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Abstract — The aim of this paper is to study orders over a valuation ring ¥ with arbitrary rank in a
central simple F-algebra Q. The relation between all of the orders is explained with a diagram. It is then
shown that inside Bezout order, extremal V-orders are precisely semi-hereditary. In the last section, the
effect of Henselization on maximal and semi-hereditary orders is examined.
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1. INTRODUCTION

In this paper, all rings are associative with a multiplicative unit and all modules are unitary. If 4 is a
ring, J(4) will denote its Jacobson radical, U(4) its group of units, Z(4) its center, 4* its set of
nonzero divisors, and M,(4) the ring of n X nmatrices over 4. The residue ring 4/J(A) will be
denoted by A . And 0 denotes a simple artinianring with finite dimension over its center Z(Q), while
D denotes a division ring.

In the second section we briefly discuss some of the ring theoretic properties and definitions.

In the third section we will see‘that semihereditary V-orders are extremal V-orders and obtain a
diagram of maximal V-orders when V is a Henselian valuation ring.

In the fourth section we show that inside Bezout orders, extremal V-orders are precisely
semihereditary, which is a generalization of Proposition 2.1 of [1].

In the last section we will examine the effect of Henselization on maximal and semihereditary
orders.

2. DEFINITION AND PRELIMINARIES

In this paper £ denotes a field and Q is a central simple F-Algebra, i.e., Q is a F-Algebra with
[Q:F]<o0 and F=Z(Q).

The most successful extension of the classical valuation theory on F to Q is the one introduced
by Dubrovin in [2] and [3].

Definition 2. 1. A subring B of a central simple F-algebra Q is called a Dubrovin valuation ring in O
if

(1) B has an ideal M such that B/M is a simple artinian ring and

(2) For each g € Q\B there exist b, a € B such that bq, ga € B\M.
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The following properties of Dubrovin valuation rings were proved by Dubrovin in [2, 3].
1) The two sided ideals of B are totally ordered by inclusion, where two sided ideals are a B-
bimodule of Q. Therefore we have M=J(B)
ii) Each finitely generated left (resp, right) ideal of B is principal.
iii)(a) Let V" be a valuation ring of F, then there exists a Dubrovin valuation ring of B in Q such that
BN F=V, [2-4].
(b) If B, and B’ are two Dubrovin valuation rings of Q extending ¥, then B ’=dBd" for some de Q* [5,
6].
Therefore, for every valuation ring V of F=Z((), there is a unique (up to conjugate) associated
Dubrovin valuation ring B of Q. It is reasonable to expect that B will carry much information about
the arithmetic of Q in relation to V, (see [7] Theorem 3.4 and [8] Theorem 3.7).

Definition 2. 2. Let QO be a finite-dimensional F-Algebra and V a ring with quotient field F. A subring

R of Q is said to be an order in Q if RF=Q. If V=Z(R), then R is.said to be a V-order if, in addition, R

is integral over V. If R is maximal with respect to inclusion among V-order of Q, then R is said to be a

maximal order over V.

a) In the case V is a discrete valuation ring, then by ([9], 18.6 and 18.2) any V-order in a central
simple F-algebra is a finite V-module, so for such ¥, Definition 2.2 agrees with the usual one, as
in [10].

b) In this paper we assume V' is a commutative valuation ring in F of arbitrary Krull-dimension. The
integrality hypothesis in the above definition is used to guarantee the existence of maximal orders
for any Q and V. But finitely generated maximal V-orders need not exist, (see [7] Proposition 2.3).

c) Let V be a valuation ring of a field. , and Q a central simple F-Algebra. If B is an integral
Dubrovin extension of V' to Q (i.e., B is a Dubrovin valuation ring of Q such that B is integral over
Vand V=B() F) then B is a maximal-¥-order (by Example 2.2 [7]).

Definition 2. 3. A ring Ras said to be extremal if for every overring S such that J(R) = J(S) we have
S=R. If S is an overring of R, we say that R is extremal in S if R is extremal among all subrings of S.
A V-order R is said to be an extremal V-order (or just extremal when the context is clear) if it is
extremal among all V-orders in Q.

Definition 2.4. A ring R is said to right (resp left) Bezout if every finitely generated right (left) ideal
is principal. It is called' Bezout if it is both right and left Bezout.

If V is a valuation ring, then there exists a Bezout V-order B in Q and each Bezout V-order is a
maximal order by ([7] Theorem 3.4), and if B, and B’ are two Bezout V-orders, then B, and B’ are
conjugate (by Theorem 6.12 [4]).

Definition 2. 5. A ring R is said to be right semihereditary (resp right hereditary) if every finitely
generated right ideal (resp every right ideal) is projective as a right R-module. A ring is said to be
semihereditary (resp hereditary) if it is both left and right semihereditary (resp hereditary).

a) If 7 be Dedekind domain with quotient field F" and Q is a central simple F-Algebra, where
0= M,(D) and D is a division ring with center F, then R is a hereditary V-order if and only if R is an
extremal (see 39.14 [10]).

b) Let V' be a valuation ring of F'=Z(Q) and Q a central simple F-Algebra. J.S. Kauta proved that
every semihereditary V-Order is extremal (see Theorem 1.5 [11]), but the converse is not true. If /' is
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a field, Q=M,(F), V, is a discrete valuation ring of dimension #, and R is a maximal V,-order in Q,
then there are three possibilities for the isomorphism class of R.
(1)R= Mx(V,,), where V,, is the overring of ¥, of dimension m. In this case R is a Bezout.

v, JW,)
2Q)R= v , Where m<p. In this case R is semihereditary, but not Bezout.
P m

(3)R is primary (i.e., J(R) is a maximal ideal of R) but not Bezout (see [7], Theorem 5.7). Let R be
maximal V-order in M,(F) which is primary, but not Bezout. Such an order cannot be semihereditary,
since any primary semihereditary order is a Dubrovin valuation ring ([3]: Theorem 4), and hence
Bezout.

3. MAXIMAL ORDERS OVER HENSELIAN VALUATION RINGS

In this section D always means a finite dimensional algebra with eenter /. A subring B of D is said to
be a total valuation ring in D if d€ B or d” € B for all nonzero deD.

We recall that a valuation ring V' in a field F is Henselian when'Hensel’s Lemma holds for V i.e.,
for every monic polynomial fe V/x], if its image ]_” € I7[x] , Where I7=V/J( V) has a factorization
f= §}~z on V [x] with §J~z monic and gcd (§J7 )=1, then~there exist monic g,heV[x]
with /' = gh,g =g and h = h , where g and /1 are images g and / respectively.

There are several other equivalent characterizations. of the Henselian valuation ring, but the most
relevant here is the following.

A valuation ring V in a field F is Henselian if ¥ has'a unique extension to each field F < K with
K algebraic over F (see [9] Coro.16.6 for a proof):

Now let D be a division algebra finite dimensional over its center Z(D)=F, and } a Henselian
valuation ring of F. Schilling ([12] P.53, Theorem 9) proved that the integral closure V' in D forms a
ring B. The ring B is a total valuation'ring of V' and by ([13], Theorem 1) and B is the unique
extension ¥ to D. Therefore B is an invariant valuation ring of D (i.e., dBd'=B for any d € D*).

Theorem 3. 1. Let D be a division algebra admitting a total valuation ring extending V. Then the
integral closure of V in'D is the unique extremal V-order (and hence the unique semihereditary V-
order) in D.

Proof: By ([14]: Lemma 2) V has only a finite number of extensions to D. If B,,...,B, are all the
extensions of ¥, then B; and B; are conjugate for all 7,j by ([14]: Theorem 2). Let T=Intp(V) be the
integral closure of V' in D. Then T= ﬁBl. by ([14]: Theorem 3). Let R be an extremal V-order.

Then R T, because R is integrlal over V. But both R and J(B;) contain J(V). Hence for each i,
1% J(B)NR) is finite dimensional over V/J(V). But one has the embedding % J(B)NR) — B/J(B)
and [B/J(B): V/J(V)]<[D:F]<oo by ([14]: Lemma 3). It follows that %J(B,-)QR) is division
algebra, and hence J(B,) [\ R is a maximal ideal of R. Hence, J(R) = J(B;) [\ R.

Let xe mJ(Bl.)and a,beJ(T). Then I-axbe U(B;) for all i, and thus /-axbe U(T). Therefore
xeJ(). Hencie J(R) < ﬂJ(Bi) c J(T). Since R is extremal, we must have R=T.
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On the other hand, 7 is a Bezout V-order by ([7]: Theorem 3.4) and every such 7 is a

semihereditary V-order in D.

Corollary 3. 2. Let V' be a valuation ring of F, and D suppose admits and invariant valuation ring B
extending V. Then B is the unique extremal (and hence the unique semihereditary) V-order in D.

Proof: Since the extensions of /' to D are conjugate, B is the unique extension of V' to D. So the
corollary follows from Theorem 3.1.

In the rest of the section we assume V' to be a Henselian valuation ring of F, and D be a finite
dimensional division algebra over its center Z(D)=F.

Let B be the unique extension of ¥ to D, and let 5 be the set of-all nonzero B-submodules of D.
Then £ is totally ordered. For if 7 and J are two B-submodules of D such that /J, there exists an
a€l-J. Thenifbel, then ab” & B; thus ba™ € B, and hence be BacI=JC 1.

Definition 3. 3. Let / be a B-submodule of D. We define I’ to-be{d € D: dIC B}.

[B,B, b B,
B, ,,B,B; .., B,,

Definition 3. 4. Let 0=M,(D). An order R=| =~~~ is said to be of type ® H if
Bn,l 7Bn,2 ""Bn,nfl ’B

i) Bjep.

ii) If d¢ B, ), then d” € B;; for alld# 0&D. (Morandi’s condition).
iii) B, ;B; s B,.,, for all 1 <rs,j<n.

We denote R by (B;;)

Lemma 3. 5. (2) R is a ring and RF=RD=Q, i.e., R is an order.
(b), Bi,nggBj,i or B],ngBl] for all l,]

Proof: (a) by (iii) R is a ring, because B;;# 0 for all i,j, therefore RF=RD=0.
For (b) since £ 1s totally ordered, we have B;; B or BC B;;. If B;;C B, then 1 & B;;, and hence, 1 € B;
by (ii). Thus B=BI/c B;; and so B;;C BCB;,.

If BC B, then B;;B;; = B;;=B=>B,;,= B;;] C B, and hence B;,C BC B,

Lemma 3. 6. (Morandi) Let =M, (D) and R=(B;;). Then xR is projective as a R-module for all xe Q.

Proof: We first suppose xR is projective for all x € e;;R for any i. We prove xR is projective for any x
(where e;; is matrix nxn with 1 in (3,7) entry and zero in the others). We do this by showing that exR
is projective, where e=e; +e,,+...te;;. We use induction on i, the case i=1 is true by assumption
(because if x=(d;;) then xe; ;R=(xe; )R, and since xe;;=d; e;; and d; ;€ B;; or d; ;< B;;, therefore
xe; € e R). So suppose e; ;xR is projective for all x € e;R. We have the exact sequence of R-modules.
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0—>exR () (I-e.;))R—> exR —> e;.;jexR—> 0, where 1=e; ;+e;,+...+e, ,~e,. Now e exxR=e; ;xR
and exR() (I-e.) )R eR() (I-e.;)R=e.R (because I-e.;=e,;;+...+e,,). Since e, ;xR is projective by the
induction of the sequence splits. So exR = e, xR ® (exR () (1-e.)R).

Thus e xR @ (exR () (I-e.;)R) is a cyclic right R-module and is a submodule of e;;R. Hence it
is projective by assumption. Therefore we obtain exR as a sum of two projective modules, thus it is
projective. Thus by induction, exR is projective for all i. Setting i=n, then e,xR=xR is a projective.

We now show that xR is projective for all x € e;M,,(D). Recall that xR is projective if and only if
the annihilator anng(x)=eR for some idempotent e R. This holds for xe Q, not just for xeR as
RF=Q and anl_nR(x) =anng(xa ) for any @ € F".

Say x= ijei,j ee;M,(D) with x;e D. If x=0 then anng(x)=R and we are done.
=1 _ _
Also, b}‘; Lemma 2.5 of [7] there is an i, with XX, 'e Bw for all j, and so X, lxj € Bio,j for all

Jj. Let e be the permutation matrix which switches the i,t4 and i th rows. Let

(1,0, 0yl 0, O]
0, s O, ,0, 0
-1 _xlxi 2% xl —]xl ’O’ xl +1xi b xnxi B
e=l,-x = (Ex)= ° o
’ 0, 0 1,0 0, ;0
_O, 0, 0, ,0, 1_

We have e€ R since xpx; ‘eB - Also xe=xI, — xxl.o_1 (Ex)=x-x=0 xe=xl,-xx" i, (Ex)=x-
x=0, and so e € anng(x).

Let a€ anng(x), thencea=(1,- xiof1 (Ex))a=a-0=a. Thus e’=e, and anng(x)=eR is generated by an
idempotent. Therefore xR is projective.

Theorem 3. 7. (J.S. KAUTA) R is a semihereditary V-order if and only if R is conjugate to an order
of type @ H. Therefore orders of type ® H are extremal. (See Theorem 4.7 [7] and 39.14 (ii) [10] for
special cases of this theorem.)

Proof: Suppose R is a semihereditary V-order. Then R contains a full set of primitive orthogonal
idempotents. After a conjugation, if necessary, we may assume all the standard idempotents
€€, ,€R.  Since R is integral over V, e;;Re;; is integral over V. Also
e;iRe; F'=e;;RFe; =e;;De; =D, therefore e;,Re;; is a V-order; indeed, ¢;Re;; is a semihereditary V-order
in D. Hence e;,Re; ;=B (because B is an invariant valuation ring extending V; therefore B is the unique
extremal and hence the unique semihereditary V-order in D). Set B;;j=e;;Re;;. Then B;;# 0, since R is
an order in Q. Since BC R, we have Be; Re;;=e;;BRe;j=¢; R e;;=e;;R e;;B, therefore BB;;/=B;;B=B,,
and so B;; is a B-bisubmodule of D. Now R is a ring and Re;e;R=Re;;R C R; so By;B;; = By, where
By ;=eiRe;; and B;=e; ;Re;; holds. We only have to show Morandi's condition holds.
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Suppose Jij, j, and an 0# & €D such thata ¢ B, ; and a'e B, , . Since B is an invariant
B B

Josto

B . B

LosJo

valuation ring, ip#jo. Let I'= (e , +e; . R(e Then I' is a

.. te. .
fo»lo JosJo )

I

al
semihereditary order in M,(D) by [15]. Consider x= {0 0} e M,(D).

t r
Then ann(x)= such thatt,ar e By e B, ,
—at —ar Jo-to
Theorem 1.5 [11]). We have of € Bl.o’_

ate B, } (see the proof of
,and t€B. But a¢B, .. So teJ(B).Since I'is a

Ji

2
semihereditary order in M>(D), ann - (x) is generated by an idempotent [ bl_|a b,
—-oa —ab —-aa —ab

So 1=a-ba .

1

But a € J(B), so ba is a unit in B. Hence abis also a unitin B. But be B, , DabB=B

since ab is a unit in B, hence ae Bio-io ,

On the other hand, let R = (B, ;) be of type ®H .We want to show that R is a semihereditary V-
order in =M, (D). By Lemma 2.5, R is a ring with the identity element of O, and FR=Q. By the
proof of ([7], Proposition 4.3), R is a V-order. But.M,(R) is of type ®H whenever R is. Hence

Lemma 2.6 shows that for each r, every principal right ideal of M,(R) is projective. So R is right

a contradiction, and so.we have Morandi’s condition.

Semihereditary by [12]. Similarly, R is left semihereditary and hence it is semihereditary.
Proposition 3. 8. Every Bezout V-order is a semihereditary V-order, but the converse does not hold.

Proof: Suppose

"'B> J(B,,) Dyeeers 2 J(B,)

a N N

B, D Bo,.......... ,DJ(B,,)
R= ﬂ ﬂ 5 5 m )

(Nyeeeeeeererereneeeerereseene N

B, ,oB,,D...., DB

where B;; is an overring B for all i,j and B;;# B for some i,j. By Theorem 2.7 and Theorem 2.6 of [11]
R is semihereditary maximal V-order. But B,; DB by assumption. Let W=B,;(1F, then
RWcM,(B,,), since WBC WB, ;=B, ;. If R is a Bezout, then R= M,(B) by Corollary 3.5 of [7]. But
RW would be a Dubrovin valuation ring over W and RWc M,(B,,;). Therefore RW=M,(B,;), a
contradiction.

If R is a Bezout V-order, by Proposition 1.8 and Example 1.15 of [16], then R is semihereditary
and also more examples of semihereditary orders can be found in [17].

Therefore we have the following diagram in general.

Integral Dubrovin valuation rings = Bezout V-orders = Maximal V-orders

U U

(if V is Henselian) type ® H < semihereditary V-orders = Extremal V-orders.
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4. SEMIHEREDITARY ORDERS INSIDE BEZOUT ORDERS

Let V' be a discrete valuation ring of " and Q a central simple F-algebra. By Wedderburn structure
theorem Q= M, (D), where D is a division algebra with center F.

By (10-4) Corollary of [10] every V-order in Q is contained in a maximal V-order in Q. If V be
complete valuation ring, then the integral closure V'in D, i.e., A =int, (D) is the unique maximal V-
order in D. let R be an V-order in Q. Then by Theorem (39-14) of [10], R is a hereditary order if R is
an Extremal V-order.

In this case R is precisely,

[(A)(P)(P) ooy (P) ]
(A)(A)(P),ceooneeee. .(P)

O TV — (A) |

where P = J(A)and n;+ny+...+n=n.

Now we assume V is a Henselian valuation ring of F, not necessarily discrete. Let R be an
Extremal V-order inside an integral Dubrovin valuation ring of B with B(1F =V.We know the
integral closure ¥ in D i.e., A =int, (V) is a unique maximal V-order in D, and so B =M (A)is a
Dubrovin valuation ring and we can consider R < M, (A) . By (Proposition [1]) R is semihereditary.
So in this case we have

FON ALY W L(J(A)y ]
(A),(A),(J(A))yernnns (J(A))

O XN W— (8) |

where 1, +n, +iutn, =n and R=B if J(R) = J(A)R if J ' (A) = A.
If V isn't’ Henselian, then B, =B® V,is a Dubrovin valuation ring. Therefore
B/J(B)=B,/J(B,)
J(B)®, V,cR®, V, =R,. Hence we have U U , thus Ry, is semihereditary
R/J(B)=R,/J(B,)

and so R is semihereditary by ([11] Proposition 3.3). Thus inside an integral Dubrovin valuation ring,
extremal V-orders are precisely the semihereditary V-orders.

Corollary 4. 1. Let R be an extremal V-order inside a Dubrovin valuation ring of B, and if
R = R' = B, then R'is extremal V-order in B.

Proof: Since R is semihereditary, R'is a semihereditary V-order (by Lemma 4.10 of [7]), and so R" is
an extremal V-order.
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Corollary 4. 2. Let R be an extremal V-order inside an integral Dubrovin valuation ring with J(B)a
non-principal ideal of B. Then R=B if J(R)=J(V)R.
Now the generalization of Proposition 2.1 of [1] is given.

Theorem 4. 3. Let R be an Extremal V-order sitting inside a Bezout V-order B.Then R is a
semihereditary V-order.

Proof: By induction on /Q: F]. If [Q: F]=1, then B is an integral Dubrovin valuation ring and so R is
a semihereditary.

Now we assume B is not a Dubrovin valuation ring. Then there exists an integral Dubrovin
valuation ring T of Q, with center W > V such that

)T o>B ii)JT)cJB)cJ(R) iii) R=R/JT)B =B/J({)

~

are V/J(W)-orders in T =T/J(T), and (iV)[T :Z(F)}<[Q:F]. By induction, R is
semihereditary and so R is semihereditary (by Lemma 4.11 of [7]).

5. THE HENSELIZATION

We now consider V' to be a valuation ring of a field " of arbitrary rank which need not be Henselian.
One aim of this section is to examine the effect of Henselization on Bezout and maximal
semihereditary V-orders.

Let (V) F) ) be the Henselization of (V,F) (see:[9] for definition).

Let O be a central simple F-algebra, then Q& . F, is a central simple F,-algebra and by ([10]
Corollary 7.8) and also by Wedderburn's Theorem Q ® . F, =M (D) for some n, where D is a
division algebra finite dimension ovet#,.

Let R be a V-order in Q. Clearly if R®, V, is a maximal Vj-order, then R is a maximal V-
order. Thus the difficulty lies in proving the converse.

If V be a discrete valuation ring, then a V-order R of Q is a maximal order if R is a Dubrovin
valuation ring ([6]: Example 1.15). Therefore, in this case R ® V), is a Dubrovin valuation ring of
Q0 ®, F,, which is integral over V.. Thus R ®, V, is a maximal Vy-order.

On the other: hand, there exists a Bezout maximal V-order R such that R®, V,is a
semihereditary maximal order, but is not Bezout, (see [7] Example 4.14).

P. Morandi [7] mentioned two questions.

(1) Suppose R is‘a maximal V-order in a central simple F-algebra Q. Let (F}, V}) be the Henselization
of (V,F).Then R®, V, isa Vj-orderin Q®, F,.Is R®, V, a maximal order?

(2)If R is semihereditary, then R ®, V, is a Vj-order in Q ®,. F,.1s R®, V, semihereditary?

Now we assume that B is an invariant valuation ring extension of Vi to D and R = (B, ;), an order of

type ®H in O ®, F,.

Theorem 5. 1. Suppose Q is a central simple F-algebra and V is a valuation ring in F. If T'is a Bezout
V-order in Q, then T ®, V, is conjugate to an order type ®H such that B;;'=B;; for all i,j and
JOY®, V,=JB)(T®,V,).

Moreover, T'®,, V, is a Dubrovin valuation ring if 7" is a Dubrovin valuation ring. In this
case T ®, V, is conjugate to My(B).
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Extremal orders inside simple artinian rings 419

Proof: By Theorem17 of [18], 7 ®,, V, is a semihereditary maximal Vj-order in O ® f F}. Therefore
T ®, V, is conjugate to an order type ® H. And by Theorem 2.7 of [11] B;;'=B;, for all i,j and
JO®, V,=JB(T® , V,). Also, T®, V,is Bezout if T is Dubrovin valuation ring (see Theorem 17
in [18]). Since Vj, is Henselian, T® , ¥}, is a Dubrovin valuation ring, and so T® , ¥, is conjugate to
M,(B).

J. S. Kauta ([11]: Theorem 3.4) proved that a V-order R is semihereditary if its Henselization
R®, V,is a semihereditary. So the answer (2) is yes.

Theorem 5. 2. If R is a maximal V-order in a central simple F-algebra Q, then R® , V), is a maximal
Vi-order in Q ® rF), if one of the following conditions holds.

(1)R is a Bezout ring.

(2)R is a semihereditary ring.

(3)R is a finitely generated V-module.

(4) RankV=1

Proof: If R is a Bezout ring, then by Theorem 17 of [18] R ® ¥/, is a maximal V;-order.
And if R is a semihereditary ring, it follows from Theorem 1 of [19].

Now we suppose that R is a finitely generated V-module. Then R is contained in a Bezout V-
order T by ([7], Prop.3). Since [T/J(T):V/J(V)]<oc, there exists ¢;,....t,€T such that
T=t;V+...+t,V+J(T). But by ([11]: Prop. 1.4) J(T) R (since maximal orders are extremal). Hence T
is a finitely generated Bezout V-order. By the maximality of R, we have T=R. Therefore R is a Bezout
V-order.

(4) Let (V,, F;) be the Henselization of (¥, F). Then (V, F) < (V,, Fi) < (V, F), where (V, F) is
the complement of (¥, F) with respect to the:metric induced by the valuation corresponding of V.
Hence V' is dense in V, and by (Proposition of [19]) we have R®, V, as a maximal V-order in
0®, F,.

Let B be a unique extension valuation ring ¥}, to D, whereQ ® , F, = M (D) and R=(B;;) is
order type ®H . Then we have the following theorem.

Theorem 5. 3. Suppose Q is a central simple F-algebra and V is a valuation ring in F. If T is a
maximal semihereditary V-order in Q, then 7 ®, V, is conjugate to an order type ®H such that B;;
'=B;, for all iy

Proof: By Theorem 5.2, ()T ®, V, is a semihereditary maximal Vj-order, and by Theorem 3.7
T ®, V, is conjugate to an order R=(B,;). On the other hand, R is a semihereditary maximal order,
and by Theorem 2.6 of [11] we have B,-,j=Bj,{[ for all i,j.
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