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Abstract – Scott and Szewczyk in Technometrics, 2001, have introduced a similarity measure for two 
densities 1f  and 2f , by 
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1 2( , )sim f f  has some appropriate properties that can be suitable measures for the similarity of 1f  and 2f . 

However, due to some restrictions on the value of parameters and the kind of densities, discrete or continuous, 
it cannot be used in general. 

The purpose of this article is to give some other measures, based on modified Scott's measure, and 
Kullback information, which may be better than 1 2( , )sim f f  in some cases. The properties of these new 
measures are studied and some examples are provided. 
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1. INTRODUCTION 
 

Scott and Szewezyk [1] have introduced a similarity measure for two densities, which is defined and 
denoted by 
 
                                                          1 2

1 2
1 1 2 2

,( , )
, ,
f fsim f f

f f f f
< >=

< >< >
 ,                                                    (1) 

 
where 1 2 1 1 2 2, ( , ) ( , )f f f x f x dxθ θ

+∞

−∞
< >= ∫ , if 1f  and 2f  are continuous densities, and 

1 2 1 1 2 2, ( , ) ( , ),
x

f f f x f xθ θ< >=∑  if 1f  and 2f  are discrete densities. 
Their motivation for giving this measure was to reduce the number of components in a finite mixture 

that you find, for example, in McLachlan and Peel [2]. This similarity measure by itself can be used for 
different aspects of statistical inference. 

It is easy to show that 1 2( , )sim f f  has the following appropriate properties: 
a) (Symmetry) 1 2( , )sim f f = 2 1( , )sim f f  
b) (By Cauchy-Schwartz) 1 20 ( , ) 1sim f f≤ ≤  
c) 1 2( , )sim f f =1 if and only if 1f = 2f  
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When 1 2( , )sim f f  is close to one, we can assume that 1 2f f= . 
It is shown in [1] that when 1f and 2f  are normal densities, 1 2( , )sim f f  has a closed–form 

expression. However, we found that when 1f  and 2f  are 1( , )Bin n θ  and 2( , )Bin n θ , or 1( )Poiss θ  and 
2( )Poiss θ , 1 2( , )sim f f  cannot be computed easily. On the other hand, when 1f  and 2f  are 
1( ,1)Beta θ and 2( ,1)Beta θ , we have 

 

                               1 2
1 2 1 2

1 2

(2 1)(2 1)
( , ) , 0.5, 0.5

1
sim f f

θ θ θ θ
θ θ
− −= ≥ ≥
+ −

                                           (2) 
 

Thus, we should have some restriction on the parameters. The above examples show that 1 2( , )sim f f , 
due to the nature of the densities, cannot be used in general. In this article, we introduce two new 
measures, which have more general scopes and have the same properties as measure sim(.,.). In Section 2 
a modified and new version of 1 2( , )sim f f  is introduced. Section 3 is devoted to the Kullback similarity 
measure based on the known Kullback information. In Section 4 we study these similarity measures in 
general, for an exponential family. Finally these similarity measures are compared with each other by 
some numerical examples.  
 

2. A MODIFIED VERSION OF 1 2( , )sim f f  
 
We define and denote a modified and new version of 1 2( , )sim f f , for densities 1f  and 2f , by 
 
                                                        1 2 1

1 2 1 2
2 1

( , ) [ , , ]f fsimm f f f f
f f

−= < >< >                                                    (3) 
 

1 2( , )simm f f  has the same properties as 1 2( , )sim f f , i.e., 
a) 1 2( , )simm f f = 2 1( , )simm f f  
b) 0 < 1 2( , ) 1simm f f ≤  
c) 1 2( , )simm f f =1 if 1 2f f=  
The properties (a) and (c) are obvious and (b) is concluded from 
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where [.]iE  means expectation of a random variable with respect to if . 

By some numerical examples in Section 5, it is conjectured that 1 2 1 2( , ) ( , )simm f f sim f f≤ , but it is 
not easy to investigate this conjecture. However, the following examples show that the computation of 

1 2( , )simm f f is quicker than the computation of 1 2( , )sim f f for many densities. 
 

Example 1. If 1f  and 2f  are 1( )Poiss θ  and 2( )Poiss θ , then 
 

2
1 2 1 2

1 2
1 2

( )( )
( , ) exp[ ],simm f f

θ θ θ θ
θ θ

+ −= −  
 

while 1 2( , )sim f f  is too complicated. 
 
Example 2. If 1f  and 2f  are 1( , )Bin n θ and 2( , )Bin n θ , then 
 

2 2 4
2 1 2 1 2 1

1 2
1 1 2 2 1 2 1 2

( ) ( ) ( )
( , ) [1 ]

(1 ) (1 ) (1 )(1 )
nsimm f f

θ θ θ θ θ θ
θ θ θ θ θ θ θ θ

−− − −= + + +
− − − −

. 

 
For 1 2θ θ=  we have 1 2( , )simm f f  =1, i.e., 1 2f f= . 
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Example 3. If 1f  and 2f are two components of the following mixture 
 

( )

1

1( ) ( )
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i
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i i
ii

f x p e I x
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β α
β

−−

=
= ≥∑ , 

 
then 
 

1 2( , )simm f f = 2 1 1 2 1 2 1 2

1 2 1 2

(2 )(2 ) ( )( )
exp( )

β β β β β β α α
β β β β

− − − −− . 

 
3. KULLBACK SIMILARITY MEASURE 

 
This measure, which is based on Kullback information, is defined and denoted by 
 
                                                  1

1 2 1 2 2 1( , ) [1 ( // ) ( // )]simk f f D f f D f f −= + +  ,                                            (4) 
 

where 
 

1 1
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2 2
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D f f f x dx E
f x f X

+∞

−∞

= =∫ , 

 
is non-negative and zero if 1 2f f= (see Zeevi and Meir [3]and Schervish [4] ). 1 2( , )simk f f  has the same 
properties as 1 2( , )sim f f and 1 2( , )simm f f , i.e., 
a) 1 2( , )simk f f = 2 1( , )simk f f  
b) 1 20 ( , ) 1simk f f< ≤  
c) 1 2( , )simk f f =1 if 1 2f f=  
The proof of (b) is obtained from the fact that 1ln 1z

z
≥ −  for 0z >  and as a result 
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Theorem: we have 
 
                                                                1 2( , )simm f f ≤ 1 2( , )simk f f .                                                            (5) 

 
Proof: 
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1 2 1 1
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f X f X
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and similarly we have 
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Therefore, using 1ln 1z

z
≥ − , we obtain 
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1

1 2[ ( , )]simm f f − 1
1 21 ln[ ( , )]simk f f −≤ +  

 
1 2( , )simm f f ≤ 1 2( , )simk f f . 

 
Inequality (5) may say that 1 2( , )simm f f  better shows the similarity of 1f  and 2f rather than 1 2( , )simk f f . 
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Example 4. If 1f  and 2f are 1( )Poiss θ  and 2( )Poiss θ , then 
 

1 2( , )simk f f = 1 1
1 2

2
[1 ( )ln( )]θθ θ

θ
−+ − . 

 
Example 5. If 1f  and 2f are 2

1 1( , )N µ σ  and 2
2 2( , )N µ σ , we have 

 

1 2( , )simk f f =
2 2 2 2 2 2
1 2 1 2 1 2 1

2 2
1 2

( ) ( )( )
[1 ]

2
σ σ σ σ µ µ

σ σ
−− + + −+ . 

 
Example 6. If 1f  and 2f are 1( , )Bin n θ and 2( , )Bin n θ , then 
 

1 2( , )simk f f = 2 1 1
2 1

1 2

(1 )
[1 ( ) ln ]

(1 )
n

θ θθ θ
θ θ

−−+ −
−

. 

 
We observe that in the above examples, as the parameters disperse, the similarity measures go to 

zero. 
 

4. SIMILARITY MEASURES FOR AN EXPONENTIAL FAMILY 
 
Definition: A family of distributions on the real line with probability mass function or density 
( / ),f x θ θ ∈ Θ ( θ  may be a vector) is said to be an exponential family of distributions, if ( / )f x θ  is of the 

following form: 
 

                                                          
1

( / ) ( ) ( )exp[ ( ) ( )],
k

i i
i

f x c h x t xθ θ π θ
=

= ∑                                                 (6) 

 
where 
 

1

1
( ) { ( )exp[ ( ) ( )]} ,

k

i i
x i

c h x t xθ π θ −

=
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in the discrete case and 
 

1

1
( ) { ( )exp[ ( ) ( )] } ,

k

i i
ix

c h x t x dxθ π θ −

=
= ∑∫  

 
in the absolutely continuous case (see Ferguson [5] and Lehmann [6]). 

The following table gives the values of similarity measures for two densities, 1f  and 2f , from an 
exponential family. 
 

Table 1. Similarity measures for an exponential family 
 

Measure Value 

1 2( , )sim f f  
),(1),(1

),(1

2211

21

θθθθ
θθ

CC
C  

1 2( , )simm f f  1 2 2 1

1 2

2( , ) 2( , )
( ) ( )

C C
C C
θ θ θ θ

θ θ
 

1 2( , )simk f f  
1 2

1
1 2

1
{1 [ ( ) ( )][ ( ( )) ( ( ))]}

k

i i f i f i
i

E t x E t xπ θ π θ −

=
+ − −∑  

 
The notations in Table 1 are defined as follows: 
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2

1 2 1 2
1
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1 2 1 2
1
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2
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=
= +∑∫ . 

 
[ ( )] ln[ ( )]; 1,2.

( )jf i j
i j

E t X C jθ
π θ
∂= − =

∂
 

 
5. SOME NUMERICAL EXAMPLES 

 
If 1f  and 2f  are 1( )Poiss θ  and 2( )Poiss θ , we obtain 
 

1 2
1 2

0
1 2

1 22 2
1 2

0 0
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! !
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! ! ! !

x

x

x x

x x

x x
sim f f

x x x x
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2

1 2 1 2
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θ θ θ θ
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+ −= −  
 

1 2( , )simk f f = 1 1
1 2

2
[1 ( )ln( )]θθ θ

θ
−+ − . 

 
If 1f  and 2f  are 1( ,1)N θ and 2( ,1)N θ , we have 
 

2
1 2

1 2
( )

( , ) exp( ).
4

sim f f
θ θ−= −  

 
1 2( , )simm f f =

2
1 2exp[ 2( ) ].θ θ− −  

 

1 2 2
1 2

1( , ) .
1 ( )

simk f f
θ θ

=
+ −

 

 
For different values of 1θ  and 2θ  we obtain the following tables by using Maple. These tables give 

the different values of measures for numerically comparing them and determining the approximate 
equality of 1f  and 2f . For example, for 1θ =0.50 and 2θ =0.45 in Table 2, we have 1 2( , )simk f f =0.99476. 
This shows that 1f  and 2f  are close to each other. 
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Table 2. Similarity measures for two Poisson Densities 

1 0.50θ =  
 

              

      

 

 
 
 
 

Table 3. Similarity measures for two Poisson Densities 
1 1.00θ =  

 
 

 

 

 

 

 
 

Table 4. Similarity measures for two Normal Densities 
1θ =0.50 

 

2θ  
 
Measures  

0.50 0.80 1.10 1.40 2.00 

1 2( , )sim f f  1.0000 0.9778 0.9139 0.8167 0.5698 

1 2( , )simm f f  1.0000 0.8353 0.4868 0.1979 0.0111 

1 2( , )simk f f  1.0000 0.9174 0.7353 0.5525 0.3077 
 

Table 5. Similarity measures for two Normal Densities 
1 1.00θ =  

 
2θ  

 
Measures 

0.80 0.85 0.90 0.95 1.00 

1 2( , )sim f f  0.9900 0.9944 0.99861 0.9975 1.00000 

1 2( , )simm f f  0.9231 0.9560 0.97778 0.9802 1.00000 

1 2( , )simk f f  0.9615 0.9780 0.98901 0.9901 1.00000 
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