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Abstract – The problem of hypothesis testing with a nuisance parameter is considered. Two methods for 
using fuzzy knowledge on the nuisance parameter to test hypotheses are suggested. These methods are 
neither a pure classical nor a pure Bayesian approach to hypothesis testing, but rather related to both. A 
few known examples and their applications, which cannot be studied by the parametric statistical 
methods, are discussed. 

  
Keywords – Fuzzy Statistics, defuzzified distribution, weighted defuzzification-Estimator, exchangeable 
normal Distribution 
 

1. INTRODUCTION 
 

There are two main approaches to hypothesis testing for fixed sample size: (I) Classical, (II) 
Bayesian. The classical approach is applied when the hypotheses, observations and parameters are 
crisp, whereas the Bayesian approach is applied when the hypotheses and observations are crisp, but 
the parameters are crisp random variables.  

There is also a third approach for some practical problems. In this approach, similar to the above 
two approaches, the hypotheses and observations are crisp, but there be may some fuzzy knowledge 
about an unknown, but fixed parameter that can be expressed by a known membership function say, 

( )m . . This fuzzy knowledge comes from restrictions on the parameter or from our experience. For 
simplicity, we call such a parameter a fuzzy parameter in this article. Ralescu [1] uses a similar 
terminology for parameters in binomial distribution and Haekwan & Tanaka [2] introduced regression 
with fuzzy parameters. This fuzzy knowledge is sometimes quite helpful, but it may not be 
economical in some problems. To make our point clear, we give the following two examples.  
 
Example 1. 1. Suppose we are interested in evaluating the diameters of washers produced by a 
factory, and we know that the distribution of the difference of such diameters from a norm diameter is 
normal 2( )N µ σ, , where 2σ  is known. That is, we want to test the hypotheses  
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based on the random sample 1( )nX X ′= , ,X L  of differences. It is well known that the following 
test function is the best at level α  when 2σ  is known (it is a uniformly most powerful unbiased test 
(UMPUT)):  
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where 1( )nx x ′= , ,x L  is an observation vector from X , 
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Now suppose 2σ  is a fuzzy parameter with membership function ( ).m .  How can we test (1) in 

this case? A simple and logical answer to this question is the usual t -test, with the following test 
function: 
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where 2 21

1 1
( )n

in i
s x x− =

= −∑ , T  has a t − distribution with 1n −  degrees of freedom, and 

2 2( ( 1 1 ))P T t n α α> − , − = . This test function does not depend on 2σ , but is the best by the 
generalized likelihood ratio method. It is obvious that the fuzzy knowledge of 2σ  is not helpful in 
this case, since we have the best test function. We can easily show that the power functions of 1φ  and 

2φ  are close to each other for a reasonable sample size.  
 
Example 1. 2. In practical problems, the sample in Example 1.1 is without replacement and so 

1( )nX X ′= , ,X L  is a random vector with an exchangeable normal 2( )nEN µ σ ρ, ,  distribution [3], 
where ρ  is the correlation parameter (see the Appendix). Consider testing (1). It can be shown that 
the following test functions are the best at level α  when ρ  is known, [4]:  
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If ρ  is unknown there is no known parametric test for testing (1) [4, 5]. However, when we have 
some fuzzy knowledge about ,ρ  we can find a solution for the problem (see Section 3). For example 
if we know that [0 1)ρ ∈ ,  we can classify this restriction in the following membership function,  
 

1 [0 1)
( )

0 [0 1)
m

ρ
ρ

ρ
∈ ,

= , ∈ ,/
 

 
or, if we know that ρ  is approximately 0.5 (by our experience) we can use the membership functions 
in Example 2.4 (Fig. 3).  

We shall point out the difference between Bayesian and fuzzy knowledge. In the Bayesian 
framework we consider our parameter as a random variable with a known prior density, which is not a 
fixed number. But in a fuzzy case, we have only limited fuzzy knowledge about our fixed unknown 
parameter.  

The main purpose of this paper is to show how we can use this fuzzy knowledge for testing 
hypotheses. However, as far as the authors know, there is no work on this subject i.e., hypothesis 
testing in classical statistics framework for a crisp parameter when we have some fuzzy knowledge 
about an unknown fixed nuisance parameter. But some authors work on testing fuzzy hypotheses and 
hypothesis testing with fuzzy observations. We classify these works in Table 1 of the Appendix.  

The distribution function of a random variable which is dependent on a fuzzy parameter 
(defuzzified distribution function) is defined in the next section. An estimator (weighted 
defuzzification-estimator) for a fuzzy parameter is also introduced in Section 2. In Section 3 we 
suggest two methods for testing crisp hypotheses when we have a fuzzy nuisance parameter by using 
a defuzzified distribution function and weighted defuzzification-estimator. Some advantages and 
disadvantages of the suggested methods are given in Section 3. Applications of the examples in 
Section 3 are given in Section 4. The Appendix contains a definition of exchangeable normal 
distribution and a proof for a theorem which is used in Section 3.  

For comparing estimators or test functions we use a Monte Carlo simulation procedure. All 
computations and plots are done using the S-PLUS software system [6].  
 

2. DEFUZZIFICATION 
 
Let X  be a continuous random variable with distribution function ( )XF x ν; , which depends on a 
fuzzy parameter ν  with the known, continuous and integrable membership function ( )m .  with the 
support { ( ) 0}S mν ν= | > .  
 
2. 1. Defuzzified distribution function 
 

Without loss of generality, we assume that the membership function m  is normalized, i.e. 

 
( ) 1

S
m dν ν =∫ .  

 
Definition 2. 1. Let X  have a distribution function depending on a fuzzy parameter ν , where ν  has 
a membership function .m  The defuzzified distribution function, DDF, of ,X  ( )X xF% , is defined as 
the mean or median of ( )XF x v;  over .m  

If we use the mean, to defuzzify ( )XF x ν; , then  
 
                                                       

 
( ) ( ) ( )X XS
x F x m dvF ν ν= ; ,∫%                                                   (2) 
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i.e. XF%  is a weighted mean of ( )XF x v; . On the other hand, in the Bayesian framework, i.e. when 
ν  is a continuous random variable with the prior density m  and ( ) ( )X XF x F xν ν ν| | = ;  is the 
conditional distribution function of X , givenν  we can calculate the marginal distribution function 

,X  XF  by (2). Therefore we use the notation of XF  instead of XF%  in (2).  
To simplify calculations of XF% , we use the definition of median in statistics. That is, we 

consider ν  as a random variable with density function ,m  and calculate ( )X xF%  by solving the 
following equation, using the distribution ( )XF x ν; ,   

 

                                  ( )
1 1( ( )) or ( ( ) ( ))
2 2X X XF x XF x P F x xF Fν ν; = ; ≤ = .% %                                   (3) 

 
The following theorem states an important property of XF% .  
 
Theorem 2. 1. XF%  is a non-decreasing function.  
 
Proof: Let 1 2x x< . For 1 2i = , , take ( )Xi ik xF= % , ( )i X iY F x ν= ; , and so  
 

1 1 2 2 1 2
1( ) ( ) and
2

P Y k P Y k Y Y≤ = ≤ = ,    ≤ .  

 
Therefore,  
 

1 1 2 2 1 2( ) ( ) ( )P Y k P Y k P Y k≤ = ≤ ≤ ≤ ,  
 
i.e. 1 2k k≤  or equivalently XF%  is non-decreasing.  

If XF% is a non-decreasing function, then ( ) lim ( )X Xt x
x tF F↑− =% % , ( ) lim ( )X Xt x

x tF F↓+ =% %  
exist and are finite. Further, ( )XF x ν;  is continuous with respect to ,x  and so 

  
( ( ) ( )) ( ( ) ( )),X XX XP F x x P F x xF Fν ν−; ≤ − = ; ≤ −% %  

 
( ( ) ( )) ( ( ) ( ))X XX XP F x x P F x xF Fν ν+; ≤ + = ; ≤ + .% %  

 
And by (3) we have  
 
                ( ( ) ( )) ( ( ) ( )) ( ( ) ( )).X X XX X XP F x x P F x x P F x xF F Fν ν ν; ≤ − = ; ≤ = ; ≤ +% % %              (4) 
 

If ( )XY F x ν= ;  has a unique median, then ( ) ( ) ( )X X Xx x xF F F− = = +% % %  by (2.3) i.e. 
( )X xF%  is continuous.  
On the other hand, ( )X xF%  is the median of random variable 0 1Y≤ ≤ , and so 0 ( ) 1X xF≤ ≤% . 

Also, by Theorem 2.1, ( )XF +∞%  and ( )XF −∞%  exist as lim ( )Xt
tF↑+∞

% , and lim ( )Xt
tF↓−∞

%  
respectively, [7]. Therefore ( )X xF%  is a distribution function if ( ) 1XF +∞ =%  and ( ) 0XF −∞ =% , 
such as the following two examples.  

 
Example 2. 1. Let X  be exponentially distributed, i.e. 
  

( ) 1 exp( ) 0XF x v x xν; = − − , > ,  
 
where ( ) 1 0 1m ν ν= , < ≤ . In this example we can calculate XF%  exactly by (3) as follows  
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Moreover,  

1( ) 1 (exp( ) 1) 0XF x x x
x

= + − − , > .  

 
Example 2. 2. Suppose that ( ) exp( ) 0m ν ν ν= − , >  in Example 2.1. In this case, 
  

( ) 1 exp( ln(1 2)) 0X x x xF = − / , > ,%  
 

1( ) 1 0
1XF x x

x
= − , > .

+
 

 
Numerical methods for calculating DDFs are introduced in [8]. In the next section we assume that F% 
is a distribution function.  
 
2. 2. Weighted defuzzification-estimator 
 

We want to estimate the fuzzy parameter by an observation vector x. In classical statistics there 
are several methods for finding estimators, but in this problem, besides the observation vector x, we 
can use the fuzzy knowledge about ν  to find a better estimator. (This is similar to Bayesian 
estimation though ν  is not a random variable.) We call such an estimator a weighted defuzzification-
estimator (WDE) for a fuzzy parameter.  

The first step to calculate a WDE for ν  is to defuzzify ν , i.e. we convert the fuzzy knowledge 
about ν  to a crisp number. There are several ways to accomplish this [9]. For example, we can use 
the mean or median of the membership function (MoM) for defuzzification of ,ν  say .ν%  

The second step is to estimate ν  by an observation vector x on the restricted parameter space, 
i.e. .S  For example, we can use the maximum likelihood estimator (MLE) of ν , say ν̂ . The final 
step is combining the results of the two previous steps. We can use a weighted mean for combining ν% 
and ν̂  as follows:  

 
                                                     ˆ(1 ) 0 1w w w wν ν ν= + − , ≤ ≤ ,%                                                 (5) 

 
and one of the intuitive choices for the weight w  is  
 

ˆ( ) ( )1
ˆ ˆ( ) ( ) ( ) ( )

m m
w w

m m m m

ν ν
ν ν ν ν

= , − = .
+ +
%

% %
 

 
We call wν  a WDE for the fuzzy parameter ν . Therefore we can define the WDE as follows:  

 
Definition 2. 2. A WDE for a fuzzy parameter is a convex combination of a defuzzification and an 
estimator for this fuzzy parameter such as (5).  
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There are some interesting properties of the WDE’s as follow, which can be easily shown:  
1. If { },S ν=  i.e. ν  is a known parameter, then wν ν= .  
2. If ,ν ν=%  and ˆEν ν=  then wEν ν= , i.e. WDE is an unbiased estimator for ν .  
3. If ( ) 0m ν ≠%  then ˆ( ) ( )wVar Varν ν< .  
4. WDE is a range preserver estimator, i.e. .w Sν ∈   
5. WDE is a sufficient statistic for .ν  
6. WDE depends on the sample only through a minimal sufficient statistic.  
7. WDE does not depend on the sampling plan.  
8. WDE attains the Cramer-Rao lower bound for estimating its expectation.  
We recall that a MLE has the properties 4-8, and a Bayes estimator has property 6, [10].  

In the following examples we compare the mean squared error (MSE) of a classical estimator 
with a WDE.  
 
Example 2. 3. Let ( 1 )nEN µ ρ, ,X : , where ρ  is unknown and µ  is a fuzzy parameter. Consider 
the following membership functions: 
  

0 1
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which are linear, parabolic, and hyperbolic respectively with zero MoM (see Fig. 1).  

If we calculate the WDE of µ  by using the MoM and MLE we have 
  

1(1 )
1 ( )jw j j

j

w X w j l p h
m X

µ = − , = , = , , .
+

 

 
It is easy to prove that the MSE for X  is given by 1 ( 1)n

n
ρ+ − . Calculation of the exact MSE for 

WDEs is not easy, but it can be approximated. Figure 2 shows the MSEs for WDEs with ,lm  pm  
and hm  as functions of µ  for 0 2 0 8ρ = . , . ,  and different sample sizes. We also plot the exact MSE 
of X  in Fig. 2. We see that when ρ  is large, the WDEs for µ  are much better than X , and the 
differences among WDEs are due to the shapes of the membership functions. 
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Fig. 1. Graphs of ( )im i l p hµ , = , ,  in Example 2.3 
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Fig. 2. The MSE for MLE and WDEs in Example 2.3, left: 0 2ρ = . , right: 0 8ρ = . .  We use the following 
abbreviation: mse: MSE of the MLE; mse_j: MSE of the WDE when we use 

 the membership function m ( )j j l p h. , = , ,  
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Example 2. 4. Let ( 1 )nEN µ ρ, ,X : , where µ  is unknown and ρ  is a fuzzy parameter. Consider 
the following membership function s (Fig. 3): 
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Fig. 3. Graphs of ( ) 1 2 3im iρ , = , ,  in Example 2.4 
 

We can approximate the MSE for WDEs and MLE of ρ . Note that in this case the value of µ  
does not have any effect on MLE or WDEs of ρ , therefore we assume that 0µ = . Figure 4 shows 
the MSEs for 5 25n = , . We see that the WDE based on 3m  is better than the other WDEs and MLE. 
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Fig. 4. The MSE for MLE and WDEs in Example 2.4. We use the following abbreviation: mse: MSE of the 

MLE; mse_i: MSE of the WDE when we use the membership function m ( ) 1 2 3i i. , = , ,  

 
3. HYPOTHESIS TESTING 

 
Let x be an n -dimensional observation vector from a distribution with two unknown parameters, θ  
and ν . We want to test the hypotheses 
  

                                          0 0
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1 1
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

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: ∈Θ
, Θ ∩ Θ = ∅, Θ ∪ Θ = Θ,

: ∈Θ
                                        (6) 

 
where Θ  is the parameter space of θ . In some cases, there is no best test function for (6), however 
when ν  is a known parameter (similar to Example 1.2), the main test function can be obtained. We 
denote this test function by  
 

                                                                
1

( )
0

C

C
ν

ν
ν

φ
∈ ,

=  ∈ ,/

x
x

x
                                                           (7) 

 
where Cν  is the critical region for a given value of ν . The type I  error is given by  
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0 0 0 0sup ( ( ) 1) ( ( ) 1)P Pθ θ ν θ να φ φ θ∈Θ= = = = , ∈Θ ,X X  
 
where 0Θ  is the boundary of 0Θ  and Pθ  is the probability function with parameter θ .  

Consider the cases where there is no best test function for (6). In this section we answer the 
following question:  

How can we use the fuzzy knowledge about the nuisance parameter ν  for testing hypotheses 
(6)? 

If ν  is an unknown parameter then we cannot make a decision by test function (7) for testing 
hypotheses (6). We suggest the following procedure for testing (6). If we calculate a WDE for ν , i.e., 

wν  and insert it in νφ , then we have a test function 
wνφ , which does not depend on the unknown 

parameter. But the size of this test may not be equal to α . Hence we should find a new critical region 

w
Cν

′  such that  
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X x
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where (8) should be calculated by the DDF of a function of X . In the following examples we 
describe this method of hypothesis testing. 
 
Example 3. 1. Suppose we want to test 
  

0

1

0
0

H

H

µ
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: =
, : ≠
 

 
in Example 2.4. The best test is given by 3φ  in Example 1.2, when ρ  is a crisp known parameter. If 
ρ  is a fuzzy parameter with membership function 1m , then the test function with our suggested 
method is given by  

1

1
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3 1
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| |≥

+ −
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 | |< + −
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where 

1wρ  is the WDE of ρ  based on membership function 1m , and 1nk ,  can be approximated by 
  

1

1( ) 1
1 ( 1)Y n

w

n X
F k Y

n
α

ρ, = − , = ,
+ −

 

 
(DDF of Y  based on mean). Figure 5 shows the exact power function for 3φ  with 0 5ρ = .  and the 
approximated power function for 3 1φ , , when 0 05α = . . Note that 3 1φ ,  is very close to 3φ . This is due 
to the fact that MLE, and hence WDE, does not depend on µ  and the WDE of ρ  is very close to the 
real value of ρ .  
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Fig. 5. The power functions for 3φ , and 3 1φ ,  for 25n = , when 0 05α = . . We use the following abbreviation:  

phi_3: power function of 3φ , when 0 5ρ = . ; phi_3,1: power function of 3 1φ ,  
 
Example 3. 2. Let 2( )nEN µ σ ρ, ,X : , where 2σ  and ρ  are unknown crisp parameters, and µ  is a 
fuzzy parameter. Consider the membership functions in Example 2.3, for µ . We want to test 
  

                                                                   0

1

0
0

H

H

ρ

ρ

: = ,
 : > .

                                                                     (9) 

 
The following test function is the best when µ  is known (see the Appendix):  
 

1 ( 1 1 )
2( )

0 ( 1 1 )
2

x
t n

s n
x

t n
s n

µ

µ α

φ
µ α

− | |≥ − , − , /=  − | |< − , − .
 /

x  

 
The test functions with our suggested method are given by  
 

1

( )

0

j

w j

j

w

n j

w

n j

x
k

s n
j l p h

x
k

s n

µ

µ

φ
µ

,

,

 −
≥

/
= = , , ,

− < , /

x  

 
where 

jwµ  is the WDE for µ  by using membership functions, jm , j l p h= , , , and n jk ,  can be 
approximated by  
 

( ) 1 or ( ) 1 j

jj

w

YY n j n j j

X
F k k Y j l p hF

S n

µ
α α, ,

−
= − , = − , = , = , , ,

/
%  

 
(DDF based on mean or median respectively). We approximate the critical values for 2 1σ =  
and 0 05α = . . Figure 6 shows the power functions of

w j
j l p hµφ , = , , , (calculated by using 

jYF ) for 
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different sample sizes. In Fig. 7 we plot the power function 
w l

µφ  based on 
lYF  and

lYF% . We also plot 
the exact power function of µφ  when 0µ =  in Figs. 6 and 7.  

In the case that 2n =  (Fig. 7) the calculated power function based on 
lYF%  dominate the 

calculated power function based on 
lYF  for 0 2ρ > . . This is due to the fact that the distribution of the 

test function is heavy tailed (when µ  is known the test function has Cauchy distribution) and the 
median is robust with respect to outlier probabilities.  

Note that if µ  is unknown, there is no best test function for testing (9). (See the Appendix, and 
[3].) If  

 
1 0

( )
0 0

m
µ

µ
µ

=
= , ≠

 

 
then the test function for testing (9) is equal to µφ , i.e. the suggested method gives the ordinary test 
function. This is the main reason that the power function of µφ  dominates the other power functions. 
The power function of 

w p
µφ  is lower than the other power functions in Fig. 6. This is due to the fact 

that, the vagueness of pm  (about µ ) is more than the other membership functions. In Fig. 6 we show 
that  
 

( ( ) 1 ) ( ( ) 1 ) ( ( ) 1 ) ( ( ) 1 0)
w w wp l h

P P P Pρ µ ρ µ ρ µ ρ µφ µ φ µ φ µ φ µ= ; ≤ = ; ≤ = ; ≤ = ; = .X X X X  
 

Of course, it is not easy to prove this result. But we can prove the following theorem. 
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Fig.6. The power functions for 0µφ = , and 

w j
j l p hµφ , = , , , for 5 10 25n = , , , when 0 05α = . . We use the 

following abbreviation: phi: power function of 0µφ = ; phi_j: power function of
w j

j l p hµφ , = , ,  
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Fig.7. The power functions for 0µφ = , and 
w l

µφ  (by using two methods of DDF),  
for 2 5n = , , when 0 05α = .  

 
Theorem 3. 2. Consider testing (6), based on an n - dimensional observation vector x  with density 
function ( )f ν;x . The test function (7) is of size α  when ν  is known, and (8) is of size α  when ν  
is a fuzzy parameter with known membership function m  on the support .S  Suppose there exists 

0 Sν ∈  such that 
0w

C Cν ν
′ ⊆  and 0 1( ) ( ) .f f Sν ν θ ν; ≤ ; , ∀ ∈Θ , ∀ ∈x x  Then the power function of 

0νφ  dominates the power function of 
wνφ  on 1Θ .  

 
Proof: We will prove the theorem for the case that ( )f ν x  and ( )m ν  are continuous functions. The 
proof for the discrete case can be accomplished by replacing integrals with sums. The power function 
of 

wνφ  is equal to:  
 

0
1

0 1

( ( ) 1) ( )
( ( ) 1 )

( )

( ) ( ) ( )

( )

( ) ( ) ( )

( )

( ) ( ) ( )

( )

( ) ( )

w

w

n w

n w

n w

n w

S

S

S

S

S

S

S

S

P m d
P

m d

f m d d

m d

f m d d

m d

f m d d

m d

f d

ν

ν

ν

ν

ν

ν

φ ν ν
φ ν

ν ν

φ ν ν ν

ν ν

φ ν ν ν

ν ν

φ ν ν ν
θ

ν ν

φ ν θ

=
= ; =

;
=

;
=

;
≤ , ∈Θ

= ; , ∈Θ .

∫
∫

∫ ∫
∫

∫ ∫
∫

∫ ∫
∫

∫

R

R

R

R

X
X

x x x

x x x

x x x

x x x

 

 
But 

0w
C Cν ν

′ ⊆  and so
0

( ) ( )
w

n
ν νφ φ≤ , ∀ ∈x x x R . Therefore,  
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0

0

0 1

1

( ( ) 1 ) ( ) ( )

( ( ) 1)
nw

P f d

P

ν ν

ν

φ ν φ ν θ

φ θ

= ; ≤ ; , ∈Θ

= = , ∈Θ .
∫R

X x x x

X
 

 
Example 3. 3. Let 2( )X N µ σ,: , where 2σ  is a fuzzy parameter with membership function 
  

2

2 2

2 1
3
1( ) 4
3
0 otherwise

m

σ

σ σ

 =

= = .




 

 

Consider testing 0

1

0
0

H

H

µ

µ

: ≥
. : <
 If 2σ  is known, then the family of normal distribution has a 

MLR (Monotone Likelihood Ratio) property (Fig. 8) and according to the Karlin-Robin theorem [11]  
 

2

1
( )

0

x
z

x
x

z

α

σ

α

σφ

σ











<
= ,

>
 

 

is the best (UMP) of size α  test function (If 2σ  is unknown, then the best test does not exist). 

2

1
( )

0w

x k
x

x kσ
φ

<
=  >

 is a test function with our suggested method, where 2
wσ  is the WDE for 

2 ,σ  and k  can be calculated exactly from 2
2( ( ) 1 ) .

w
P X

σ
φ σ α= ; =  For example 2 2784k = − .  

when 0 05α = . . The assumptions of Theorem 3.2 hold in this example for 2 1σ = . Therefore, for 

0µ ≤   
 

2

2

2

1

2 1( ( ) 1 ) ( ) ( )
3 3 2
( ( ) 1)

( )

w

k
P X k

P X

z

σ

σ

α

µ
φ σ µ

φ

µ
=

−
= ; = Φ − + Φ

≤ =

= Φ − ,

 

 
where ( )Φ .  is the standard normal distribution function, and ( )z α αΦ = . Figure 8 shows these 
power functions.  

Note that if 2σ  is a random variable with density m  (and 2 2| ( )X Nσ µ σ,: ), then the density 
of X  is given by  

 
2 1 1( ) ( ) ( )
3 3 2 2X

x
f x x

µ
ϕ µ ϕ

−
= − + ,  

 

where ( )ϕ .  is the standard normal density function. In this case the family of X  does not have a 

MLR property (Fig. 8), thus the Karlin-Robin theorem for finding the UMP test cannot be used. But 
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for simple hypotheses, for example 0

1

0
1

H

H

µ
µ

: =
, : = −
 there exists an MP test. That is, the best test is 

given by the Neyman-Pearson lemma as follows  
 

2 1 1 1
3 3 2 2

2 1 1
3 3 2 2

2 1 1 1
3 3 2 2

2 1 1
3 3 2 2

( 1) ( )1
( ) ( )

( )
( 1) ( )0

( ) ( )

x

x

NP x

x

x
k

x
x

x
k

x

ϕ ϕ
ϕ ϕ

φ
ϕ ϕ

ϕ ϕ

+

+

+ + > , +=  + + < ,
 +

 

 
where 2 94k = .  for 0 05α = .  and its power is equal to 0.157, but with our suggested method, is 
equal to 0.154. These are the advantages and disadvantages of our methods. But we point out the fact 
that: In real applied problems the nuisance parameter is either random or non-random, and so we 
should apply the corresponding methods of hypothesis testing in each case. 

The suggested method for hypothesis testing has two restrictions: first, it may not exist (because 
WDE may not exist), and we cannot warrant its efficiency, except by plotting the power function 
(because WDE may not be a good estimator). In these cases we suggest the following method for 
hypothesis testing when we have fuzzy knowledge about a nuisance parameter.  

In Section 2.1, we showed that DDF, ,F%  is a distribution function under a few conditions. If 
DDF depends on some unknown parameters, we can apply classical methods in statistics to do 
inference about unknown parameters. We can easily extend the well known theorems such as the 
Karlin-Robin theorem to the cases when we have fuzzy knowledge about an unknown parameter. The 
following result states the Neyman-Pearson lemma. 
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Fig. 8. Top: ( 1)
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ϕ
+= . Middle: The power functions for 2 1σ
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φ , when 0 05α = . . We use the 

following abbreviation: phi_sigma^2: power function of 2 1σ
φ

=
; phi_sigma^2_w: power 
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Lemma 3. 1. Consider testing  
 

                                                                   0 0

1 1

H

H

θ θ

θ θ

: = ,
 : = ,

                                                                  (10) 

 
where θ  is an unknown parameter of XF%  (DDF of random variable )X  and 0θ , 1θ  are fixed 
known numbers. If XF%  does not depend on unknown parameters under 0H , 1H , then 
  

                                         
1 0

1 0

( ) ( )1 | |
( )

( ) ( )0 | |

X X

X X

d x d xF Fk
dx dxx

d x d xF Fk
dx dx

θ θ θ θ

θ θ θ θ

φ
= =

= =

 > ,= 
 < ,


% %

% %
                                        (11) 

 
for some 0k ≥  is an MP test of its size, say α , for testing (3.5).  
 
Proof: Take ( )( ) Xd xF

X dxxf = %% . ( )X xf%  is a continuous density function which is not dependent on 
the unknown parameter θ  under 0H , 1H . Therefore by the Neyman-Pearson lemma, (11) is an MP 
test of its size for testing (10) [12].  

The following example shows that, the power functions of a test function with fuzzy and random 
nuisance parameters are different, and the answer in the fuzzy case is much better. 
 
Example 3. 4. Let 2( )X N µ σ,: , where σ  is a fuzzy parameter with uniform or exponential 
membership function (were defined in Examples 2.1 and 2.2, respectively). Consider testing 
  

0

1

0
0

H

H

µ

µ

: = ,
 : < ,

 

 
based on an observation x  from X . If σ  is known, then  
 

                                                             
1

( )
0

x k
x

x kσφ
< ,

=  > ,
                                                        (12) 

 
is the best test of size α , where k z ασ= . In the case that σ  is a fuzzy parameter, k  should be 
calculated from ( )X kF α=% , where ( )X xF%  is a DDF of X . 

Figure 9 shows the graphs of power functions of the test function (12), when the standard 
deviation of X  is a fuzzy parameter with a uniform membership function (top) and an exponential 
membership function (below) for 0 05α = . . We also plot the graphs of the power function σφ  for 

0 4 1σ = . ,  (fixed standard deviation). The graphs show that the test by using DDF based on the 
median is much better than the test by using DDF based on the mean. The result is interesting, 
because in the Bayesian framework, i.e., when σ  is a random variable with uniform or exponential 
prior density function, the graph of the power function of (12) is the same as the test function in the 
fuzzy case when we use DDF based on the mean.  
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Fig. 9. Graphs of power functions for testing mean, µ  in a Normal distribution, with fixed, random 

 (fuzzy, DDF based on mean), and fuzzy standard deviation,σ , when 0 05α = .  
 

4. APPLICATIONS AND CONCLUSIONS 
 
We have shown in this work that we can use fuzzy knowledge about a nuisance parameter in classical 
statistics for testing hypotheses. We introduced two methods of hypothesis testing based on a 
definition for the distribution function of a random variable with a fuzzy parameter (called DDF) and 
estimation of a fuzzy parameter (called WDE). These methods of hypothesis testing enable us to 
study some of the problems which cannot be studied in classical statistics by a parametric method. 
Example 3.1 was concerned with the problem of hypothesis testing for the mean of an exchangeable 
normal population. This problem was an open problem [5]. In Example 3.2 we presented a parametric 
solution for testing the independence assumption versus the exchangeability assumption for normal 
distribution. This problem was also an open problem in linear models [3], time series [13] (for 
checking error terms), and quality control [13]. Note that, the non-parametric tests for these problems 
are not robust and cannot be used in many real problems [13, 4].  

We showed a few properties of suggested methods in Theorems 3.1, and 3.2. Some advantages 
and disadvantages of our suggested methods, with respect to the classical and Bayesian framework 
for hypothesis testing, were given in Examples 3.2, 3.3, and 3.4. Moreover, it is shown that the result 
of our method was not necessarily the same as other methods.  
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 APPENDIX 
 

The random vector 1( )nX X ′= , ,X L  is said to have an exchangeable normal distribution if its 
distribution is multivariate normal with the following mean vector and variance-covariance matrix 
[14]. 
 

2

1

1
1

0 [0 1),

1
n n n

µ ρ ρ
µ ρ ρ

µ σ σ ρ

µ ρ ρ
× ×

   
   
   , − ∞ < < ∞, , > , ∈ ,
   . . . .
   
   

L

L

L

L

 

 
We denote this exchangeable normal distribution with three parameters 2µ σ, ,  and ρ  by 

2( )nEN µ σ ρ, , . It is clear that 1( )nX X, ,L  and 
1

( )
ni iX X, ,L  are identical in distribution for any 

permutation 1{ }ni i, ,L  of {1 }n, ,L . In the following theorem we prove that the test ( )µφ .  in 
Example 3.2 is the best. (The proof for 3φ  and 4φ  is not difficult.)  
 
Theorem: If 1( )nX X ′= , ,X L  has the distribution 2( )nEN µ σ ρ, , , then the test ( )µφ .  is an 
UMPUT for (3.4) and if µ  is unknown then there is no UMPUT for (3.4). 
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Proof: Without loss of generality assume that 0µ = . First, consider the case 2n = . In this case the 
joint density of 1 2( )X X ′= ,X  is given by 
  

2 2 1 2 2
1 2 1 22 2

2 2 1 2 2
1 2 1 22 2 2 2

1 2 1 1 2 2

1( ) (2 1 ) exp{ ( 2 )}
2(1 )

1(2 1 ) exp{ ( )}
(1 ) 2(1 )

( ) exp{ }

f x x x x

x x x x

k t t

πσ ρ ρ
ρ σ

ρ
πσ ρ

ρ σ ρ σ
θ θ θ θ

−

−

−
= − + −

−

= − − +
− −

= , + ,

X x

 

 

where 2 21 (1 )
ρ

ρ σ
θ

−
= , 1 1 2t x x= , 2 2

1
2 2(1 )ρ σ

θ −
−

= , 2 2
2 1 2t x x= + , and 1 2( )k θ θ,  is a function of 1θ , 2θ . 

Now, we can apply Theorem 3 [12]. The test function 1 2( )t tφ ,  given by 1 2
1 2

1 2

1 ( )
( )

0 ( )
t c t

t t
t c t

φ
>

, =  <
 

is an UMPUT for testing 0 1

1 1

0
,

0

H

H

θ

θ

∗

∗

 : =


: >
 where 2( )c t  is chosen such that 

1 0 1 2 2 2( ( ) | )P T c T T tθ α= > = = .  But 0 1

1 1

0

0

H

H

θ

θ

∗

∗

 : =


: >

 is equivalent to 0

1

0
,

0
H

H

ρ

ρ

: =
 : >

 and on the boundary of 

0H ∗ , 1H ∗  (or 0H , 1H ) i.e. 1 0θ =  (or 0ρ = ), 2T  is a complete sufficient statistic for 2σ . If we 

define T ′  by 
  

1 2

2 2
1 2

2

22 2 2
1 2 1 2 1 2 1 2

2 2 2 2
2 1 2 1 2

( )2 2 ( ) X X

X X

T T X X X X X X
T

T X X X X
σ σ

σ

′

+

++ + + +
= = = = ,

+ +
 

 
then it is an ancillary, and as a result independent from 2T . Therefore,  
 

1 1

1

0 1 2 2 2 0 1 2 2 2
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P T c T T t P T c T T t
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θ θ

θ

′
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′
=
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where 2 2

2

2 ( )
1 2( ) c T T

Tc T +=  and 2 1 2( )c c t=  is a constant to be determined for given α . Hence  
 

1 2
2

2
1 2
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2
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21
( )

20

t t
c

t
t t

t t
c

t

φ

+ > ,, =  + < ,


 

 
where 2c  may be chosen so that 

1 0 2( )P T cθ α′
= > = . This test is, in fact, the usual t -test, more often 

written in the form 
  

1
( )

0

x
c

s n
x

c
s n

φ

′

′

| | > , /=  | | < ,
 /
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where 2n = , 1 22t t

nx +| |= , 2 2 2
21

( ) ( 1) ( ) ( 1)n

ii
s x x n t n nx=

= − / − = − / −∑ [15]. With 

2( 1 1 )c t n α′ = − ; − , the test function ( )φ x  is an UMPU size-α  test for testing 0

1

0
.

0
H

H

ρ

ρ

: =
 : >

  

When 2n > , the proof is similar to the above proof. In this case by simple algebraic 
calculations or by using an orthogonal transformation, we can show that the density of 

1( )nX X ′= ,X L  is  
 

 

2
2

2 1 1
2 2

22
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2 2

( )1( ) ( ) exp{ [ ]}
2 (1 ) (1 ( 1) )(1 )
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where 2 ( 1) 2 1 2( ) ( 2 ) (1 ) (1 ( 1) )n n

nk nρ σ πσ ρ ρ− − − / − /, = − + − .   
Note that, 2 2

1
( ) (2 )n

i j ii j i
n x x x x n

< =
= + /∑ ∑ . Therefore,  

 

1 2 1 1 2 2( ) ( ) exp{ }nf k t tθ θ θ θ′= , + ,X x  
 
where 2

1 (1 ( 1) )(1 )nθ ρ σ ρ ρ= / + − − , 1 i ji j
t x x

<
= ∑ , 2

2 1

n

ii
t x

=
= ∑ , 1 2( )nk θ θ′ ,  is a function of 

1θ , 2θ , and 2θ  can be determined. The rest of this case is similar to the case 2n = . Therefore, µφ  is 
an UMPUT for (3.4).  

If µ  and 2σ  are both unknown we have a trivial UMPUT for ρ . To prove this fact we observe 
that 

  
1 2 3 1 1 2 2 3 3( ) ( ) exp{ }nf q t t tθ θ θ θ θ θ= , , + + ,X x  

 

where 1 lθ ρ= / , 1 i ji j
t x x
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= ∑ , 3 (1 ) lθ ρ µ= − / , 

3 1

n

ii
t x

=
= ∑ , 2 (1 ( 1) )(1 )l nσ ρ ρ= + − − , and 1 2 3( )nq θ θ θ, ,  can be determined. Therefore the test 

function 1 2( )t tφ ,  (in the first part of the proof) given by 1 2 3
1 2 3

1 2 3

1 ( )
( )

0 ( )
t c t t

t t t
t c t t

φ
> ,
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 where 2 3( )c t t,  is chosen such that 
  

1 0 1 2 3 2 2 3 3( ( ) | )P T c T T T t T tθ α= > , = , = = .  
 
But note that 2

1 3 2( ) 2T T T= − / , and so the event 1 2 3{ ( )}T c T T> ,  depends on 2T  and 3T . Therefore, 
we have  
 

1

1 2 3
0 1 2 3 2 2 3 3

1 2 3

1 ( )
( ( ) | )

0 ( )
t c t t

P T c T T T t T t
t c t tθ =

> ,
> , = , = = , < ,

 

 
which is equal to 1 2 3( )t t tφ , , . (Note that if we use the method in the first part of the proof, then we 
obtain a similar result.)  
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Table 1. Trends on hypothesis testing for fixed sample size 
 

 Crisp Observations Fuzzy Observations 
Crisp 

Hypotheses in 
Classical 

Framework 

… 
Fisher (1925) [16] 
Neyman & Pearson (1933) [17] 
… 

Casals et al. (1986,1989) [27, 28]   
Gil & Casals (1988) [29]   
Bandemer & Näther (1992) [30]   
Filzmoser & Viertl (2003) [31]   

Fuzzy 
Hypotheses in 

Classical 
Framework 

Watanabe & Imaizumi (1993) [18] 
Arnold (1995,1996,1998) [19, 20, 21] 
Taheri & Behboodian (1999) [22] 
Arnold & Gerke (2003) [23] 

Saade & Schwarzlander (1990) [32]   
Saade (1994) [33]   
Kang et al. (2001) [34]   
Grzegorzewski (2002) [35]   

Crisp 
Hypotheses in 

Bayesian 
Framework 

... 
Box & Tiao (1973) [24] 
Cox & Hinkley (1974) [11] 
… 

Casals et al. (1986) [36]   
Frühwirth-Schnatter (1993) [37]   

Fuzzy 
Hypotheses in 

Bayesian 
Framework 

Delgado et al. (1985) [25] 
Taheri & Behboodian (2001) [26] 
 

Casals & Gil (1990) [38]  
Casals (1993) [39]    
Taheri & Behboodian (2002) [40]   
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