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Abstract – A 2-D heat conduction model has been solved by using the Adomian Decomposition Method to 
predict the transient temperature and heat flux distribution in a thick solid that is irradiated by a laser source. 
The laser source may operate in a continuous wave (CW) mode or repeated pulse (RP) mode and may have 
arbitrary, spatial and temporal profiles.  

A generalized solution containing five-terms approximation of a rapidly convergent series is obtained. 
The solution is then applied to some special cases of practical interest, such as laser irradiation of sandstones 
and limestones. Laser drilling of geologic formations is being considered by the petroleum industry in the 
foreseeable future. The 2-D transient temperature distribution is presented in a graphical form and discussed. 
A comparison between the results obtained from the Adomian method and those obtained numerically by 
using the Crank-Nicholson method is also presented. 
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1. INTRODUCTION 
 

During the past two decades considerable attention has been paid to the development and advancement of 
high energy laser power for their possible use in many industrial applications. This is mainly due to the 
great potential of laser machining of materials. Laser applications in engineering and industry include, 
among others, welding, drilling, cutting, scribing, and heat treatment. 

One of the principal advantages of laser machining is its ability to cut very hard materials easily with 
great precision. Lasers may provide a cheaper alternative to conventional machining and have found 
widespread use in the industry. However, the physical phenomena involved in many laser applications are 
not fully understood. A better qualitative understanding of the physical mechanisms governing these 
phenomena will diminish the need for extensive trial and error experiments. An accurate knowledge of the 
physical processes involving the temperature profile and the heat flux distribution is essential for 
understanding the laser-drilling system. 

Modeling of laser drilling, cutting and scribing has been addressed by a number of investigators. 
Dabby and Paek [1], Yilbas [2], Wagner [3], and Chen and Muzumder [4] presented a simple one-
dimensional drilling model. They reported interesting observations concerning thermally induced effects 
due to the usage of high-energy intensities concentrated on a small area. Blackwell [5] studied this 
phenomenon and concluded that a metal explosion below the surface occurs due to the effects of these 
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thermal stresses. Blackwell [5] explained this explosive material removal by stating that the maximum 
temperature (before the phase change occurs at the exposed surface) is located inside the body because of 
the heat loss to the surroundings. An analytical solution of 1-D heat conduction with a laser energy 
incident on a metal surface was given by Zubair and Chaudhry [6, 7]. Modest and others [8-10] presented 
a numerical solution to the problem and studied the effects of thermal stresses in ceramic. They concluded 
that micro-cracks might occur due to the high temperature gradients within the material.  

Another very interesting and promising application is the combination of thermo-mechanical 
methods. The usage of lasers for the thermal weakening of rocks seems to be very practical in many 
applications such as the creation of fractures in oil and gas reservoirs and the combination of thermo-
mechanical methods for rock destruction. 

In most cases, there is no analytical solution for non-linear partial differential equations governing the 
problem. The difficulties associated with non-linearity of partial differential equations have led many 
investigators to either linearize the problem or use numerical methods (that eventually linearizes the 
problem). Both of these methods lack rigor or desired accuracy. 

The method of solution used in this study is the Adomian Decomposition Method, well addressed in 
references [11-13]. This method has received a great deal of attention in recent years. The main advantage 
of this method lies within the fact that it provides the solution in a rapidly convergent series with elegantly 
computed terms. There is no linearization involved. 
 

2. MODELING OF THE LASER ABLATION PROCESS 
 
The laser-rock interaction can be divided into three main stages. The first stage is called the heating-up 
period during which the temperature is below the melting temperature and no melting or vaporization will 
occur. The solid absorbs the incident laser energy and, as a consequence, the bulk temperature increases 
with time. The second stage represents the melting stage, which is started as soon as the highest 
temperature (at the center of the laser beam, i.e. (0,0)) reaches the melting point. All the laser energy 
absorbed during this stage will result in melting more liquid, as well as increasing the liquid temperature. 
When the highest temperature reaches the vaporization temperature, the third stage starts and evaporation 
will occur at the liquid surface. 

 
a) Formulation of the Problem 

 
The origin of the z-axis is taken at the top surface of the work piece and the r-axis is taken from the 

centerline of the laser beam. Fig. 1 shows a schematic diagram of the physical model under study. 
Convective and radioactive heat losses from the top surface of the work piece were treated via interfacial 
heat transfer coefficients. A null heat transfer condition is set-up at the lateral boundaries to the modeled 
domain. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Physical model 
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This paper is concerned with the solution of the Fourier equation describing the heat transfer process 

within the material before melting starts (i.e. first stage only). By assuming a homogeneous body with an 
energy source term, the heat conduction equation can be written as [2, 8]: 
 

                                                      

2 2

2 2
1

Laser

P

T T Tk q
r rT r z

t Cρ

 ∂ ∂ ∂ + + + ∂∂ ∂ ∂ =
∂

                                                  (1) 

 
The energy source was considered as a Gaussian laser beam which is a function of time and space, 

being absorbed within the material, and has the effect of an internally distributed heat source. Thus the 
energy source term may be modeled as; 
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Where  
0( )q t is the time dependent radiation intensity, 

R is the radius of the laser focus defined by the value of laser beam intensity as: 
 

                                                                     
( )

( 0)I r
I r R e

== =                                                              (3) 

γ is the absorption coefficient. 
ℜ is the surface reflectance 

The appropriate initial and boundary conditions are assumed to be the following: 
 

At  t=0 T(r,z, t) = Tair  

At  t > 0 z=0 ( ) ( )( , 0, )
( , 0, ) ( , 0, )C R Sky

T r t
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 at z → ∞ 
 

( , , )
0

T r z t
z

∂ =
∂

 
 

Where Tair is the ambient air temperature, Tsky is the sky temperature, hC is the convective heat transfer 
coefficient, and hR is the radiative heat transfer coefficient. 
 
b) The Adomian Decomposition Method 
 

In this section, the solution to the partial differential equation (1) is constructed by using the Adomian 
Decomposition Method. To derive the canonical form of the equation which is the suitable form for 
applying the Adomian method, equation (1) can be re-written as: 
 

                                                

2 2

2 2
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( , , )
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t
P

T T Tk q
r rr z

T r z t
CL ρ

 ∂ ∂ ∂ + + + ∂∂ ∂ =                                                 (4) 

 
Where t tL ∂=

∂
 is the partial derivative operator with the inverse, 1

0
(.) .
t

t dtL− = ∫  applying the inverse 
operator to equation (4), the following canonical form will be obtained; 
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                          ( )
( )22 2 2
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r rr z
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Where ( , , )T r z t  is the initial temperature, α is the thermal diffusivity 
P

K
C

α
ρ

  =    and β is the laser 

energy parameter 0
2

2 ( ) (1 )

P

q t

R C

γ
β

π ρ

 − ℜ   =    
; for the simplicity of the model α, ( , , 0)T r z and β are considered 

constants. 
The Adomian Decomposition Method considers the solution as the sum of a series, say: 

 

                                                                          
0

( , , ) n
n

T r z t T
∞

=
= ∑                                                                 (6) 

 
And second term on the right hand side in (5), which depends on ( , , )T r z t  as the sum of the following 
series: 
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Where 0( , , )n nA T T , called the Adomian polynomial, is a function of 0, nT T  and must be computed. 
Using an alternate Algorithm for computing Adomian polynomials [14], the Adomian procedure consists 
of the following scheme: 
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From (8) and (9), the following terms of the series (5) will be derived; 
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And the final equation for the temperature distribution is considered as the following approximation: 
 

                                                                     ( )
4

0
, , n

n
T r z t T

=
≈ ∑                                                               (13) 

 
It should be emphasized that the solution given by equation (13) represents an approximation for the 
transient temperature distribution with good accuracy due to the general time dependent, especially 
decaying laser source. This formulation may be used to discuss several heat conduction problems arising 
in laser induced processing of materials. However, the main drawback of this method is its inability to 
accommodate for the effect of boundary conditions. Despite this shortcoming, the Adomian 
Decomposition Method is able to predict the transient temperature distribution with a good accuracy, 
especially at points away from the top surface. 
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c) The Numerical Method 
 

Equation (1), along with its initial and boundary conditions, was also solved numerically by using the 
Crank-Nicholson Method, in which old and new time temperature values were employed utilizing the 
iterative implicit method. The Crank-Nicholson Method is numerically stable for all values of the 
ratio ( )2t r zλ = ∆ ∆ + ∆ , and that it converges with discrimination error O ( ) ( )2 2t r z ∆ + ∆ + ∆  . 
Although this method has a distinct improvement in accuracy as compared with the other implicit or 
explicit methods, the computation is only slightly more complicated than the implicit method.  

First the heat conduction equation was transformed to a finite difference form and then a Fortran 
Computer code was developed to solve for the transient temperature distribution. 
 

3. RESULTS AND DISCUSSION 
 
In this section, the preceding formulation is used to study the heat conduction phenomena in sandstones 
and limestones being irradiated with a laser source. Table (1) lists the thermo-physical properties of 
sandstones and limestones, as used in this study. Studying the temperature and heat flux distribution in 
such materials is of practical interest in many applications such as laser drilling, thermal weakening of 
rocks, and laser machining of ceramics. 
 

Table 1. Thermo physical properties of Sandstones and Lime stones 
 

Property Sandstone Limestone 

Reflectivity (%) 20 30 
Emissivity (%) 93 85 
Absorptivity (%) 85 75 
Melting Temp. oC 1540 1260 
Evaporation Temp. oC 2200 2000 
Density kg/m3 2640 2710 
Thermal Conductivity, W/m- oC 6.2 4.8 
Specific Heat, kJ/kg-oC 0.28 0.18 

 
Fig. 2 shows the maximum temperature (at 0r =  and 0z = ) as a function of time for sandstone as 

predicted by the Adomian method and that predicted numerically at various laser power levels. It clearly 
shows the dramatic rise in heating rate with increasing laser pulse intensity. However, it should be noted 
that the maximum temperature predicted by the numerical method was not at the surface, rather it was 
below the surface and inside the solid material. This is attributed to the heat loss to the surroundings. This 
result re-emphasizes the results achieved in previous studies [4, 5, 7]. 
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Fig. 2 

www.SID.ir



Arc
hi

ve
 o

f S
ID

J. Biazar / et al. 
 

Iranian Journal of Science & Technology, Trans. A, Volume 30, Number A2                                                           Summer 2006 

206 

(b) Limestone
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Fig.2. Maximum surface temperature as a function of time for sandstone and  

limestone (Comparison between Adomian and Numerical Predictions) 
 

This phenomenon can be further manifested by studying the change in centerline temperature as a 
function of depth as given in Figs. 3 and 4. These Figures clearly show the reduction in temperature with 
increasing depth. It also shows the location of maximum temperature predicted by both methods. The 
Adomian method predicted the maximum temperature will be at the surface ( 0z = ) because of its 
inability to account for the surface heat loss. This is probably the biggest drawback of the Adomian 
Decomposition Method. It is clearly shown that the effect of this boundary condition diminishes as z  
increases. In other words, both methods predicted identical temperature distribution within the solid 
material and away from the top surfaces as depicted in Figs. 3 and 4. The radial graphical representation of 
the temperature distribution at various depths within the solid material for sandstone and limestone is 
shown in Figs. 5 and 6, respectively. The temperature distribution results show a very intensive 
temperature variation with space as a result of the high heat flux incident on the surface. These results 
show that the rate of surface temperature increase in limestone is higher than that for sandstone for the 
same laser power intensity. This is owing to the fact that less heat is being conducted through the 
limestone (due to its lower thermal conductivity) as compared with that of sandstone. 
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Fig. 3. Variation of centerline (r=0) temperature with depth for various  

lasing times and different laser power, for sandstone 
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Fig. 4. Variation of centerline (r=0) temperature with depth for 

various lasing times and different laser power, for limestone 
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Fig. 5. Radial variation of temperature at different depths and before the start of melting, for sandstone 
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Fig. 6 
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Fig. 6. Radial variation of temperature at different depths and before the start of melting, for limestone 

 
In addition to presenting the temperature distribution, an accurate knowledge of the heat flux 

distribution within the solid material is also important in the investigation of the thermal behavior of the 
material under study. Figures 7 and 8 show the non-linear variation in conduction heat flux with depth for 
sandstones and limestones and under different laser power conditions. Comparing the results obtained 
from both methods, it can be clearly seen that the results presented in Figs. 7 and 8 re-emphasize those 
results given in Figs. 3 and 4 concerning the identical temperature distribution away from the surface. Due 
to the high heat flux encountered in this case, which results in intensive temperature distributions, the heat 
conduction process is non-linear as illustrated by Figs. 7 and 8. The negative heat flux values at the 
surface resulting from the numerical solution indicate that the heat flows in the negative z  direction (heat 
loss to the surroundings). 
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Fig. 7. Variation of conduction heat flux within the solid material with depth 

for various lasing times and different laser power, for sandstone 
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Limestone
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Fig. 8. Variation of conduction heat flux within the solid material with depth 

for various lasing times and different laser power, for limestone 
 

4. CONCLUDING REMARKS 
 
The objective of the present work was to apply the Adomian Decomposition Method for estimating the 
temperature distributions in sandstone and limestone rocks, subjected to laser irradiation. The goal has 
been achieved by formally deriving the solution as a five term approximation with a high degree of 
accuracy. The computational size was reasonable with a rapid convergence at the 5th term. 

Although, the surface boundary condition was not considered in the solution obtained by the 
Adomian Decomposition Method (due to restrictions pertaining to the method), the results obtained at 
points away from the surface were in good agreement with those results obtained from the numerical 
method (Crank Nicholson method). This demonstrates the reliability and efficiency of the Adomian 
method. However, the comparison between the two methods remains under investigation and the research 
to modify the Adomian method to accommodate the effect of boundary conditions is underway. 

The next step of this work will be the use of parametric representation of the temperature and heat 
flux distributions and to develop the appropriate thermal stress parameters to explain the thermal behavior 
of sandstones and limestones. 
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