DISTRIBUTION OF NATURAL RADIONUCLIDES ON COASTS OF BUSHEHR, PERSIAN GULF, IRAN^{*}

M. R. ABDI¹, H. FAGHIHIAN^{2**}, M. KAMALI³, M. MOSTAJABODDAVATI¹ AND A. HASANZADEH¹

¹Department of Physics, University of Isfahan, Isfahan, 81747-73441, I. R. of Iran ²Department of Chemistry, University of Isfahan, Isfahan, 81747-73441, I. R. of Iran, E-mail: h.faghih@sci.ui.ac.ir ³Central Laboratory, University of Isfahan, Isfahan, 81747-73441, I. R. of Iran

Abstract – A reconnaissance study has been made on the distribution of ²³⁸U, ²³²Th, ⁴⁰K, ¹³⁷Cs and geochemical features in soil and sediment samples at various locations on the coast of Bushehr in the Persian Gulf. In this study a gamma-ray spectrometer based on a High Purity Germanium detector and a PC based MCA and X-ray fluorescence (XRF) method were used. Estimation of the measured radionuclide content have been made for the absorbed dose rate of gamma radiation. The Activity concentration (A), the equivalent radium (R_{eq}), and the external hazard index (H_{ex}) which resulted from the natural radionuclides in soil and sediment are also calculated. The base-line data of radionuclides and heavy metals in view of the commissioning of nuclear and non-nuclear industries for the coast of Bushehr, which does not yet exist, was obtained.

Activity concentration levels due to radionuclides were measured in 50 soil and sediment samples collected from this region. The measurement was performed with respect to their gamma radioactivity for a counting time of 24 hour intervals. From the accumulated spectra, activity concentration were determined for ⁴⁰K (range from 108 to 520 Bq Kg⁻¹), ¹³⁷Cs (from 6 to 40 Bq Kg⁻¹), ²³⁸U (from 12 to 75 Bq Kg⁻¹) and ²³²Th (from 8 to 33 Bq Kg⁻¹) with the lowest limit detection (LLD) of, respectively, 68, 3.2, 4.3 and 4.3 Bq Kg⁻¹. The dose rate from ambient air at the soil ranges was between 14 to 44 nGy h⁻¹ with an average of 30.56 ± 7.86 nGy h⁻¹.

Keywords – Natural radionuclide, Gamma spectroscopy, Uranium, Thorium, Cesium, Potassium, HPGe, Soil, Bushehr, Persian Gulf

1. INTRODUCTION

Radionuclides have been an essential constituent of the earth since its creation. The earth is still being heated through the decay of long-lived natural radionuclides, e.g. uranium, thorium and potassium which occur in nature as a complex of oxides, hydrated oxides, carbonates, phosphates, sulphates, vanadates and silicates [1]. Using natural or artificial radionuclides require an understanding of their environmental behavior. Such knowledge is needed for their effective application as in-situ tracers and for the estimation of human health risks. Gamma radiation emitted from naturally occurring radioisotopes, called terrestrial background radiation, represents the main external source of irradiation of the human body. Natural environmental radioactivity and the associated external exposure due to gamma radiation depend primarily on the geological and geographical conditions and level of the soils of each region in the world [2].

The advent of nuclear science has resulted in the proliferation of nuclear applications and in the

^{*}Received by the editor September 12, 2005 and in final revised form December 10, 2006

^{**}Corresponding author

increase of environmental radioactivity levels. Furthermore, oil industries, mining activities, and intensified navigation activities are non-nuclear pollution sources that could have serious impacts on the marine environment and coastal ecosystems.

The first study on the region of the Persian Gulf was performed by Preusser, et al [3]. They used ²³⁰Th/²³⁴U and the ESR method for age determination beyond the limits of radiocarbon dating. Also, the study on the region of the Northwestern coasts of the Persian Gulf was performed by Abdi, et al [4]. They measured the distribution of radionuclides. In this research a base-line map of the area was prepared. This map will be used as reference information to assess any changes in the background level due to geological processes, the nuclear reactor of Bushehr and artificial impacts on the environment.

Gamma-ray spectrometry has been used in various studies like soil and sediment radioactivity control and environmental impact evaluation. In order to measure the activity of a sample it is necessary to know the system detection efficiency. This is obtained by employing standard sources which have physical dimensions, chemical composition and density similar to those of the samples. With regard to the geometry, the deviation can be reduced to almost zero if the standard Marinelli beakers are used for standard sources and the samples [5].

2. MATERIALS AND METHODS

a) Study of the region

The Persian Gulf, located in the south of Iran, is a shallow semi-enclosed and narrow basin connected to the Indian Ocean by the narrow Hormuze Strait in the east. The study area is in the northern part of the Persian Gulf (Fig. 1). The surface circulation is from the Hormuz Strait northwest along the Iranian coast. This region has about 350 km of coastline. The topography of the area is of low to moderate relief, generally composed of plateaus. Important rivers discharged are Rood Shoor, Dalke, and Mand. This area has a hot and dry climate with temperatures between 20 and 45 °C [6]. The studied area is important from environmental, economical, and recreational points of view. Commercial and subsistence fisheries provide a living for a large sector of the coastal population in Bushehr province. Also the underconstruction nuclear power plant of Iran is placed in this region.

Fig. 1. Map of the Persian Gulf area indicating the location of relevant sites mentioned in the text

Iranian Journal of Science & Technology, Trans. A, Volume 30, Number A3

b) Sampling and samples preparation

The samples were collected from the beach face along the entire area of study, which extended from Nayband (Latitude 27^{0} , 21', 35.3" N) to Deylam (Latitude 30^{0} , 03', 57.5" N). The area was divided into 25 sites. From each site, 10 samples were taken with a distance of about 10-15 m and 10 a cm subsurface. Fifty soil and sediment samples were collected from January to March 2004. The beach sediments in the study area are predominantly sand.

Surficial samples (3 kg) were scooped using a template of a 15×15 cm² area and a 5 cm depth and collected in polythene bags according to the method described by Ivanovich and Harmon, [7]. Samples with a particle size greater than 2 cm were discarded. For radiometric analysis, the samples were first dried in air for 6 days, pulverized, homogenized, and sieved through a 170 mesh sieve. The samples were then dried at 110 °C [8]. Plastic containers were used for packing the samples. The container material was chemically resistant for the elements and compounds of soil and sediment.

c) Analytical techniques

The dried samples were transferred to polyethylene Marinelli beakers of 600 cm³ capacity and sealed. They were left for at least 5 weeks to reach secular equilibrium between radium and thorium, and their progenies. ²³⁸U series, ²³²Th series, ⁴⁰K and ¹³⁷Cs specific activities were measured using gamma-ray spectrometry employing a coaxial hyper- germanium (HPGe) detector with a beryllium window (GMX-10180 ORTEC model) and a multichannel analyzer of 8192 channels. Spectrum analysis was done by using Maestro computer software. The resolution was 1.8 keV for the 1332.5 keV gamma-ray transition of ⁶⁰Co. A shield containing lead bricks of 5 cm thickness, iron plates of 2 mm thickness, copper plates of 2 mm thickness, and polyethylene plates of 3 cm thickness were used to reduce background. The gamma spectrometers were calibrated using ⁶⁰Co, ²²⁶Ra point sources, reference material RG-Set, IAEA-Soil-6 and mixed gamma (Table 1) in the same geometry as the samples [5].

Radionuclide	Recommended Value	Standard deviation
	Bq kg ⁻¹	Bq kg ⁻¹
¹³³ Ba	15.22	± 0.172
²⁴¹ Am	13.86	± 0.142
¹⁵² Eu	71.66	± 0.601
²⁴ Na	25.11	± 0.201

Table 1. Quality control measurements using the reference soil material mixed gamma that has been treated as an "unknown" sample [5]

The gamma-ray transition of 1460.7 keV was used to determine ⁴⁰K and 661.6 keV for ¹³⁷Cs. The gamma-ray lines of 186.1 keV (²²⁶Ra), 295.1, 235.0 keV (²¹⁴Pb) and 609.3, 768.4, 934.0, 1120.3, 1729.9, 1764.7, 2204 keV (²¹⁴Bi) were used to determine ²³⁸U. The gamma-ray lines of 463.1, 911.1, 968.9 keV (²²⁸Ac), 727.3, 1620.7 keV (²¹²Bi) and 860.1, 2614.7 keV (²⁰⁸Tl) were used to determine the ²³²Th series. In order to determine the background distribution in the environment around the detector, a blank sample was counted in the same manner and geometry. The counting time of 86400 sec was set for activity and background. The background spectra were used to correct the net peak areas of the gamma-rays of the measured isotopes.

The samples were also studied by X-ray fluorescence spectrometry (model S4PIONEER BRUKER) to obtain their elemental and matrix compositions. The loss on ignition (LOI) of the samples was also measured by the gravimetry method.

3. RESULTS AND DISCUSSION

Table 2 gives values of the international recommended limit. Activity concentration of ²³⁸U series, ²³²Th series, ⁴⁰K and ¹³⁷Cs (Bg.kg⁻¹ dry weight) in the soil and sediment samples are shown in Table 3. Table 4 gives the chemical composition of the sample as oxides content. From Table 2 and 3 it is concluded that the average concentration of ²³⁸U, except for some of the samples, is higher than the International limit. The measured activities differed widely, as their presence in marine environments depends on their physical, chemical and geo-chemical properties and the pertinent environment [9]. This indicates that the radioactive minerals are distributed erratically. The same observation was made on the sample studies in Portugal and Malaysia (Table 5) [5, 7, 10]. The mean activity concentration of ²³²Th is lower than the reported limit [10], whereas that of ⁴⁰K is lower than the International limit. This could be attributed to the presence of Muscovite in the sample. This is confirmed by chemical analysis of the samples which shows high K₂O content. The samples studied in Turkey, Bangladesh and Malaysia showed the same behavior [10]. The mean activity concentration of ²³⁸U is higher than the reported limit. As to artificial radioactivity, the ¹³⁷Cs isotope was clearly observed in some of the samples. The highest recorded value of ¹³⁷Cs was 45 BqKg⁻¹. This artificial radioactivity may have different origins. Nuclear weapons, bomb tests and accidents are the most probable origin. The presence of ¹³⁷Cs in the studied samples can be considered as being due to any single one or any combination of these sources [11]. To be more precise, it can be readily deduced that the ¹³⁷Cs concentration is attributed to global fallout.

Table 2. International UNSCEAR data [10]

Radionuclide	International UNSCEAR
²³⁸ U	35 Bq kg ⁻¹
²³² Th	35 Bq kg ⁻¹
⁴⁰ K	370 Bq kg ⁻¹
Dose rate	55 nGy/h

Table 3. The average values of activity concentration ²³⁸U, ²³²Th, ⁴⁰K, ¹³⁷Cs

Sam	Cada	N(Dog Min S)	E(Deg Min S)	¹³⁷ Cs	⁴⁰ K	²³² Th	²³⁸ U
Ser	Code	N(Deg.Min.S	E(Deg.Min.5)	(Bq/kg)	(Bq/kg)	(Bq/kg)	(Bq/kg)
1	B-1-S	29, 04,15	50, 53, 57	< LLD	366 ± 23	16 ± 0.7	54 ± 2
2	B-1-R	29, 04,17	50, 53, 53	< LLD	360 ± 22	18 ± 0.8	51 ± 2
3	B-2-S	29, 19, 07	51, 05, 41	< LLD	360 ± 22	27 ± 1.3	48 ± 1.8
4	B-2-R	29, 19, 10	51, 05, 39	0	330 ± 20	27 ± 1.3	34 ± 1.3
5	B-3-S	29, 27, 52	50, 38, 18	< LLD	375 ± 23	19 ± 0.9	38 ± 1.4
6	B-3-R	29, 27, 55	50, 38, 14	< LLD	450 ± 28	33 ± 1.5	46 ± 1.7
7	B-4-S	29, 33, 47	50, 30, 32	0	365 ± 23	24 ± 1.1	75 ± 2.8
8	B-4-R	29, 33, 55	50, 29, 32	0	270 ± 17	18 ± 0.8	24 ± 0.9
9	B-5-S	29, 32, 31	50, 48, 12	7 ± 0.3	280 ± 17	25 ± 1.2	69 ± 2.6
10	B-5-R	29, 32, 31	50, 48, 12	0	180 ± 11	15 ± 0.7	65 ± 2.5
11	B-6-S	28, 54, 42	50, 48, 56	< LLD	240 ± 15	15 ± 0.7	45 ± 1.7
12	B-6-R	28, 54, 42	50, 48, 55	< LLD	375 ± 23	19 ± 0.9	38 ± 1.4
13	B-7-S	28, 49, 34	50, 54, 11	6 ± 0.3	315 ± 19	21 ± 1	34 ± 1.3
14	B-7-R	28, 49, 22	50, 54, 10	0	170 ± 10	9 ± 0.4	15 ± 0.6
15	B-8-S	28, 45, 3.4	51,02, 57	< LLD	188 ± 12	14 ± 0.6	52 ± 2
16	B-8-R	28, 45, 1.5	51, 02, 60	0	200 ± 12	12 ± 0.6	21 ± 0.8
17	B-9-S	28, 40, 51	51, 04, 20	0	228 ± 14	17 ± 0.8	55 ± 2
18	B-9-R	28, 40, 53	51, 04, 21	0			
19	B-10-S	28, 34, 12	51, 04, 55	10 ± 0.5			
20	B-10-R	28, 34, 19	51, 04, 53	0			

Ser	Code	N(Deg.Min.S	E(Deg.Min.S)	¹³⁷ Cs (Bq/kg)	⁴⁰ K (Bq/kg)	²³² Th (Bq/kg)	²³⁸ U (Bq/kg)
21	B-11-S	28, 30, 41	51, 05, 39	< LLD	$2\overline{19\pm13}$	17 ± 0.8	44 ± 1.7
22	B-11-R	28, 30, 43	51, 05, 33	0	520 ± 32	28 ± 1.3	65 ± 2.5
23	B-12-S	28, 21, 40	51, 10, 37	< LLD	237 ± 15	12 ± 0.6	24 ± 0.9
24	B-12-R	28, 21, 36	51, 10, 29	0	477 ± 29	30 ± 1.4	41 ± 1.6
25	B-13-S	28, 17, 17	51, 14, 3	6 ± 0.3	224 ± 14	15 ± 0.7	39 ± 1.5
26	B-13-R	28, 17, 14	51, 14, 02	0	219 ± 13	16 ± 0.7	35 ± 1.3
27	B-14-S	28, 09, 60	51, 18, 27	< LLD	108 ± 7	10 ± 0.5	40 ± 1.5
28	B-14-R	28, 09, 33	51, 17, 01	< LLD	265 ± 16	14 ± 0.6	43 ± 1.6
29	B-15-S	27, 57, 03	51, 32, 01	< LLD	267 ± 16	15 ± 0.7	22 ± 0.8
30	B-15-R	27, 58, 55	51, 32, 27	<lld< td=""><td>310 ± 19</td><td>17 ± 0.8</td><td>34 ± 1.3</td></lld<>	310 ± 19	17 ± 0.8	34 ± 1.3
31	B-16-S	27, 50, 37	51, 39, 29	0	307 ± 19	17 ± 0.8	31 ± 1.2
32	B-16-R	27, 50, 35	51, 39, 28	< LLD	483 ± 30	30 ± 1.4	45 ± 1.7
33	B-17-S	27, 50, 36	51, 48, 17	40 ± 2.1	290 ± 18	18 ± 0.8	36 ± 1.4
34	B-17-R	27, 50, 32	51, 48, 19	0	309 ± 19	17 ± 0.8	59 ± 2.2
35	B-18-S	27, 51, 14	51, 57, 26	5 ± 0.3	297 ± 18	19 ± 0.9	37 ± 1.4
36	B-18-R	27, 50, 01	51, 56, 11	< LLD	419 ± 26	22 ± 1	55 ± 2
37	B-19-S	27, 50, 15	52, 03, 00	5 ± 0.3	233 ± 14	11 ± 0.5	27 ± 1
38	B-19-R	27, 50, 18	52, 02, 55	0	337 ± 21	19 ± 0.9	57 ± 2
39	B-20-S	27, 40, 3.5	52, 19, 44	8 ± 0.5	307 ± 19	17 ± 0.8	31 ± 1.2
40	B-20-R	27, 40, 3.5	52, 19, 44	0	193 ± 12	13 ± 0.6	50 ± 2
41	B-21-S	27, 37, 37	52, 28, 04	0	150 ± 9	11 ± 0.5	40 ± 1.5
42	B-21-R	27, 37, 37	52, 28, 04	< LLD	270 ± 17	17 ± 0.8	52 ± 2
43	B-22-S	27, 33, 31	52, 33, 50	0	140 ± 9	8 ± 0.4	35 ± 1.3
44	В-22-К	27, 21, 35	52, 36,16		400 ± 25	22 ± 1	55 ± 2
45	B-23-8	27, 21, 35	52, 47, 52	0	$33/\pm 21$	19 ± 0.9	50 ± 2
46	B-23-K	27, 21, 10	52, 48, 33		160 ± 10	15 ± 0.7	36 ± 1.4
4/	B-24-8	27, 16, 18	52, 56, 05	45 ± 2.2	110 ± 7	10 ± 0.5	12 ± 0.5
48	В-24-К	27, 16, 33	52, 55, 27	< LLD	108 ± 7	< LLD	22 ± 0.8
49	B-25-8	27, 05, 42	53, 05, 28	< LLD	108 ± 7	11 ± 0.5	$1/\pm 0.7$
50	В-25-К	27, 06, 09	53, 05, 58	0	460 ± 28	30 ± 1.4	66 ± 2.5
					350 ± 22	18 ± 0.8	35 ± 1.3
					430 ± 20	23 ± 1.2	42 ± 1.3
					150 ± 10	< LLD	$3/\pm1.4$
	, i						
		P					
	YY						

Table 3. (Continued)

Table 4. Elements content (%) of different samples

Ser	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MgO	P ₂ O ₅	K ₂ O	TiO ₂	Na ₂ O	CaO	LOI(%)
	14.6	3 52	1.52	4 57	0.485	0.8	0.175	1 77	34 84	
2	20.77	5 45	1.92	5 32	0.105	0.942	0.303	1.48	31.17	34.5
3	19.5	5.02	2.505	3.83	0.10	0.935	0.335	0.439	43.76	30.9
4	20.99	5.2	2.207	3.82	0.10	0.812	0.41	0.712	35.2	22.9
5	21.2	5.3	1.99	4.21	0.09	0.99	0.39	1.09	29.3	29.9
6	24.18	7.07	2.76	5.23	0.11	1.21	0.4	1.25	28.14	26.89
7	23.3	5.71	2.4	4.07	0.11	0.89	0.44	0.96	34.2	28.5
8	7.82	1.53	1.51	1.01	0.04	0.311	0.217	1.66	50.32	27.1
9	15.23	3.4	2.66	3.9	0.44	0.78	0.198	1.56	33.49	34.10
10	5.08	1.35	0.612	1.14	0.03	0.231	0.082	0.343	33.78	34.66
11	10.9	3.03	1.34	2.53	0.1	0.46	0.17	0.294	43.54	35.6
12	20.33	5.54	1.997	4.29	0.12	0.928	0.315	1.29	32.67	36.7
13	16.35	4.80	1.84	3.46	0.12	0.7	0.261	0.989	38.05	31.25
14	3.83	1.01	0.688	2.34	0.081	0.188	0.066	1.97	45.56	33.84
15	8.20	1.82	1.15	2.89	0.052	0.304	0.172	1.26	44.26	42.7
16	7.74	1.49	1.23	1.3	0.041	0.285	0.161	2.29	46.39	38.50
17	10.8	2.62	1.62	2.14	0.06	0.43	0.22	0.42	48.31	37.8
18	8.51	1.56	2.14	1.24	0.04	0.32	0.43	2.22	50.23	32.7
19	25.42	7.75	3.3	5.3	0.15	1.24	0.407	0.396	27.86	31.4
20	12.5	2.19	1.78	1.61	0.046	0.401	0.234	2.19	45.25	27.2
21	25.53	7.17	3.240	6.21	0.11	1.24	0.458	0.986	24.81	32.60
22	9.21	2.43	2.00	3.23	0.065	0.414	0.151	0.892	43.71	22.46
23	5.89	1.56	0.78	1.11	0.055	0.24	0.097	0.365	31.65	36.80
24	1.38	0.497	0.87	1.57	0.086	0.114	0	1.56	55.91	34.20
25	11.1	2.97	1.62	4.92	0.138	0.486	0.17	0.332	40.56	30.8
26	13.9	2.45	2.18	2.30	0.067	0.418	0.331	2.48	42.56	35.9
27	14.51	3.92	1.74	5.02	0.070	0.655	0.203	2.38	34.81	31.90
28	20.8	4.82	2.154	4.75	0.078	0.699	0.39	0.759	35.43	33.00
29	28.56	8	3.503	6.67	0.12	1.28	0.519	1.05	25.49	29.2
30	24.23	7.17	2.66	5.19	0.16	1.25	0.38	1.22	28	23.7
31	17.54	3.73	1.85	3.24	0.066	0.637	0.241	0.422	38.27	28.50
32	22.72	4.62	2.475	3.81	0.092	0.658	0.672	2.39	34.43	29.00
33	22.13	5.24	2.010	10.52	0.100	0.968	0.323	1.17	24.62	26.72
34	13	2.12	1.57	2.1	0.066	0.367	0.388	3.23	43.47	32.1
35	19.68	4.21	1.63	10.43	0.1	0.696	0.295	1.09	28.56	29.8
36	10.2	2.5	1.2	2.54	0.046	0.45	0.15	1.24	31.6	30.7
37	6.70	1.80	0.938	2.60	0.113	0.306	0.078	0.19	46.32	40 4041 10
38	5.04	1.04	0.653	1.87	0.098	0.223	0.055	2.10	46.44	30.8
39	10.1	2.6	1.16	5.5	0.29	0.48	0.144	1.3	33.3	42.9
40	2.44	0.7	0.57	2.6	0.051	0.154	0.04	1.16	48.5	31 33
41	20.7	4.9	2.16	5.11	0.08	0.71	0.41	0.84	32.12	43.56
42	6.99	1.99	0.99	3.11	0.22	0.21	0.089	0.21	45.12	40.20
43	4.90	1.54	0.648	2.25	0.022	0.199	0.073	0.318	47.06	44 75
44	0.539	0.176	0.154	1.96	0.067	0.055	0.066	2.29	47.97	48.98
45	1.44	0.088	0.142	2.01	0.087	0.044	0.046	1.89	46.87	29.88
46	21.55	5.01	1.99	4.76	0.078	1.08	0.52	0.56	31.23	32.92
47	19.59	6.91	2.590	3.30	0.147	0.934	0.345	0.054	32.77	32.12
48	15.32	7.56	3.12	4.56	0.66	1.23	0.123	0.065	33.2	30.05
49	20.89	5.53	2.590	4.97	0.099	0.927	0.342	2.20	29.87	42.12
50	5.90	0.846	0.979	1.78	0.066	0.175	0.094	1.02	45.91	12.12

Fig. 2. ²³⁸U, ²³²Th, and ¹³⁷Cs percentage contribution for 1- 25 regions studied

Fig. 3. 238 U, 232 Th, and 137 Cs percentage contribution for 26 - 50 regions studied

Region / Country	⁴⁰ K (Bq/k	g)	²³²] (Bq/	Гh kg)	238- (Bq/	U kg)	²²⁶ I (Bq/	Ra kg)	Dose (nGy	rate /h)
	Range	Mean	Range	Mean	Range	Mean	Range	Mean	Range	Mean
Bangladesh ¹⁰	130-610	350	-	-	-	-	21-43	34	-	-
China ¹⁰	9-1800	440	1-360	41	2-690	33	2-440	32	2-340	62
Hong Kong ¹⁰	80-1100	530	16-	95	25-	84	20-	59	51-120	87
India ¹⁰	38-760	400	200	64	130	29	110	29	20-1100	56
Japan ¹⁰	15-990	310	14-	28	7-81	29	7-81	33	21-77	53
Kazakstan ¹⁰	100-	300	160	60	2-59	37	6-98	35	10-250	63
Korea ¹⁰	1200	670	2-88	-	12-	-	12-	-	18-200	79
Malaysia ¹⁰	17-1500	310	10-	82	120	66	120	67	55-130	92
Thailand ¹⁰	170-430	230	220	51	-	114	-	48	2-100	77
United States ¹⁰	7-712	370	-	35	49-86	35	38-94	40	14-118	47
Syrian Arab	100-700	270	63-	20	3-370	23	11-78	20	52-67	29
Republic ¹⁰	87-780	342	110	37	4-140	21	8-160	-	-	-
Turkey ⁷	125-570	562	7-120	49	10-64	26	13-32	26	18-93	65
Pakistan ⁵	525-602	320	4-130	18	7-200	37	-	17	8-93	22
Egypt ¹⁰	29-650	490	10-32	45	25-28	110	25-28	54	-	-
Croatia ¹⁰	140-710	140	4-90	-	6-120	-	5-64	17	9-52	18
Cyprus ¹⁰	0-670	360	45-53	20	83-	25	21-77	25	30-109	56
Greece ¹⁰	12-1570	840	2-96	51	180	49	0-120	44	4-230	84
Portugal ¹⁰	220-	520	12-65	30		19	1-240	27	12-102	65
Russian ¹⁰	1230	470	-	33	1-240	-	8-65	32	40-120	76
Spain ¹⁰	100-	285	1-190	17	26-82	42	1-76	35	14-44	30
Bushehr *	1400		22-		0-67		6-250			
	25-1650		100		-		10-54			
	108-520		2-79		15-69					
			2-210 8-33							

Table 5. Summary of activity concentrations and dose rates of natural radioisotopes in soil samples in some of the world regions

*North coast of Persian Gulf, Iran (present study).

Activity concentrations of the detected radioisotopes in different locations are shown in Figs. 2 and 3. The distribution of 226 Ra, 232 Th and 40 K in soil is not uniform. Uniformity with respect to exposure to radiation has been defined in terms of radium equivalent activity (Ra_{eq}) in Bq kg⁻¹ to compare the specific activity of materials containing different amounts of 226 Ra, 232 Th and 40 K. The Ra_{eq} was calculated by the equation given by:

$$Ra_{eq} = C_{Ra} + 1.43C_{Th} + 0.07C_{K} (Bq kg^{-1})$$
(1)

Where C_{Ra} , C_{Th} and C_K are the activity concentrations of ²²⁶Ra, ²³²Th and ⁴⁰K respectively. The gamma radiation doses for the population living in a rural area is due to the soil content of radionuclides, which can be estimated by employing a half-infinite source of an homogenous distribution and by considering only the contribution D from the natural radionuclides in the soil and sediment. The convenient formula is given as [12, 13]:

$$D=0.427C_{Ra}+0.662C_{Th}+0.00043C_{K}$$
(2)

H_{ex} is given by the following equation:

$$H_{ex} = C_{Ra}/370 + C_{Th}/259 + C_{K}/4810$$
(3)

Ra_{eq}, D, and H_{ex} of the samples are given in Table 6. The mean values of dose rates in the region are lower *Iranian Journal of Science & Technology, Trans. A, Volume 30, Number A3 Autumn 2006* than the International limit.

1					
	Ser	Ra _{eq} (Ba/kg)	Dose rate (nGy/h)	H _{ex}	
	1	85	27	0.23	
	2	86	27	0.23	
	3	109	38	0.30	
	4	92	31	0.25	
	5	88	28	0.23	
	6	124	42	0.34	
	7	100	34	0.27	
	8	81	28	0.27	
	9	106	38	0.22	
	10	76	28	0.20	
	11	75	26	0.21	
	12	02	20	0.20	
	12	92	29	0.25	
	13	54	31 10	0.23	
	14	54 70	19	0.14	
	15	62	23	0.19	
	10	02 70	21	0.10	
	1/	79	28	0.21	
	18	124	28	0.21	
	19	124	39	0.34	
	20	62	$\frac{20}{26}$	0.17	
	21	113	30	0.31	
	22	/4	26	0.20	
	23	/1	25	0.19	
	24	61	24	0.16	
	25	80	27	0.21	
	26	74	25	0.20	
	27	85	28	0.23	
	28	82	27	0.22	
	29	117	38	0.32	
	30	78	26	0.21	
	31	84	28	0.23	
	32	80	27	0.22	
	33	103	33	0.28	
	34	65	21	0.17	
	35	96	32	0.26	
	36	79	26	0.21	
	37	68	24	0.18	
	38	58	21	0.15	
	39	82	28	0.22	
	40	56	20	0.15	
	41	103	33	0.28	
	42	102	35	0.28	
	43	69	26	0.18	
	44	52	20	0.14	
	45	43	21	0.14	
	46	39	14	0.10	
	47	130	44	0.35	
	48	81	25	0.22	
	49	99	31	0.27	
	50	65	18	0.18	

Table 6. The dose rate (nGy/h) and equivalent radium (Bq/kg) and external hazard indices H_{ex} of the soil and sediment samples of the Persian Gulf

In Table 5 a summary of recent results on natural gamma radioactivity levels derived from similar investigations conducted in some of the world regions and around the Persian Gulf is presented [13]. The

corresponding activity concentration levels and dose rates obtained from this study are near to the most reported values from other worldwide and neighboring areas. Since natural radioactivity is mainly composed of these three radioisotopes, the coast of Bushehr can be considered as one of the world areas that exhibits medium levels of natural radioactivity.

Geochemical features

The chemical composition of the collected samples is shown in Table 4. The samples can be differentiated according to their SiO₂, Al₂O₃, Fe₂O₃, TiO₂, and P₂O₅ content. The difference could be attributed to the hydrothermal alteration and metasomatism processes. i.e; the area was subjected to surface and subsurface processes of alteration. The subsurface processes are represented by hydrothermal alteration caused by the mobility of some major oxides, which lead to enrichment in SiO₂, Fe₂O₃, P₂O₅ and the depletion of Al₂O₃. The surface processes include the effect of meteoric water, responsible for leaching some elements such as uranium from high to low physiographic features [12].

Knowing the chemical composition of the samples is helpful for preparing standard sources with a matrix similar to that of the samples. The similarity is extremely necessary for HPGe calibration and detecting gamma self-absorption. It is well known that the presence of calcite and Phosphate can affect radioisotope abundance in soil. Chemical analysis of the samples ascertained that such deposits do not exist in the studied areas.

4. CONCLUSIONS

The data obtained in the present work cover a wide area in the south of Iran, which can be considered as the base-line of the region. The lowest concentration of uranium (12 Bq Kg⁻¹) was observed in Asaloyeh sediment, and the highest (75 Bq Kg⁻¹) in Genaveh soil. Similarly, the lowest (10 Bq Kg⁻¹) and highest (33 Bq Kg⁻¹) levels of ²³²Th were found in Asaloyeh sediment and Genaveh soil. This indicates that the radioactive minerals are distributed erratically.

The lowest (108 Bq Kg⁻¹) and highest (520 Bq Kg⁻¹) levels of 40 K were found in Asaloyeh sediment and Rostame soil, respectively. Similarly, the highest (45 Bq Kg⁻¹) levels of 137 Cs were found in Berkehdoka. The total absorbed radionuclides from ambient air ranges from 14 to 44 nGy h⁻¹ with an average of 30.86 nGy h⁻¹. The highest dose rates were found in Berkehdoka and Reeg, which were lower than the international recommended limit.

REFERENCES

- 1. Akhtar, N., Tufail, M., Ashraf, M. & Mohsin Iqbal, M. (2005). Measurement of environmental radioactivity for estimation of radiation exposure from saline soil of Lahor, Pakistan. *Radit. Measur.* 39(1), 11-14.
- Mamaney, M. H. & Khater, E. M. (2004). Environmental characterization and radio-ecological impacts of nonnuclear industries on the Red Sea coast. J. Environ. Radioactivity, 73, 151-168.
- Preusser, F., Radtke, U., Fontugne, M., Haghipour, A., Hilgers, A. & Kasper, H. U. (2003). ESR dating of raised coral reefs from Kish Island, Persian Gulf. *Quaternary Science Reviews*, 22, 1317-1322.
- Abdi, M. R., Faghihian, H., Mostajaboddavati, M., Hassanzadeh, A. & Kamali, M. (2006). Distribution of Natural Radionuclides and hot points in coasts of Hormozgan, Persian Gulf, Iran. *Journal of Radioanalytical and Nuclear Chemistry*, 270(2), 319-324.
- Mostajaboddavati, M., Hasanzadeh, A., Faghihian, H., Abdi, M. R. & Kamali, M. (2006). Efficiency Calibration and Measurement of Self-Absorption Correction for Environmental Gamma Spectroscopy of Soil Samples using Marinelli beaker. *Journal of Radioanalytical and Nuclear Chemistry*, 268(3), 539-544.
- 6. Shenn, Y. (1992). A numerical investigation of circulation in the Persian Gulf. Journal of Geophysical Research,

Iranian Journal of Science & Technology, Trans. A, Volume 30, Number A3

97(C7), 219-236.

- 7. Ivanovich, M. & Harmon, R. S. (1992). Uranium series Disequilibrium: applications to Earth, Marin and Environmental Sciences. Oxford: Clarendon press.
- Lee, S. C., Kein, C. K., Lee, D. M. & Kang, H. D. (2001). Natural radionuclides content and radon exhalation rates in building material used in south Karea. *Radiation Protection and Dosimetry*, 94(3), 269-274.
- 9. Khatir, S. A., Ahamed Mustafa, M. O., El-Khaangi, F. A., Nigumi, Y. O. & Holm, E. (1998). Radioactivity levels in Red Sea coastal environment of Sudan. *Marine Pollution Bulletin*, 36(1), 19-26.
- 10. United Nation Scientific committee on the Effects of Atomic Radiation (UNSCEAR). (1988). Sources, effects and risk of ionizing radiation. New York, NY: United Nations.
- 11. Baggoura, B., Nouredine, A. & Benkrid, M. (1998). Level of natural and artificial radioactivity in Algeria. *Appl.Radiat.Isot.*, 49(7), 867-873.
- Sroor, A., Afifi, S. Y., Abdel-Haleem, A. S., Salman, A. B. & Abdel-Sammad, M. (2002). Environmental pollutant isotope measurements and natural radioactivity assessment for North Tushki area, South Western desert, Egypt. *Appl. Radi. Isoto.*, 57, 427-436.
- 13. Karahan, G. & Bayulken, A. (2000). Assessment of gamma dose rates around Istanbul. *J. Environ. Radioactivity*, 47, 213-221.