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Abstract – Let ( ),M g  be a compact immersed hypersurface of ( )1, ,nR + < > , 1λ  the first nonzero 
eigenvalue, α  the mean curvature, ρ  the support function, A the shape operator, ( )vol M  the volume of M, 
and S the scalar curvature of M. In this paper, we established some eigenvalue inequalities and proved the 
above. 

1) 2 2 2 21
M M
A dv dv

n
ρ α ρ≥∫ ∫ , 

2) 
( )

2 2 21
1M M

dv S dv
n n

α ρ ρ≥
−∫ ∫ , 

3) If the scalar curvature S and the first nonzero eigenvalue 1λ  satisfy ( )1 1S nλ= − , then 
 

[ ]12 2 0
M

dv
n
λα ρ− ≥∫ , 

 
4) Suppose that the Ricci curvature of M is bounded below by a positive constant k. Thus 
 

( )
( )22 2

1M M

kdv gradf dv vol M
n n

α ρ ≥ +
−∫ ∫ , 

 
5) Suppose that the Ricci curvature is bounded and the scalar curvature satisfy ( )1 1S nλ= −  and L=k-
2S>0 is a constant. Thus 
 

1 2 2 22( ) .
M M

k Svol M dv dv
L L
λ ψ αρ α ρ≥ − −∫ ∫  

 
Keywords – First Eigenvalue, Support Function 
 

1. PRELIMINARIES 
 

We will use the same notations and terminologies as in [1] unless otherwise stated. Let M be a compact 
immersed hypersurface of 1nR + . We denote by 1: nM R +Ψ →  the smooth immersion by ,< >  and g, the 
Euclidean metric on 1nR +  and the induced metric on M respectively. Let N be the unit normal vector field 
and A the shape operator on M. We then have the Gauss and Weingarten formulas 
 
                                       ( ),X XY Y h X Y N∇ = ∇ + , XN AX∇ = − , ( ),X Y Mχ∈                                   (1) 

 
where ∇  and ∇  are the Riemannian connections on 1nR +  and M respectively, ( )Mχ  is the Lie-algebra 
of smooth vector fields on M and h is the second fundamental form which is related to A by 
( ) ( ), ,g AX Y h X Y= . The shape operator A satisfies the Codazzi equation  
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                                                   ( )( ) ( )( ), ,A X Y A Y X∇ = ∇ , ( ),X Y Mχ∈ ,                                            (2) 
Since the shape operator A is symetric and satisfies (2) it can be easily verified that the mean curvature 

1 trA
n

α =  satisfies 
 

                            ( )( )
1

1 ,
n

i i
i

grad A e e
n

α
=

= ∇∑ , ( ) ( )( )
1

1 , ,
n

i i
i

X g A e e X
n

α
=

= ∇∑ , ( )X Mχ∈                       (3) 

 
where{ }1,..., ne e  is a local orthonormal frame on M . 
If we define :f M R→  by 21

2
f = Ψ  and treat Ψ  as a position vector field of M in 1nR + , we get 

 
                                                                         gradf NρΨ = +                                                                  (4) 

 
where : M Rρ → , defined by ,Nρ =< Ψ > , is a support function of M. Then, using the equations in (1), 
we obtain  
 

Xgradf X AXρ∇ = +  
 

and  
 

                                               ( ) ( ),X AX gradfρ ρ= − , ( )X Mχ∈                                                (5) 
 

From the first equation in (5) we get 
 
                                                                          ( )1f n αρ∆ = +                                                                 (6) 

 
which, on integration, yields the following formula Minkowski 
 
                                                                        ( )1 0

M
dvαρ+ =∫ .                                                             (7) 

 
2. MAIN THEOREM 

 
Theorem 3. 1. Let M be compact and the connected immersed hypersurface of 1nR + . The shape operator 
on M and the mean curvature α  of M satisfies the following inequality: 
 
                                                                 2 2 2 21

M M
A dv

n
ρ α ρ≥∫ ∫                                                          (8) 

 
Proof: From the Gauss equation, we have the following expression for the Ricci curvature tensor of M [2]. 
 
                                         ( ) ( ) ( ), , ,Ric X Y n g AX Y g AX AYα= − , ( ),X Y Mχ∈                                   (9) 

 
Thus, we have 

 
                        ( ) ( )( ) ( ) 2, ,

M M M
Ric gradf gradf dv n g A gradf gradf dv A gradf dvα= −∫ ∫ ∫                  (10) 

 
The second equation (5) gives ( ) ( )grad A gradfρ = −  and we obtain 
 

( )( ) ( ) ( ), ,g A gradf gradf g grad gradf gradfρ ρ= − = −  
( )div gradf fρ ρ= − + ∆  

( ) ( )1div gradf nρ ρ ρα= − + + . 
 

Thus we have 
 
                                     ( )( ) ( ) ( ), 1g A gradf gradf div gradf nα α ρ αρ ρα= − + +                                    (11) 
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For a local orthonormal frame { }1,..., ne e  on M we also have 
 

( )( ) ( )( )( ) ( )( )[ ], , ,i i i idiv A gradf g A e gradf e g A e gradf e= ∇ + ∇∑  
 
which, together with (3) and (5), gives 
 
                                                    ( )( ) ( ) 2div A gradf n gradf n Aα α ρ= + +                                          (12) 
 
Using the identity ( ) ( )div fX X f fdivX= + , ( )X Mχ∈  for any smooth function :f M R→ , we get 

 
( )( ) ( )( ) ( )div A gradf div A gradf A gradfρ ρ ρ= −  

( )( ) ( ) 2div A gradf A gradfρ= + . 
 

Combining the above equation with (11) and (12), we arrive at 
 
                                    ( ) ( )( ) ( )2 22n gradf n A div A gradf A gradfρ α αρ ρ ρ+ + = +                          (13) 

  
Since ( ) ( ) ( )div gradf gradf div gradfαρ ρ α α ρ= + , we can use this in (13) to get 
 
              ( ) ( ) ( )( ) ( )2 22n div gradf div n gradf n A div A gradf A gradfα ρ αρ αρ ρ ρ− + + + = +             (14) 

 
Substituting the expression for ( )n div gradfα ρ−  from (14) into (11), and using Stokes theorem, we arrive 
at  
 
                ( )( ) ( ) ( )2 22 2, 1

M M
n g A gradf gradf dv A gradf n A n dvα αρ ρ ρα αρ = − − + + ∫ ∫            (15) 

 
Together with (15) and (10) gives 
 

                  ( ) ( )22 2, 1
M M
Ric gradf gradf dv n A n dvαρ ρ αρ αρ = − − + + ∫ ∫                          (16) 

 
From the Bochner-Lichnerowicz formula [3, 4] 
 
                                                ( ) ( )2 2 , 0

M
f Hessf Ric gradf gradf dv ∆ − − = ∫                                    (17) 

 
and (16), we have 
 
                                    ( ) ( )2 22 2 2 1 0

M
f Hessf n A n dvαρ ρ αρ αρ ∆ − + + − + = ∫ .                        (18) 

 
Newton’s inequality ( )2 2f n Hessf∆ ≤  yields and using the Minkowski formula (7), we have 
 

2 2 2 21
M M
A dv dv

n
ρ α ρ≥∫ ∫ . 

 
Corollary 3. 1. Let M be a compact and connected immersed hypersurface of 1nR + . The mean curvature 
α  of M and the scalar curvature S of M satisfy the following inequality: 
  
                                                          

( )
2 2 21

1M M
dv S dv

n n
α ρ ρ≥

−∫ ∫                                                     (19) 
 
Proof: From the Gauss equation, we have the following expression for the scalar curvature of M [2]. 
 
                                                                      22 2S n Aα= −                                                                 (20) 

 
From (20) and (8) we obtain (19). 
Without loss of generality we can assume that the center of the mass of M is at the origin of 1nR +  (for 
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otherwise an isometry 1 1: n nR R+ +Φ →  can be chosen which maps the center of mass of M to the origin 
of 1nR + , and then ′Ψ = Φ Ψ  will be the desired immersion). Thus the immersion 1: nM R +Ψ →  
satisfies 0.

M
dvΨ =∫  Hence we can apply the minimum principle to get 

 
( ) 2

1 .
M

n vol M dvλ ≤ Ψ∫  
 

Where, 1λ  is the nonzero eigenvalue of the Laplacian operator on M. Consequently we have 
 
                                                                    ( )2

1

.
M

n vol Mdv
λ

Ψ ≤∫ .                                                        (21) 
 
Corollary 3. 2. Let M be a compact and connected immersed hypersurface of 1nR + . If the scalar 
curvature S and the first nonzero eigenvalue 1λ  of the Laplacian operator ∆  on M, with respect to the 
induced metric, satisfy ( )1 1S nλ= − , then 
 
                                                                  [ ]12 2 0.

M
dv

n
λα ρ− ≥∫                                                         (22) 
 

Thus M is isometric to a sphere ( )nS c . 
Proof: By the hypothesis of the theorem and (19), hence 
 

[ ]12 2 0.
M

dv
n
λα ρ− ≥∫  

 
3. THE RICCI CURVATURE IS BOUNDED 

 
Theorem 4. 1. Let M be a compact and connected immersed hypersurface of 1nR +  with positive Ricci 
curvature. Suppose that the Ricci curvature of M is bounded below by a positive constant k. Thus 
 
                                              

( )
( )22 2

1M M

kdv gradf dv vol M
n n

α ρ ≥ +
−∫ ∫                                        (23) 

 
Proof: From (17), Newton’s inequality, (6) and by the hypothesis of theorem 
 

( ) ( )2 21 1
M M

n n dv k gradf dvαρ− + ≥∫ ∫ . 
 

Or 
 
                                        ( ) ( ) ( )

22 21 1
M M

n n vol M n n dv k gradf dvα ρ− − + − ≥∫ ∫                             (24) 
 
where we have used the Minkowski formula (7). Thus, we get (23). 
 
Theorem 4. 2. Let M be a compact and connected immersed hypersurface of 1nR +  with positive Ricci 
curvature. Suppose that the Ricci curvature of M is bounded below by a positive constant k. If the scalar 
curvature S and the first nonzero eigenvalue 1λ  of the Laplacian operator ∆  on M, with respect to the 
induced metric satisfy ( )1 1S nλ= − , and L=k-2S>0 is a constant, then 
 
                                                1 2 2 22( ) .

M M

k Svol M dv dv
L L
λ ψ αρ α ρ≥ − −∫ ∫                                         (25) 

 
Proof: For the immersion 1: nM IRψ +→  we know that the function 21

2
f = Ψ  satisfies (7). We can 

compute div (fgradf) to obtain 
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                                                       div(fgradf) = 2gradf  + 2 (1 ).
2
n ψ αρ+                                           (26) 

 
Integrating this equation, we obtain 
 
                                                     

M∫
2gradf dv + 2 (1 ) .

2 M

n
dvψ αρ+∫                                             (27) 

 
From (27), (24) and (21), we obtain (25). 
 
Example: We can take ellipsoid 
 

{ }

2 2
3 2( , , ) : 1
4 4
x y

M x y z IR z= ∈ + + =  
 

which is a compact hypersurface of IR3 , and locally express the immersion ψ  as 
ψ (t, θ ) = (2costcos θ , 2costsin θ , sint) 
Further, we can show that, on this coordinate patch of ellipsoid the shape operator A, the mean curvature 
α and the support function ρ are respectively given by 
 

2 2

2 2

2 0
cos 4 sin

10
2 cos 4 sin

t tA

t t

    +  =       +

 

 

2 2 2 2

5 2
4 cos 4 sin cos 4 sin

and
t t t t

α ρ= = −
+ +

 

 
and consequently we arrive at  
 

2 2 2 2
2 2 2 2 2 2

1 17 1 25 1
2 2 4(cos 4 sin ) (cos 4 sin )
A

t t t t
ρ α ρ= > =

+ +
 

 
that is 
 

2 2 2 21
M M
A dv dv

n
ρ α ρ≥∫ ∫ . 
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