, then so are f, g, and h. 

Therefore, by (5), (6), and (7), for each T
s
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∈
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Let ,Rx∈ Sy∈ , and .Mm ∈′  Since α is onto, there exists T

s
mr

∈







0

 such that 
 

,
)(0

)()()()(
0

11







 +−
=
















=







 ′

sh
mgshmmrfrf

so
mr

y
mx

α  

 
proving that f and g are onto. Relation (8) and the fact that α is one-to-one imply that f, g, h are one-
to-one. 

Our next step is to show that f and h are homorphisms and g is an (f, g)-automorphism. Since α is 
additive, so are f, g, h. Let ., Ryx ∈  Then  
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So, ).()()( yfxfxyf =  Similarly, for each ).()()(,, yhxhxyhSyx =∈  Now, let 

MmRr ∈∈ , , and .Ss∈  Then 
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A  and TT →Φ :  is given by 
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Using the properties of f, g, and h one can easily verify that Φ is an automorphism of T induced 

by the automorphisms f, g, and h. This completes the proof. 
 

3. THE STRUCTURE OF ),( βα -DERIVATIONS OF THE RING T 
 
Let the ring T be as above and consider the automorphisms 
 

Ψ=Φ= BA InnInn βα ,  
 

of T, where 
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A  are some (invertible) matrices in T, Φ is an automorphism 

of T induced by automorphisms f, g, h of R, M, S, respectively, and Ψ is an automorphism of T 

induced by automorphisms ,,, hgf ′′′  of R, M, S, respectively.  
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Theorem 3. 1. Assume that the automorphisms βα ,  of the ring T are as above. If d is an ),( βα -
derivation of T, then there exists a ),( ΨΦ -derivation φ  of T and a matrix C in T such that for each 

,TP∈  
 

.)()()()()()( CPPCBPPAPPd Φ−Ψ+−+= φφφ  
 
In particular, if d is an ),( αα -derivation of T, then  
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Proof: Recall that for every ,, Tyx ∈  
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for some function RR →:δ . Since d is additive, then so is δ . Let ., Ryx ∈  Then the identity 

111111 yExExyE =  and (9) imply that  
 

)()()()()( yfxyxfxy ′+= δδδ . 
 

That is, δ  is an ),( ff ′ -derivation of R. Similar computations show that there exists an ),( hh ′ -
derivation γ of S such that for each ,Sx∈  
 

                                                  






 ′−
=

)(0
)()(0

)( 21
22 x

xhxxm
xEd

γ
γ

.                                               (13)  

 
Now we prove some properties of τ . Since d is additive, then so is τ . Let ., MmRr ∈∈  
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).()()()( PPPP ′Ψ+′Φ= φφ  

 

Therefore, φ  is a ),( ΨΦ -derivation of T. Finally, define 122 ExC −=  and let 







=

s
mr

P
0

be in T. 

Then by (11), (12), (13), and (14) we have 
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.)()()()()( CPPCBPPAP Φ−Ψ+−+= φφφ  
 

In particular, if βα = , then A=B and .Ψ=Φ  So, 
 

).()()()( PIPIPPd CA Φ++= φφ  
 
Remark. The proof of the above theorem shows that when the ring T reduces to the ordinary 
triangular ring, i.e, R S M= = , where R is a ring with identity, then the result is in accordance with 
[3, Theorem, P. 263]. 
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