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Abstract – In this paper the class of n-ary hypergroups is introduced and several properties are found and 
examples are presented. n-ary hypergroups are a generalization of hypergroups in the sense of Marty. On the 
other hand, we can consider n-ary hypergroups as a good generalization of n-ary groups. We define the 
fundamental relation *β  on an n-ary hypergroup H as the smallest equivalence relation such that */H β  is 
the n-ary group, and then some related properties are investigated.  
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1. INTRODUCTION 
 

Hypergroup, which is based on the notion of hyperoperation, has been introduced by Marty in [1] and 
studied extensively by many mathematicians. For example, the connection between hypergraphs and 
hypergroups is studied by Corsini [2]. In [3], Corsini and Leoreanu described hypergroups associated with 
trees and in [4] some applications of hyperstructures in rough sets are given. The hypergroup theory both 
extends some well-known group results and introduces new topics, thus leading to a wide variety of 
applications, as well as to a broadening of the investigation fields. A comprehensive review of the theory 
of hyperstructures appears in [5-8]. 

The notion of an n-ary group was introduced by Dörnte [9], which is a natural generalization of the 
notion of a group. n-ary generalizations of algebraic structures is the most natural way for further 
development and deeper understanding of their fundamental properties. Since then many papers 
concerning various n-ary algebra have appeared in the literature, (for example see [10-15]). 

In this paper, n-ary hypergroups are defined and considered. Examples of n-ary hypergroups are 
given and some of their properties described. n-ary hypergroups are a generalization of hypergroups in the 
sense of Marty. Also, we can consider n-ary hypergroups as a good generalization of n-ary groups. We 
define the fundamental relation *β  on an n-ary hypergroup H as the smallest equivalence relation such 
that */H β  is the n-ary group, and then some related properties are investigated. 
 

2. BASIC DEFINITIONS AND RESULTS 
 
Let H be a non-empty set and f be a mapping ( )*:f H H H× →Ρ , where ( )* HΡ  is the set of all non-
empty subsets of H. Then f is called a binary hyperoperation on H. We denote by nH  the cartesian 
product H H× ×" , where H appears n times. An element of nH  will be denoted by ( )1, , nx x" , where 
ix H∈  for any i with 1 i n≤ ≤ . In general, a mapping ( )*: nf H H→Ρ  is called an n-ary 
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hyperoperation and n is called the arity of hyperoperation. 
Let f be an n-ary hyperoperation on H and 1, , nA A"  subsets of H. We define 

 
( ) ( ){ }1 1, , , , | , 1, ,n n i if A A f x x x A i n= ∈ =" ∪ " " . 

 
We shall use the following abbreviated notation: the sequence 1, , ,i i jx x x+ "  will be denoted by j

ix . 
For j i< , j

ix  is the empty set. In this convention 
 

( )1 1 1, , , , , , ,i i j j nf x x y y z z+ +" " "  
 

will be written as ( )1 11, ,ji n
jif x y z ++ . 

 
Definition 2. 1. A non-empty set H with an n-ary hyperoperation ( )*: nf H H→Ρ  will be called an n-
ary hypergroupoid and will be denoted by ( ),H f . An n-ary hypergroupoid ( ),H f  will be called an n-ary 
semihypergroup if and only if the following associative axiom holds: 
 

( )( ) ( )( )1 11 1 2 1 2 1
1 1, , , ,j n ji n i n n

x i n ji jf x f x x f x f x x− + −− + − − −
+ +=  

 
for every { }, 1,2, ,i j n∈ "  and 1 2 2 1, , , nx x x H− ∈" . 

If for all ( )1 2, , , n
na a a H∈" , the set ( )1 2, , , nf a a a"  is singleton, then f is called an n-ary operation 

and ( ),H f  is called an n-ary groupoid (resp. n-ary semigroup). 
If ( )1 1m k n= − + , then the m-ary hyperoperation g given by 

 
( )( ) ( )( )( ) ( )( )

( )( )1 1 1 12 1
1 11 1 1 2, , , ,k n k nn n

n k n

k

g x f f f f x x x− + − +−
+ − − += " "

������	�����

 

 
will be denoted by ( )kf . In certain situations, when the arity of g does not play a crucial role, or when it 
will differ depending on additional assumptions, we write ( )f ⋅ , to mean ( )kf  for some 1,2,k = " . 
 
Definition 2. 2. An n-ary semihypergroup ( ),H f , in which the equation 
 
                                                                  ( )1

1 1, ,i n
i ib f a x a−

+∈                                                                     (∗) 
 

has the solution ix H∈  for every 1 1 1, , , , , ,i i na a a a b H− + ∈" "  and 1 i n≤ ≤ , is called an n-ary 
hypergroup. 

In Definition 2.2, if f is n-ary operation then the equation (∗) is as follows: 
 
                                                                  ( )1

1 1, ,i n
i ib f a x a−

+= .                                                                 (∗∗) 
 

In this case ( ),H f  is an n-ary group. 
The important question is the solvability of the equation (∗). The classical n-ary semigroup is an n-

ary group if and only if the equation (∗∗) is solvable at the place 1i =  and i n= , or at least one place 
1 i n< < , (see [12] or [13]). The following theorem shows that it is true for hypergroups. 
 
Theorem 2. 3. Let ( ),H f  be an n-ary semihypergroup. Then ( ),H f  is an n-ary hypergroup if and only if 
the equation (∗) is solvable at the place 1i =  and i n=   or at least one place 1 i n< < . 
 
Proof: If (∗) is solvable at the place 1i =  and i n= , then for every 1, , ,na a b H∈"  there exist 
0 0,x z H∈  such that 
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( )0 2, nb f x a∈  and ( )1
0 1 0,nx f a z−∈ . 

 
Assume that 1 j n< <  be arbitrary. Then 
 

( )( ) ( )( )11 1
1 0 2 0 11 2, , , , , ,j jn n n n

j jb f f a z a f a f a z a a−− −
+∈ = . 

 
Therefore there exists ( )1

0 2, , jn
jx f a z a−∈  such that ( )1

11 , ,
j n

jb f a x a−
+∈ . 

Now, let (∗) be solvable at place 1 i n< < . Assume that j i< , then for every 1, , ,na a b H∈"  there 
exists 1y H∈  such that 
 

( )

1 1
1 1 1 1 21

1

( , , ( , , , ), )i i n
ij

n i j

b f a y f a a a a− +
++

− − +

∈ "����	���
  

 
and so 
 

( )

1 1
1 1 1 11

1

( , ( , , , , ), )j i n
j j

n i j

b f a f a y a a a− −
+

− − +

∈ "����	���
 . 

 
Therefore there exists ( )1

1 1 1, , , ,i
jx f a y a a−∈ "  such that ( )1

11 , ,
j n

jb f a x a−
+∈ . If we choose i j< , then 

similarly we can prove that (∗) is solvable.  
Definition 2.2 is a generalization of Marty's formulation of axiom of a hypergroup. Let D  be a binary 

algebraic hyperoperation on H, then ( ),H D  is called a hypergroupoid. A hypergroup is a hypergroupoid 
( ),H D  that satisfies: 
1) ( ) ( )x y z x y z=D D D D  for all , ,x y z H∈ , 
2) x H H x H= =D D  for all x H∈ . 

The second condition is frequently used in the form: Given ,a b H∈ , there exist ,u v H∈  such that 
b a u∈ D  and b v a∈ D . 

Condition 2 can be formulated for n-ary hypergroups as follows: 
  

( )1, ,i n if H x H H− − =  
 

for all x H∈  and 1, ,i n= " . 
Let ( ),H f  be an n-ary hypergroup, 1

2
na H− ∈  be fixed and let ( )1

2, ,nx y f x a y−=: . Then the 
hypergroupoid ( ),H :  is a hypergroup and it is called a retract of the n-ary hypergroup ( ),H f . 
 
Example 2. 4. Let { }, ,H x y z=  be a set with a 3-ary hyperoperation f as follows: 
 

( ) ( ) { } ( )

( ) ( ) { } ( ) { }

( ) ( ) ( ) { }

( ) ( ) ( ) { }

( ) { } ( ) { } ( )

( ) { } ( ) { } ( )

( ) ( ) { } ( ) { }

( ) { }

, , , , , , ,

, , , , , , , ,

, , , , , , ,

, , , , , , ,

, , , , , , , ,

, , , , , , , ,

, , , , , , , ,

, , ,

f x x x x f y y x x z f z x x z

f x x y y f y y y y z f z x y y z

f x x z z f y y z H f z x z x y

f x y x y f y x x y f z y x y z

f x y y x z f y x y x z f z y y H

f x y z y z f y x z y z f z y x H

f x z x z f y z x y z f z z x x y

f x z y y z

= = =

= = =

= = =

= = =

= = =

= = =

= = =

= ( ) ( )

( ) { } ( ) ( ) { }

, , , ,

, , , , , , , , .

f y z y H f z z y H

f x z z x y f y z z H f z z z y z

= =

= = =

 

 
For every ix H∈  ( 1, ,5i = " ), we have 
 

( )( ) ( )( ) ( )( )1 2 3 4 5 1 2 3 4 5 1 2 3 4 5, , , , , , , , , , , ,f f x x x x x f x f x x x x f x x f x x x= =  
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i.e., f is associative, and it is easy to see that f is a 3-ary hypergroup. 
Let ( ),H f  be an n-ary hypergroup. If the value of ( )1 2, , , nf x x x"  is independent on the permutation 

of elements 1 2, , , nx x x" , then ( ),H f  is called a commutative n-ary hypergroup. 
The element a H∈  is called a scalar if 
 

( )1 2, , 1i n
if x a x + =  
 

for all 1 2, , , , ,i i nx x x x H+ ∈" " . 
Element e of an n-ary hypergroup ( ),H f  is called a neutral (identity) element if 

 

1

( , , , , , , )
n ii

f e e x e e
−−

" "���	��
 ���	��
  

 
includes x, for all x H∈  and all 1 i n≤ ≤ . 
 
Lemma 2. 5. Let ( ),H f  be a commutative n-ary hypergroup and a H∈  a scalar element such that 
( ), , ,f a e e a="  for some e H∈ . Then e is a neutral element. 

 
Proof: We have 
 

2 1 1 2 2

( ( , , , , , , , ) ( , ( , , , , , , ) ( , , , , )
n n n n n

f f x a e e e e f x f a e e e e f x a e e
− − − − −

= =" " " " "���	��
 ���	��
 ���	��
 ���	��
 ���	��
 . 

 
Since every element of H is representable in the form ( ), , , ,f x a e e"  and f is commutative, this means that 
e is a neutral element.  
 

It is to be noted that in Lemma 2.4, the condition ( ), , ,f a x x a="  can be replaced by the condition 
( ), , , , , ,f x x a x x a=" " , where a appears at one fixed place 1, ,i n= " . 

 
Proposition 2. 6. If the set of all scalar neutral elements of a given commutative n-ary hypergroup is non-
empty, then it is an n-ary group. 
 
Proof: To prove that the set HN  of all scalar neutral elements is closed under the hyperoperation f, let 

( )1na f e= , where 1, , n He e N∈" . Then 
 

( ) ( ) ( ) ( )1 1 1 1
1 1

( , , , , , , ) ( , , , , , , )n n n n

n ii n ii

f a a x a a f f e f e x f e f e
−− −−

=" " " "���	��
 ���	��
 ��������	�������
 ��������	�������
  

1 1 2 2 1 1
1 1 1 1

1 1 2 2 1 1
1 1 1

1

( , , , ( , , , ( , ( , , , ( , , , )) )))

( , , , ( , , , ( , ( , , , ) )))

(

n n n n
n n n n

n n
n n n

f e e f e e f f e e f e e x

f e e f e e f f e e x

f e

− −
− − − −

− −
− − −

=

=

= =

" " " " " "����	���
 ����	���
 ������	�����
 ����	���


" " " " "����	���
 ����	���
 ������	�����


" 1
1

, , , ) ,
n

e x x
−

="����	���


 

 
which proves that an element ( )1na f e=  is neutral. Therefore, HN  is closed under f. Also, for all 
2, , ,n He e e N∈" , the equation ( )2, ne f x e=  has the solution 

 
( ) 1 1 3 3 2 2

2 2 2 2

( , , , , , , , , , , , , , )n n n n
n n n n

x f e e e e e e e e e⋅ − −
− − − −

= " " " " "����	���
 ������	�����
 ����	���
 ����	���
  

 
which is contained in HN .  
 
Definition 2. 7. Let ( ),H f  be an n-ary hypergroup and B be a non-empty subset of H. Then B is an n-ary 
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subhypergroup of H if the following conditions hold: 
1) B is closed under the n-ary hyperoperation f, i.e., for every ( )1, , n

nx x B∈"  implies that 
( )1, , nf x x B⊆" . 

2) Equation ( )1
1 1, ,i n

i ib f b x b−
+∈  has the solution ix B∈  for every 1 1 1, , , , , ,i i nb b b b b B− + ∈" "  and 

1 i n≤ ≤ . 
 

Definition 2. 8. Let ( ),A f  and ( ),B g  be two n-ary hypergroups. A homomorphism from A to B is a 
mapping : A Bϕ →  such that 
 

( )( ) ( ) ( )( )1 1, , , ,n nf a a g a aϕ ϕ ϕ=" "  
 

holds for all 1, , na a A∈" . 
If ϕ is injective, then it is called an embedding. The map ϕ is an isomorphism if ϕ is injective and 

onto. We say that A is isomorphic to B, denoted by A B≅ , if there is an isomorphism from A to B. 
 
Theorem 2. 9. Let ( ),A f  and ( ),B g  be two n-ary hypergroups and : A Bϕ →  a homomorphism. 
Then 
1) If S is an n-ary subhypergroup of A, then ( )Sϕ  is an n-ary subhypergroup of B, 
2) If K is an n-ary subhypergroup of B such that ( )1 Kϕ φ− ≠ , then ( )1 Kϕ−  is an n-ary subhypergroup 
of A. 
 
Proof: 1) Suppose that ( )1, , ny y Sϕ∈" . Then there exist 1, nx x S∈"  such that  ( )i ix yϕ =  for all 
1 i n≤ ≤ . We have ( )( ) ( )1, , nf x x Sϕ ϕ⊆"  and so ( ) ( )( ) ( )1 , , ng x x Sϕ ϕ ϕ⊆"  or 
( ) ( )1, , ng y y Sϕ⊆" . Therefore the first condition of Definition 2.7 is satisfied. For the second condition 

of Definition 2.7, we consider the equation ( )1
1 1, ,i n

i ib g b x b−
+∈  for all ( )1 1 1, , , , , ,i i nb b b b b Sϕ− + ∈" " . 

Then there exist 1 1 1, , , , , ,i i na a a a a S− + ∈" "  such that ( )a bϕ =  and ( )i ia bϕ = . Since S is an n-ary 
subhypergroup of A, the equation 
 

( )1
1 1, ,i n

i ia f a y a−
+∈  

 
has a solution iy S∈ . From the equation ( )1

1 1, ,i n
i ia f a y a−

+∈  we obtain the equation 
( ) ( )( )1

1 1, ,i n
i ia f a y aϕ ϕ −

+∈  or ( )( )1
1 1, ,i n

i ib g b y bϕ−
+∈ . Therefore the equation ( )1

1 1, ,i n
i ib g b x b−
+∈  has the 

solution ( )iyϕ . 
2)  The proof of this part is similar to (1).  
 

3. QUOTIENT N-ARY HYPERGROUPS 
 
Let ( ),H f  be an n-ary hypergroup. An equivalence relation θ on H is called compatible if 1 1, , n na b a bθ θ" , 
then for all ( )1, , na f a a∈ "  there exists ( )1, , nb f b b∈ "  such that a bθ . An equivalence relation θ is called 
strongly compatible if 1 1, , n na b a bθ θ"  implies that a bθ  for all ( )1, , na f a a∈ "  and ( )1, , nb f b b∈ " . 
 
Theorem 3. 1. Let ( ),H f  be an n-ary hypergroup and θ a compatible relation on H. Then ( )/ , |H f θθ  is 
an n-ary hypergroup where 
 

( ) ( )( ) ( ) ( ){ }1 1| , , | , ,n nf a a a a f a aθ θ θ θ= ∈" " . 
 
Proof: We shall use the following abbreviated notation: the sequence ( ) ( ) ( )1, , ,i i ja a aθ θ θ+ "  will be 
denoted by j

i

a
aθ . Since θ is a compatible relation, then we conclude that |f θ  is well-defined. We show that 

|f θ  is associative. We have 
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( )( ) ( )( ) ( ){ }11 2 1 1 2 1
1 1

1| , | , | , , |n ii n i n
i n i n i

aa a a a n i
a a a a a if f f y y f aθ θ θθ θ θ θ θ θ+ −− − − −

+ +
+ −= ∈∪  

 
( ) ( ) ( ){ }
( ) ( )( ){ }
( ) ( )( ){ }

( )( )1 2 1
1

1 2 1 1
1

1 1 2 1
1

1 1 2 1
1

1

| , , ,

| , ,

| , ,

| , | , .j n
n j

i n n i
n i i

i n i n
n ii

j n j n
n jj

a n j a
a aj

a a f a y a y f a

a a f a f a a

a a f a f a a

f f aθ θ

θ

θ

θ

θ θ− −
+

− − + −
+

− + − −
+

− + − −
+

+ −

= ∈ ∈

= ∈

= ∈

=

 

 
Therefore |f θ  is associative. Now, we consider the equation 
 
                                                             ( ) ( )( )1

1 1
| , ,i n

i
a a
a i ab f xθθ θ θ θ−

+
∈                                                          (∗) 

 
for every 1 1 1, , , , , ,i i na a a a b H− + ∈" " . Since H is an n-ary hypergroup, the equation ( )1

1 1, ,i n
i ib f a x a−

+∈  
has the solution ix H∈ , and so ( )ixθ  is a solution for (∗).  
 

The natural map : /H Hπ θ→ , where ( ) ( )x xπ θ=  is an onto homomorphism. 
 

Definition 3. 2. Let ( ),A f  and ( ),B g  be two n-ary hypergroups and let : A Bϕ →  be a 
homomorphism. Then the kernel ϕ, written kerϕ , is defined by 
 

( ) ( ) ( ){ }2, |ker a b A a bϕ ϕ ϕ= ∈ = . 
 

It is easy to see that kerϕ  is a compatible relation. 
 
Theorem 3. 3. Let ( ),A f  and ( ),B g   be two n-ary hypergroups and let : A Bϕ →  be a 
homomorphism. Then there exists a compatible relation θ on A and a monomorphism : /A Bψ θ →  
such that ψ π ϕ=D . 
 
Proof: We consider kerθ ϕ= . Now, let ( ) /a Aθ θ∈  and define ( )( ) ( )a aψ θ ϕ= .  
 
Theorem 3. 4. Let ρ and θ be compatible relations on an n-ary hypergroup ( ),H f  such that ρ θ⊆ . Then 
there exists a compatible relation µ on ( )/ , |H f ρρ  such that ( )/ /H ρ µ  is isomorphic to /H θ . 
 
Proof: We consider the map : / /H Hϕ ρ θ→  by ( )( ) ( )x xϕ ρ θ= . Since ρ θ⊆ , ϕ is well-defined. 
Clearly ϕ is a homomorphism. Now, by Theorem 3.3, there exists a compatible relation µ and a 
monomorphism ( ): / / /H Hψ ρ µ θ→  such that ψ π ϕ=D , and so ψ is an isomorphism.  

The diagonal relation ∆ on H is the set ( ){ }, |a a a H∈  and the full relation 2H  is denoted by ∇. 
The set of all equivalence relations on a set H, with ⊆ as the partial ordering, is a complete lattice. Let 1θ  
and 2θ  be two equivalence relations on H. It is clear that 1 2 1 2θ θ θ θ∧ = ∩ . Also, we have 
 

( ) ( ) ( )1 2 1 1 2 1 2 1 1 2 1 2θ θ θ θ θ θ θ θ θ θ θ θ∨ = ∪ D ∪ D D ∪ D D D ∪" . 
 

We suppose that analogous results on other products of hyperstructures can be obtained [7], [16]. 
 
Definition 3. 5. Let ( )1 1,A f  and ( )2 2,A f  be two n-ary hypergroups. Define the direct hyperproduct 
( )1 2 1 2,A A f f× ×  to be the n-ary hypergroup whose universe is the set 1 2A A×  and such that for 1ia A∈ , 

2ia A′ ∈ , 1 i n≤ ≤ ,  
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( ) ( ) ( )( ) ( ) ( ) ( ){ }1 2 1 1 1 1 2 1, , , , , | , , , , ,n n n nf f a a a a a a a f a a a f a a′ ′ ′ ′ ′ ′× = ∈ ∈" " " . 
 

The mapping 1 2:i iA A Aπ × → , 1,2i = , defined by ( )( )1 2,i ia a aπ = , is called the projection map on 
the ith coordinate of 1 2A A× . For 1,2i = , the mapping 1 2:i iA A Aπ × →  is an onto homomorphism. 
Furthermore, we have 
i) 1 2ker kerπ π = ∆∩ , 
ii) 1ker π  and 2ker π  permute,  
iii) 1 2ker kerπ π∧ = ∇ , 
where 
 

( ) ( )( ) ( ) ( ){ }1 2 1 2 1 2 1 2, , , | , , , 1,2i i iker a a b b a a b b iπ π π= = = . 
 

Note that 
 

( ) ( )( ) ( )( ) ( )( )1 2 1 2 1 2 1 2, , , , ,i i i i ia a b b ker a a b b a bπ π π∈ ⇔ = ⇔ = . 
 

Thus 1 2ker kerπ π = ∆∩ . Also, if ( )1 2,a a , ( )1 2,b b  are any two elements of 1 2A A× , then 
 

( ) ( )1 2 1 1 2, , ,a a ker a bπ  
 

( ) ( )1 2 2 1 2, , ,a b ker b bπ  
 

so 1 2ker kerπ π∇ = D . But, then 1ker π  and 2ker π  permute, and their joining is ∇. 
 
Definition 3. 6. Let ( ),H f  be an n-ary hypergroup. A compatible relation θ on H is a factor compatible 
relation if there is a compatible relation *θ  on H such that * *,θ θ θ θ= ∆ ∧ = ∇∩  and θ permutes with 
*θ . 

The pair θ , *θ  is called a pair of factor compatible relations on H. 
 
Theorem 3. 7. If θ , *θ  is a pair of factor compatible relations on H, then 
 

*/ /H H Hθ θ≅ ×  
 
under the map ( ) ( ) ( )( )*,a a aψ θ θ= . 
 
Proof: If ,a b H∈  and ( ) ( )a bψ ψ= , then ( ) ( )a bθ θ=  and ( ) ( )* *a bθ θ= , so ( ) *,a b θ θ∈ ∩ ; hence 
a b= . This means that ψ is injective. Next, given ,a b H∈ , there is c H∈  such that a cθ  and *c bθ , hence 
( ) ( ) ( )( ) ( ) ( )( )* *, ,c c c a bψ θ θ θ θ= = , so ψ is onto. Finally, for 1, , na a H∈" , we show that 

 
( )( ) ( ) ( ) ( )( )*1 1, , | | , ,n nf a a f f a aθ θψ ψ ψ= ×" " . 

 
We have 
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( )( ) ( ) ( ){ }
( ) ( )( ) ( ){ }
( ) ( )( ) ( ) ( ){ }
( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )( )
( ) ( ) ( )( )

*

*

*

1 1

*
1

*
1 1

1 1

1 1

1

, , | , ,

, | , ,

, | , , , , ,

| , , | , ,

| | , , , ,

| | , ,

n n

n

n n

n n

n n

n

f a a a a f a a

a a a f a a

a b a f a a b f a a

f a a f a a

f f a a a a

f f a a

θ θ

θ θ

θ θ

ψ ψ

θ θ

θ θ

θ θ θ θ

θ θ θ θ

ψ ψ

∗ ∗

∗ ∗

= ∈

= ∈

⊆ ∈ ∈

⊆ ×

= ×

= ×

" "

"

" "

" "

"

"

 

 
and so ( )( ) ( ) ( ) ( )( )*1 1, , | | , ,n nf a a f f a aθ θψ ψ ψ⊆ ×" " . 

Conversely, suppose that ( ) ( )( ) ( ) ( ) ( )( )*
*

1, | | , , nx y f f a aθ θθ θ ψ ψ∈ × " , then 
( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ){ }*

* * * * *
1 1, , | | , , , | , ,n nx y a b a f a a b f a aθ θθ θ θ θ θ θ θ θ θ θ∈ ∈ ∈" " . Now 

there exists c H∈  such that x cθ  and *c yθ , and so ( ) ( )( ) ( ) ( )( )*, ,x y c cθ θ θ θ=  where ( )1, , nc f a a∈ " . 
Therefore ( ) ( )( ) ( )( )1, , , nx y f a aθ θ ψ∈ " .  
 

4. FUNDAMENTAL N-ARY GROUPS 
 
If ( ),H f  is an n-ary hypergroup, then β̂  denotes the transitive closure of the relation 

1
k

k
β β

≥
= ∪ , where 

1β  is the diagonal relation, i.e., ( ){ }1 , |x x x Hβ = ∈  and for every integer 1k > , kβ  is the relation 

defined as follows: 
 

kx yβ  if and only if { } ( ),x y f ⋅⊆ , 
 

where ( )f ⋅  means that ( )kf  for some 1,2,k = ". When 1x yβ  (i.e., x y= ) then we write { } ( )0,x y f⊆ , we 
define *β  as the smallest equivalence relation such that the quotient ( )* */ , /H fβ β  is an n-ary group, 
where */H β  is the set of all equivalence classes. The *β  is called fundamental equivalence relation. The 
equivalence relation *β  was first introduced on hypergroups by Koskas [17] and studied mainly by 
Corsini [6] concerning hypergroups, Vougiouklis [16] and Davvaz [7] concerning Hv-structures. 
 
Theorem 4. 1. The fundamental relation *β  is the transitive closure of the relation β, i.e., ( * ˆβ β= ). 
 
Proof: First we show that the quotient set ˆ/H β  is an n-ary semigroup. The n-ary operation ˆ/f β  in ˆ/H β  
is defined in the usual manner: 
 

( ) ( )( ) ( ) ( ) ( )( ){ }1 1
ˆ ˆ ˆ ˆ ˆ ˆ/ , , | , ,n nf x x y y x xβ β β β β β= ∈" "  

 
for all 1, , nx x H∈" . Suppose ( ) ( )1 1

ˆ ˆ, , n na x a xβ β∈ ∈" . Then we have 
1 1
ˆa xβ  if there exist 

111 1 1, , mx x +"  with 11 1x a= , 
11 1 1mx x+ =  such that 

 
{ } ( ) ( )

1 1 11 1 1 1 1, 0i i kx x f i m+ ⊆ < ≤  
 
ˆ
n na xβ  if there exist 1 1, ,

nn nmx x +"  with 1n nx a= , 1nnm nx x+ =  such that 
 

{ } ( ) ( )1, 0
n n nni ni k n nx x f i m+ ⊆ < ≤ . 

 
Therefore, we obtain 
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{ }( ) ( )

{ }( ) ( )

{ }( ) ( )

1 1 1

1 2 2 2

1 2

1 1 1 21 1 1 1

1 1 2 2 1 1 2 2

1 21 1 1

, , , , 1 ,

, , , , 1 ,

,, , , , 1 .
n n n

i i n k

m i i n k

m m ni ni k n n

f x x x x f i m

f x x x x f i m

f x x x x f i m

+

+ +

+ +

⊆ ≤ ≤

⊆ ≤ ≤

⊆ ≤ ≤

"

"

# #

"

 

 
So, every element ( ) ( )11 21 1 1 2, , , , , ,n nz f x x x f a a a∈ =" "  is equivalent to every element 

( ) ( )
1 21 1 2 1 1 1 2, , , , , ,

nm m nm nt f x x x f x x x+ + +∈ =" " . Therefore 
 

( ) ( )( )1
ˆ ˆ ˆ/ , , nf x xβ β β"  

 
is singleton. So we can write ( ) ( )( ) ( )1

ˆ ˆ ˆ ˆ/ , , nf x x yβ β β β="  for all ( ) ( )( )1
ˆ ˆ, , ny f x xβ β∈ " . 

Moreover, since f is associative, it is obvious that ˆ/f β  is associative, and consequently, ˆ/H β  is an 
n-ary semigroup. 

Now, let θ be an equivalence relation on H such that /H θ  is an n-ary semigroup. Denote ( )aθ  the 
class of a. Then for all 1, nx x H∈" , ( ) ( )( ) ( )1| , , nf x x yθ θ θ θ="  for all ( ) ( )( )1 , , ny f x xθ θ∈ " . But 
also, for every 1, nx x H∈"  and ( )i iA xθ⊆  ( 1, ,i n= " ) we have 

 
( ) ( )( ) ( )( ) ( )( )1 1 1| , , , , , ,n n nf x x f x x f A Aθ θ θ θ θ= =" " " . 

 
Therefore ( ) ( )( )kx fθ θ=  for all 0k ≥  and for all ( )kx f∈ . So for every a H∈ , ( )x aβ∈  implies 

( )x aθ∈ . But θ is transitively closed, so we obtain ( )ˆx aβ∈  implies ( )x aθ∈ . Hence, the relation β̂  is 
the smallest equivalence relation on H such that ˆ/H β  is an n-ary semigroup, i.e., *β̂ β= .  
 
Theorem 4. 2. *β  is a strongly compatible relation. 
 
Proof: If * *

1 1, , n na b a bβ β" , then ( ) ( ) ( ) ( )* * * *
1 1 , , n na b a bβ β β β= =" . For every ( )1, , na f a a∈ "  and 

( )1, , nb f b b∈ "  we have 
 

( ) ( )( )

( ) ( )( )
( ) ( )( )

( )( )

* *
1

* * *
1

* * *
1

*
1

, ,

/ , ,

/ , ,

, ,

n

n

n

n

a f a a

f a a

f b b

f b b

β β

β β β

β β β

β

=

=

=

=

"

"

"

"

 

                                                                   ( )* .bβ=  
 
Theorem 4. 3. Let ( ),A f  and ( ),B g  be two n-ary hypergroups and let *

Aβ , *
Bβ  and *

A Bβ ×  be fundamental 
equivalence relations on A, B and A B×  respectively. Then 
 

* * */ / /A B A BA B A Bβ β β×× ≅ × . 
 
Proof: First we define the relation β�  on A B×  as follows: 
 

( ) ( ) *
1 1 2 2 1 2, , Aa b a b a aβ β⇔�  and *

1 2Bb bβ . 
 

β�  is an equivalence relation. We define h on /A B β× �  as follows: 
 

( ) ( )( ) ( )1 1, , , , ,n nh a b a b a bβ β β=� � �"  
 

for all ( ) ( )( )* *
1 , ,A A na f a aβ β∈ " , ( ) ( )( )* *

1 , ,B B nb g b bβ β∈ " . Since f g are associative, we see that h is 
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associative, and consequently, /A B β× �  is an n-ary semigroup. Now let θ be an equivalence relation on 
A B×  such that /A B θ×  is an n-ary group. Similar to the proof of Theorem 4.1, we get 
 

( ) ( ) ( ) ( )1 1 2 2 1 1 2 2, , , ,a b a b a b a bβ θ⇒� . 
 

Therefore the relation β�  is the smallest equivalence relation on A B×  such that /A B β× �  is an n-ary 
group, i.e., *

A Bβ β ×=� . Now we consider the map * * *: / / /A B A BA B A Bϕ β β β ×× → ×  by 
 

( ) ( )( ) ( )* * *, ,A B A Ba b a bϕ β β β ×= . 
 

It is easy to see that ϕ is an isomorphism. 
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