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Abstract – The general relatively isotropic mean Landsberg metrics contain the general relatively 
isotropic Landsberg metrics. A class of Finsler metrics is given, in which the mentioned two concepts 
are equivalent. In this paper, an interpretation of general relatively isotropic mean Landsberg metrics is 
found by using C-conformal transformations. Some necessary conditions for a general relatively 
isotropic mean Landsberg metric, as well as generalized Landsberg metric to be a Riemannian metric are 
also found. 
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1. INTRODUCTION 

 
Cartan and Landsberg tensors, respectively C  and L , play an important role in Finsler geometry. It 
is natural to study L C/  as the relative rate of change of L  along geodesics, leading to a study of 
general relative isotropic Landsberg metrics. The study of general relative isotropic Landsberg metric 
was initiated by Izumi [1, 2]. Since then, there have been many contributions to this subject such as 
those by Chen, Mo and Shen [3] and Bacso and Papp [4]. By using C -conformal transformation, an 
interpretation of a general relative isotropic Landsberg metric was given by Hashiguchi [5].  

Mean Cartan and mean Landsberg tensors, respectively I  and J , are two important tensors in 
Finsler geometry. Studying J I/  is also natural as the relative rate of change of J  along geodesics, 
which leads to a study of general relative isotropic mean Landsberg metrics. This class of Finsler 
metrics contains the class of general relatively isotropic Landsberg metrics. In Section 3, it is shown 
that these two cited classes are the same on 2C -like spaces (Theorem 9). In Section 4, C-conformal 
transformations are used to obtain an interpretation of general relative isotropic mean Landsberg 
metrics (Theorem 14).  

The authors found some necessary conditions for a general relative isotropic Landsberg metric to 
be a Riemannian metric [6]. In the last section, the same is done for a general relative isotropic mean 
Landsberg metric, as well as a generalized Landsberg metric.  

Throughout this paper, the Cartan connection is set on Finsler manifolds. The Einstein 
convention is used, that is, repeated indices with one upper index and one lower index denote 
summation over their range.  
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2. PRELIMINARIES 
 
In this section, mainly background material is presented about the basic tools and notations. Let M  
be an n-dimensional C ∞  manifold. The tangent space at x M∈  is denoted by xT M , and the 
tangent bundle of M  is denoted by TM . Each element of TM has the form (x, y), where x M∈  
and xy T M∈ .  Let 0 {0}TM TM= .  The natural projection TM Mπ : →  is given by 

( )x y xπ , = . The pull-back tangent bundle TMπ ∗  is a vector bundle over 0TM  whose fiber 

vTMπ ∗  at 0v TM∈  is just xT M , where ( )v xπ = . Thus 
  

0{( ) }x xTM x y v y T M v T Mπ ∗ = , , | ∈ , ∈ .  
 

A Finsler metric on a manifold M  is a function [0 )F TM: → ,∞  with the following 
properties:  
(i) F  is C ∞  on 0TM ,  
(ii) ( ) ( ) 0F x y F x yλ λ λ, = , ∀ > ,  
(iii) For any tangent vector xy T M∈ , the vertical Hessian of 

2

2
F  given by  

 

21( ( ))
2 i j

ij
y y

g x y F
           

, =  

 
is positive definite.  
 
Definition 1. A Finsler metric F  on a manifold M  is said to be locally Minkowskian if at every 
point x M∈  and xy T M∈ , and there is a local standard coordinate system ( )i ix y,  for TM , 
such that F  has no dependence on the ix .  
A symmetric tensor C is defined by  
 

( ) ( ) i j k
ijkU V W C y U V W, , = ,C  

 
where i

i
x

U U ∂
∂

= , i
i

x
V V ∂

∂
= , i

i
x

W W ∂
∂

=  and 21
4 [ ] ( )i j kijk y y y

C F y= . C  is called Cartan 
tensor. Further, let ij

k ijkI g C= . Then I  is called mean Cartan tensor. 
  
Theorem 2. ([7])The following are equivalent  
a) C=0,  
b) I=0,  
c) F  is Riemannian.  
Two symmetric tensors L  and J  on TMπ ∗  are defined as the following  
 

( ) ( ) ( ) ( )i j k i
ijk iU V W L y U V W U J y U, , = , = ,L J  

 
where s

ijk ijk sL C y|=  and jk
i ijkJ g L= . L  is called Landsberg tensor, and J is called mean 

Landsberg tensor.  
 
Definition 3. A Finsler metric is called a Landsberg metric (resp. weakly Landsberg metric) if 0L =  
(resp. 0J = ).  
Let ( )c t  be an arbitrary geodesic in ( )M F, . Suppose ( )U t , ( )V t , and ( )W t  are arbitrary parallel 
vector fields along c . It is easy to see that Landsberg and Cartan tensors satisfy the following  
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( ) ( )( ( ) ( ) ( )) [ ( ( ) ( ) ( ))]c t c t
dL U t V t W t C U t V t W t
dt

, , = , , .  

 
Thus the Landsberg tensor measures the rate of change of the Cartan tensor along geodesics.  
Let ( )M F,  be a Finsler manifold. A global vector field G  is induced by F  on 0TM . This 

vector field in a standard coordinate ( )i ix y,  for 0TM  is given by  
 

2 ( )i i
i iG y G x y

x y
∂ ∂

= − , ,
∂ ∂

 

 
where ( )iG x y,  are local functions on 0TM  satisfying 2( ) ( ) 0i iG x y G x yλ λ λ, = , > .  G is 
called the associated spray to ( )M F, . 

The projection of an integral curve of G  is called a geodesic in M . In local coordinates, a 
curve ( )c t  is a geodesic if and only if its coordinates ( ( ))ic t  satisfy 2 ( ) 0ii G cc + = . F  is said to 
be positively complete (resp. negatively complete), if any geodesic on an open interval ( )a b,  can be 
extended to a geodesic on ( )a,∞  (resp. ( )b−∞, ). F  is said to be complete if it is positively and 
negatively complete. 

The notion of Riemann curvature for Riemann metrics can be extended to Finsler metrics. For a 
non-zero vector xy T M∈ , the Riemann curvature y x xR T M T M: →  is defined by 
  

( ) ( )i k
y k iR u R y u

x
∂

= ,
∂

 

 
where  
 

2 2

( ) 2 2
i i i i j

i j j
k k j k j k j k

G G G G GR y y G
x x y y y y y
∂ ∂ ∂ ∂ ∂

= − + − .
∂ ∂ ∂ ∂ ∂ ∂ ∂

 

 
Suppose xP T M⊂  (flag) is an arbitrary plane and y P∈  (flag pole). The flag curvature ( )K P y,  
is defined by 
  

( ( ) )
( )

( ) ( ) ( ) ( )
y y

y y y y

g R v v
K P y

g y y g v v g v y g v y
,

, = ,
, , − , ,

 

 
where v  is an arbitrary vector in P  such that ( )P span y v= , .  
F is said to be of scalar curvature if for any non-zero vector xy P T M∈ ⊂ , ( ) ( )K P y yλ, =  is 
independent of P , or equivalently, 
  

2( ) ( ){ ( ) }y y xR y F y I g y y y T M x Mλ= − ,. , ∈ , ∈  
 
where x xI T M T M: →  denotes the identity map and 21

2( ) [ ] i
i

y y
g y F dx, . = . F  is also said to be 

of constant curvature λ , if the above identity holds for the constant λ  [8, 9].  
 
Definition 1. The Funk metric on a strongly convex domain nRΩ⊂  is a nonnegative function on 

nT RΩ = Ω× , which satisfies i ix y
F FF=  ([10]). 

  
Definition 2. A Finsler metric F  is said to be generalized Landsberg metric if the Riemannian 
curvatures of Berwald and Chern connections coincide [11]. 
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Remark 2. Every Landsberg metric is a generalized Landsberg metric, but the converse is an open 
problem.  
 
Definition 3. A Finsler metric F  on a manifold M  is said to be general relative isotropic 
Landsberg metric (GRI Landsberg metric), if 
  

0ijk ijkL Cλ+ = ,  
 
where λ  is a positively 1-homogeneous scalar function on 0TM .  
 
Definition 4. A Finsler metric F  is said to be general relatively isotropic mean Landsberg metric 
(GRI mean Landsberg metric), if  
 

0i iJ Iλ+ = .  
 
Remark 3. A simple manipulation yields 

m
m

m
m

J I
I I

λ = .  
 
Remark 4. It is obvious that every GRI Landsberg metric is GRI mean Landsberg metric, but the 
converse is not true in general. 
 

3. C2-LIKE SPACES 
 
Definition 5. A Finsler metric F  is said to be semi-C-reducible if the Cartan tensor is written in the 
following form 
  

2{ }
1ijk ij k jk i ki j i j k

p qC h I h I h I I I I
n C

= + + + ,
+

 

 
where ij ij i jh g= −  is the angular metric tensor, 1p q= −  and 2 m

mC I I= . Moreover, if 0p = , 
F  is said to be a 2C -like Finsler metric and if 0q = , F  is said to be a C-reducible Finsler metric 
[12, 13]. 
  
Remark 5. Every 2-dimensional Finsler metric is C-reducible. 
  
Theorem 6. Let F  be a C2-like Finsler metric. Then the following are equivalent  
1) F  is GRI Landsberg metric.  
2) F  is GRI mean Landsberg metric. 
  
Proof: It is sufficient to show that if F  is a GRI mean Landsberg metric, then it is a GRI Landsberg 
metric. By definition of GRI mean Landsberg metric we have 
  

k kJ Iλ= .  
 
Since F  is C2-like, then  
 

1
ijk i j km

m

C I I I
I I

= .  

 
Taking horizontal covariant derivative " s"|  from the above relation and contracting it with sy  

yield  
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2

( ) 1 ( )
( )

m m
m m

ijk i j k i j k i j k i j km m
m m

J I I JL I I I J I I I J I I I J
I I I I

− +
= + + + .  

 
Plugging k kJ Iλ=  into the last relation implies that  

 
2 3

ijk i j k i j km m
m m

L I I I I I I
I I I I
λ λ

= − + .  

 
Thus  
 

ijk ijkL Cλ= .  
 

This means that F  is a GRI Landsberg metric. 
 
Remark 6. Singh and Gupta show that on C2-like Finsler space, Landsberg metrics and mean 
Landsberg metrics are equivalent [14]. Therefore Theorem 9 can be considered as an extension of 
their result.  
 

4. C-CONFORMAL MEAN LANDSBERG METRICS 
 
Definition 7. Two Finsler metrics F  and F  on M  are called conformal if ijij gg ϕ= , where ϕ  is 
a positive scalar function on TM . Furthermore, when ϕ  is a constant, they are called homothetic.  
 
Remark 7. Knebelman’s theorem states that ϕ  falls into, at most, a point function. Thus we can 
assume 2e αϕ = , where α  is a scalar function on M .  
We put ii x

αα ∂
∂

= , i ir
j j rC C α:=  and 0

i
i yα α= . Then we have the following well-known results for 

two conformal Finsler metrics  
 

F e Fα= ,  
 

2ij ije gg α−= ,  
 

2
ijkijk e CC α= ,  

 
i i

jkjk CC = .  
 

i i i
jk jk jkL VL = +  

 
where 2

0( )i i ir i i i i
jk j k j rk j k k j jk jkV F C C C C y C y C y Cα|= + + + + + . 

  
Proposition 8. The following conditions are equivalent [5] 
 

a) 0jkC = , 
 

b) 0k
jC = , 

 
where m

jk jm kC g C= .   
 
Definition 9. Two conformal Finsler metrics F  and F  on M  are called C-conformal if their 
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conformal transformation is non-homothetic and satisfies 
  

0jkC = .  
 
Proposition 10. Let F  and F  be two homothetic Finsler metrics on M . Then F  is mean 
Landsberg metric if and only if F  is so. 
  
Proof: By definition α  is constant. This leads to 0i

jkV = . Hence, we have i i
jk jkLL = . Contracting 

the last relation with jkg  yields 2i ie JJ α−= , which concludes the proof.  
  
Theorem 11. Let F  and F  be two C-conformal Finsler metrics on M . Suppose F  is mean 
Landsberg metric. Then F  is a GRI mean Landsberg metric. 
  
Proof: By definition of C-conformal and Proposition 11, we get 0

i i
jk jkV Cα= . Consequently  

 

0
i i i i i
jk jk jk jk jkL V L CL α= + = + .  

 
Contraction with ijg  yields  
 

2
0( )k k ke J IJ α α= + .  

 
Since F  is mean Landsberg metric, we get k kJ Iλ= , where 0λ α= − .  

  
Corollary 12. Let F  be a mean Landsberg metric. If F  is unchanged by a C-conformal 
transformation, then F  is Riemannian. Especially if a Minkowski space is C-conformal to a mean 
Landsberg space, then the space is Euclidean 
 

5. REDUCTION TO RIEMANNIAN METRIC 
 
Bejancu and Farran have shown that if a generalized Landsberg metric F  is of non-zero scalar 
curvature, then F  must be Riemannian [11]. Here, we state another condition on a generalized 
Landsberg metric to be Riemannian.  
 
Theorem 1. Let F  be a generalized Landsberg metric. Suppose F  is also GRI mean Landsberg 
metric and 0 0s

s yλ λ|:= = , 0λ ≠ . Then F  is Riemannian.  
 
Proof: By definition of generalized Landsberg metric, we get  
 

0s s
ijl k ijk l isk jl isl jkL L L L L L| |− + − = .  

 
Contraction with ijg  yields  

 
0j s j s

l k k l sk jl sl jkJ J L L L L| |− + − = .  
 

Contraction with ly  implies that 
  

0kJ = .  
 

Since F  is GRI mean Landsberg metric and 0 0λ = , we get 
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0k kJJ λ+ = .  
 

Thus we have 0kI = . By the Diecke Theorem F  is Riemannian.  
Authors show that every R -flat and non-zero constant relative Landsberg metric is a 

Riemannian metric [6]. Here we extend this result to GRI mean Landsberg metrics. 
  
Theorem 2. Let F  be a R-flat Finsler metric. Suppose F  is GRI mean Landsberg metric and 

0 0λ = , 0λ ≠ . Then F  is Riemannian.  
 
Proof: For R-flat Finsler metrics we have 
  

( ) ( ) ( ) ( )s s s s s s s s
ijk l ijl k sjk il il isk jl jl sjl ik ik isl jk jkL L L L A L L A L L A L L A| |= + − + − − − − −  

 
Contraction with l ijy g  yields  
 

0kJ = .  
 

Since F  is GRI mean Landsberg metric and 0 0λ = , we get 
  

0k kJJ λ+ = .  
 

Thus we have 0kI = , which means that F  is Riemannian. 
  
Theorem 3. Let ( )M F,  be a complete non-zero constant relatively mean Landsberg manifold with 
bounded Cartan torsion. Then ( )M F,  is a Riemannian manifold. 
  
Proof: Let p  be an arbitrary point of M , and py u T M, ∈ . Let ( )c M: −∞,∞ →  be the unit 
speed geodesic passing through p  and let (0)dc

dt y= . If ( )U t  is the parallel vector field along c  
with (0)U u= , we put ( ) ( ( ))I t I U t=  and ( ) ( ( ))I t I U t= . By definition, we have  
 

0( ) ( )I t c I t= ,  
 
of which its general solution is  
 

0( ) (0) c tI t I e= .  
 

Using I|| ||< ∞ , and letting t →+∞  or t →−∞ , we have (0) ( ) 0I I u= = , so 0I =  i.e. 
( )M F,  is a Riemannian manifold. 
  
Corollary 4. Every non-zero constant relatively compact mean Landsberg metric is a Riemannian 
metric.  
 
Remark 8. The completeness condition in the above theorem can not be replaced by positively 
complete or negatively complete. For example, Funk metric on n nB R⊆  satisfies all conditions of 
the above theorem but completeness, more precisely Funk metric is a non-Riemannian positively 
complete Finsler metric.  

Numata has shown that a Landsberg metric of non-zero scalar curvature is Riemannian [15]. 
Izumi extended Numata’s result to GRI Landsberg metrics. More precisely  
 
Proposition 5. [2] Let F  be a Finsler metric of constant curvature, say K . Suppose L Cλ=  and 
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2 2
0 0F K λ λ|+ + ≠ . Then F  is Riemannian metric.  

Here, we extend Izumi’s result to GRI mean Landsberg metrics. 
  
Theorem 6. Let F  be a Finsler metric of constant curvature say K . Suppose J Iλ=  and 

2 2
0 0F K λ λ|+ + ≠ . Then F  is Riemannian metric. 

  
Proof: Let F  be a Finsler metric of scalar curvature ( )K K x y= , . Then  
 

03 2 (3 ) ( ) 0lijk i jkl j kl k jl l jk ij kl ik jl il jkB y KC K h K h K h F h K h K h K| − + + + + + + = .  
 

Contraction of the above identity with iy  yields 
  

2
06 2 (3 ) 0jkl jkl j kl k jl l jkL F KC K h K h K h|− − + + + = ,  

 
contraction of the above equation with jkg  yields 
  

2
06 2 {3 ( ) ( ) ( 1)} 0j j k k

l l j l l k l l lJ F KI K K K nδ δ|− − + − + − + − = ,  
 
or  
 

2
03 (3 ( 1) ) 0l l lJ F KI n K| + + + = .  

 
Now if we suppose F  is of constant curvature, then we get the following  
 

2
0 0l lJ F KI| + = .  

 
The assumption that F  is GRI mean Landsberg metric implies that  

 
2 2

0( ) 0lF K Iλ λ|+ + = .  
 

If 2 2
0 0F K λ λ|+ + ≠ , then 0lI = , by the Deicke theorem F  is Riemannian metric. 
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