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Abstract – In this paper, the time-like hyperruled surfaces in the Minkowski 4-space and their algebraic 
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1. INTRODUCTION 
 

The Minkowski space is the space 4R  with the Lorentzian inner product 
 

2222
0 dzdydxdtg +++−=  

 
which is denoted by 4

1R . The representation of 0g  in the matrix form with respect to the standard 
basis of 4

1R  is ( )1,1,1,1−= diagη . Suppose that 4
1R  is a 4-dimensional vector space over the field 

of real numbers. A symmetric bilinear form RRR →× 4
1

4
1:β  is called  

i) positive (resp. negative), definite if and only if 
→→

≠ 0ω  implies 0, >





 →→

ωωβ  (resp. 

0, <





 →→

ωωβ ) for all 
→

ω  in 4
1R , 

ii) non-degenerate if and only if 0, =





 →→

zωβ  for all 
→

z  in 4
1R , implying that ,0

→→

=ω  and 

iii) indefinite if and only if there exists 
→

ω  and 
→

z  in 4
1R  such that 0, >






 →→

ωωβ  and 0, <





 →→

zzβ , 

[1]. 
A non-degenerate, symmetric bilinear form β  is called a scalar product. A scalar product may 

be positive definite, negative definite or indefinite. 
For an indefinite scalar product β  in 4

1R , a nonzero vector 
→

ω  is said to be  

i) space-like if and only if 0, >





 →→

ωωβ , 

ii) time-like if and only if 0, <





 →→

ωωβ , 

iii) null if and only if 0, =





 →→

ωωβ . 
The vector 

→

0  is taken to be space-like. The label space-like, time-like or null is called the causal 
character of a vector. A curve is called time-like (or space-like) curve if the tangent vector at every 
point of the curve is a time-like (or space-like) vector. A surface is called time-like surface if each 
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tangential bundle of the surface is a time-like subspace of 4
1R , [1]. A ruled surface is a surface swept 

out by a straight line  moving along a curveα . Such a surface has a parametrization in the ruled 
form 
 

( ) ( ) ( )tvetvt 1, += αϕ , 
 

where α  is the base curve and 1e  is the director vector of . The various positions of the generating 
line  are called the rulings of the surface. If the tangent plane is constant along a fixed ruling, then 
the ruled surface is called a developable or cylindrical surface. All other ruled surfaces are called 
skew surfaces [2]. 
 

2. TIME-LIKE RULED SURFACES 
 
Let  
 

                                                     
( ) ( ) ( ) ( ) ( )( )tttttt

RI

4321

4
1

,,,
:

ααααα
α

=→
→

                                      (1) 

 
be a differentiable time-like curve in the Minkowski space, where I∈0  . 
A space-like straight line, 
 

                                                               
( ) ( ) ( );

:

1

4
1

tvetvv
RR

+=→
→

α
                                                (2) 

 
where ( )te1  is the director vector of  at the point ( )tα  such that ( )te1  and the tangent vector of α  
are linearly independent at every point of the curve α . Since  is a space-like straight line 

1, 11 >=< ee , and 1e  denotes the derivative of the vector field 1e  along the curve α , we have 
.0, 11 >=< ee  

When  moves alongα , it generates a ruled surface given by the chart ( )ϕ,RI × , where 
 

                                                      
( ) ( ) ( ) ( )

4
1

1

:
, , .

I R R
t v t v t ve t

ϕ
ϕ α

× →

→ = +
                                           (3) 

 
This ruled surface will be denoted by M. Taking the derivatives of ϕ  with respect to t and v, we 

have  
 

( ) ( )tevtt 1+= αϕ  and ( )tev 1=ϕ . 
 

Note that 2],[],[ 11 =+= eevrankrank vt αϕϕ  
So M is 2-manifold in the Minkowski space 4

1R . 
 

3. TIME-LIKE HYPERRULED SURFACES IN THE MINKOWSKI SPACE 4
1R  

 
Throughout this section we assume that 
 

2,1 ≤≤ ji  and .2,0 ≤≤ nm  
 

Let M be a time-like ruled surface in 4
1R , with a base curve α  and the generating line . If we 

take the space-like plane ( )tE2  with spanning by the vectors ( )tei , instead of the generating line , 
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then M is a 3-manifold in 4
1R . In this case M is called a hyperruled surface and can be (locally) 

represented by the chart ( )ϕ,U , where 2RIU ×=  and 
 

                                 
( ) ( ) ( ) ( ) ( )

2 4
1

1 2

:

, , , , .i
i

I R R

t v t v t v e t v v v

ϕ

ϕ α

× →

→ = + =
                               (4) 

 
Suppose that the base curve α  is an orthogonal trajectory of the generating plane ( )tE2 . If 

 
                                                        keeeeerank −= 4],,,,[ 21210                                                     (5) 

Then 
i) if 0=k  in (5), then M is called non-developable, 
ii) if 1=k  in (5), then M is called developable, 
where 0e  is the unit tangent vector field of the base curve α , which is a time-like curve, and ie  is 
the derivative of the vector fields ie  along α . 

We begin with some properties of a general pseudo-Riemann manifold M. Suppose that D  is the 
Levi-Civita connection on 4

1R , while D  is the Levi-Civita connection of M. Then, for any vector 
fields YX ,  on M, we have the Gauss equation: 

 
                                                                ( )YXVYDYD XX ,+=                                                       (6) 

 
where V  is the second fundamental form of M. 

If the ξ  is the unit normal vector field on M, we have the Weingarten equation giving the 
tangential and normal components of ;ξXD  
 
                                                                 ( ) ,ξξ ξ

⊥+−= XX DXAD                                                     (7) 
 

where ξA  is determined at each point of a self-adjoint linear map on ( )Mχ , and ⊥D  is a metric 
connection in the normal bundle of M [3]. 

Let ( )MYX χ∈,  and ( )⊥∈ Mχξ . Then, by combining (6), (7) and the Minkowski inner 
product on ,4

1R  denoted by ,.,. ><  yield that 
 
                                                           ( ) ( ) >>=<< XAYYXV ξξ ,,, .                                                (8) 

 
Assume that { }210 ,, eee  is an orthonormal base field of the tangential bundle of M and ξ  is the 

unit normal vector field of M. Then we have the following Weingarten equation  
 
                                                                    ,ξξ mn

n
me beaD

m
+=                                                        (9) 

 
where the Einstein summation is used. san

m '  are coefficients of the matrix ,ξA  and  
 

.,, ><−>==< nene
n
m eDeDa

mm
ξξ  

 
Since the generating space ( )tE2  of M is a space-like subspace in ,4

1R  we have that 
ijji ee δ>=< ,  and ,0=je eD

i
 which imply that 0=j

ia  and  
 

,,,,
000 nnnene

n aeeDeDa −>=<−>=<−>==< ξξξ  
 
so we may write the matrix ξA  as 
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210















 −−
=

a
a

aaa
Aξ  

 
Lemma 3. 1. Consider the orthonormal base fields 210 ,, eee  of M. Then the Riemannian curvature 

( )0,eeiσκ  in the two-dimensional direction σ  of ( )Mχ , spanned by the vector fields ie  and 0e , is 
given by  
 
                                                      ( ) ><−= 000 ,, eDeDee

ii eeiσκ  .                                               (10) 
 

Proof: Suppose that R  is the curvature tensor of M, then  
 

( ) ( ) >=< 000 ,,, eeeReee iiiσκ . 
 

But we see from the Gauss equation that 
 

( ) ( ) ( ) ( ) ( ) ><−>>=<< 000000 ,,,,,,,, eeVeeVeeVeeVeeeRe iiiiii  
 

and we know that ( ) .0, =ii eeV  Moreover, we have  
 

jejeje eeDeDeeeD
iii

⊥⇒>=>=<< 000 0,,  
 

and 
 

000000 0,, eeDeDeeeD
iii eee ⊥⇒>=>=<< . 

 
This means that 0eD

ie  is a normal vector field or  
 
                                                                  ( )00 ,eeVeD iei

=                                                              (11) 
 

which completes the proof. 
 

4. THE ALGEBRAIC INVARIANTS OF THE HYPERRULED  
SURFACES IN THE SPACE 4

1R  
 
Let M be a time-like hyperruled surface in the Minkowski 4-space .4

1R  Then the space of tangent 
vector fields of M denoted by ( ),Mχ  is a time-like vector subspace of 4

1R  over the field of real 
numbers. Let A be linear operator on ( )Mχ . A characteristic value of A is a scalar λ  in R  such that 
there exists a non-zero vector field X  in ( ),Mχ  with ( ) ,XXA λ=  where X  is called the 
characteristic vector of A corresponding toλ . The set of all 'X s is called the characteristic space of 
A. 

The function ( ) ( )∈−= λλ Af det  is called the characteristic polynomial of A, where 
( )1,1,1−∈= diag  is the matrix of the induced metric on ( )Mχ . In order to find the roots of the 

characteristic polynomial we must solve the characteristic equation ( ) 0det =∈− λA  
 

( ) 0
0

0 2
2

2
1

2
0

2

1

210

=−−+=
−

−
−−+

λλλλ
λ

λ
λ

aaa
a
a

aaa
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or 
 

( ) .02
2

2
10

2 =−−+ aaa λλλ  
 

This implies that 
0=λ  and ( ) 02

2
2
10

2 =+−+ aaa λλ  
Since ( ) ,04 2

2
2
1

2
0 >++=∆ aaa  the solution of the characteristic equation are  

 

,01 =λ  ( )∆+−= 02 2
1 aλ  and ( ).

2
1

03 ∆+−= aλ . 

 
Thus we may give the following result: 
 

Result 4. 1. Let M be a time-like hyperruled surface in 4
1R . If ,32 λλ =  then M is minimal and 

developable. 
 
Proof: Let ,32 λλ =  then 0=∆ , which implies that .0210 === aaa   
Thus 00 =a  implies that 0=ξtrA , and so M is minimal.  
By lemma 1, 0=ia  implies that ( ) 0, 0 =eeiκ  and so M is developable. 

Let us find the characteristic vector corresponding to characteristic values 321 ,, λλλ  of the 
matrix A. The vector field 1X  corresponding to 1λ  is obtained by the solution of the equation  
 

( ) .,,00
2

1
11 








−=⇔= t

a
a

ttXAX  

 
Similarly, the vector fields 2X  and 3X , corresponding to 2λ  and 3λ , are obtained by the 

solutions of the equations  
 

( ) 







−−=⇔= tatattXXAX

2

2

2

1
2222 ,,

λλ
λ  

 
and  
 

( ) .,,
3

2

3

1
3333 








−−=⇔= t

a
t

a
ttXXAX

λλ
λ  

 
Since the vector fields ( ) 3,2,1, =ktX k  have one arbitrary parameter, the dimension of the 

characteristic space is equal to 1. Therefore, we can choose an orthonormal base field 
{ }321 ,, XXX=φ  of ( )Mχ  corresponding to characteristic values .,, 321 λλλ  

If we denote the matrix of the linear map A with respect to the orthogonal base φ  by S , then we 
observe that  
 

.
00

00
000

3

2
















=

λ
λS  

 
S  is called as the Weingarten (or Shape) operator of M with respect to the base φ . 

Thus we can state the following results: 
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Result 4. 2. Let M be a time-like hyperruled surface in 4
1R , and S  be the shape operator of M. Then  

i) The main curvature of M is .
3

0a
H −=  

ii) The Gauss curvature of M is .0=κ  
 
Definition 4. 1. Let M be a time-like hyperruled surface with curvature tensor R  in .4

1R  If 
{ }210 ,, eee  is an orthonormal base field of ( )Mχ , then the Ricci curvature tensor S is defined by  
 

( ) ( )
( ) ( ) ( )∑ ><=→

→×

m
mmm eYXeRYXSYX

RMMS
,,,,

:
ε

χχ
 

 
where  
 





=
=−

=
2,1,1
0,1

m
m

mε . 

 
The scalar curvature of M is defined by  

 
( )∑=

m
mm eeSr ,,  

 
and the scalar normal curvature of M is defined by  
 

( ) { }∑ ∈−=
νσ

σννσ νσξξξξ
,

2,1,;AAAAMrn , [4]. 

 
Thus we can find the following results for the time-like hyperruled surfaces in the Minkowski 4-

space :4
1R  

 
Result 4. 3. Let M be a time-like hyperruled surface with a base curve α  and the generating space 

( )tE2  spanning by the vectors ( )tei  in the Minkowski 4-space 4
1R . Then the scalar curvature of M is  

 
∑−=

i
iar ,2 2  

 
where >=< ii ea ,ξ  and ( )⊥∈ Mχξ . 
 
Proof: Let { }210 ,, eee  be an orthonormal base field of M. Then  
 

( ) ( ) ( )∑ ∑+==
m i

iimm eeSeeSeeSr ,,, 00  

 
( ) ( )∑ ><=

m
mm eeeeReeS ,,, 0000  

 
( )∑ ><=

i
ii eeeeR ,, 00  

 
( )∑=

i
i ee 0,κ ∑−=

i
ia 2  

 
( ) ( )∑ ><=

m
miimii eeeeReeS ,,, ( )0,eeiσκ=

2
ia−=  
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which implies that ( ) ( )∑−=
i

ii eeSeeS .,, 00  

So we have ( ) .2,2 2∑ ∑−=−=
i i

iii aeeSr  

Thus we derive the following results for a time-like hyperruled surface in :4
1R  

i) i) 0=r  if M is developable, 
ii) ii) 0=r  and M is minimal if M is hyperplane, 
iii) The scalar normal curvature of M is always zero. 
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