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Abstract — Let (M,g) be a compact immersed hypersurface of (R”“, <, >) , A the first nonzero
eigenvalue, @ the mean curvature, p the support function, A the shape operator, vol (M) the volume of M,
and S the scalar curvature of M. In this paper, we established some €igenvalue inequalities and proved the
above.
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1. PRELIMINARIES

We will use the same notations and terminologies as in [1] unless otherwise stated. Let M be a compact
immersed hypersurface of R"™'. We denote by ¥ : M — R"™' the smooth immersion by <,> and g, the
Euclidean metric on' "™ and the induced metric on M respectively. Let N be the unit normal vector field
and A the shape operator on M. We then have the Gauss and Weingarten formulas

VxY = ViV +h(X,Y)N ,VxN = —AX , XY € x(M) (1)
where V and V are the Riemannian connections on R"*! and M respectively, y (M) is the Lie-algebra

of smooth vector fields on M and h is the second fundamental form which is related to A by
g(AX)Y) = h(X,Y). The shape operator A satisfies the Codazzi equation
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(VA)(X,Y) = (VA)(Y, X), XY € x(M), 2)
Since the shape operator A is symetric and satisfies (2) it can be easily verified that the mean curvature
a= ;trA satisfies

grader = 13 (VAN (66 ), X oo = 152 g(VA(ese), X), X € X(M) 3)

where {¢,...,e, } is a local orthonormal frame on M .
Ifwedefine f: M — R by f = %||\I/||2 and treat ¥ as a position vector field of M in R"*!, we get

U = gradf + pN 4)

where p: M — R, defined by p =< ¥, N >, is a support function of M. Then, using the equations in (1),

we obtain
Vygradf = X + pAX
and
X(p) = —p(AX, gradf) , X.€ X (M) )
From the first equation in (5) we get
Af = n(l+ dap) (6)

which, on integration, yields the following formula Minkowski

f;w(l—i-ozp)dv:(). @)

2. MAIN THEOREM

Theorem 3. 1. Let M be compact and the connected immersed hypersurface of R""' . The shape operator
on M and the mean curvature. o/ of M satisfies the following inequality:

ML ®)
Proof: From the Gauss equation, we have the following expression for the Ricci curvature tensor of M [2].
Ric(X,Y) = nag(AX,Y) — g(AX,AY),X,Y € x(M) )
Thus, we have
mec(gmdf,gmdfmv = nfMag(A(gmdf),gmdf)dv - anA(gmdf)n2 dv (10)
The second equation (5) gives grad(p) = —A(gradf) and we obtain

9(A(gradf), gradf) = —g(gradp, gradf) = —gradf (p)
= —div(pgradf) + pAf
= —div(pgradf) + np(1 + pa).

Thus we have

ag(A(gradf),gradf) = —adiv(pgradf ) + nap (1 + pa) (11)
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For a local orthonormal frame {e,,...,e, } on M we also have
div(A(gradf)) = Y [9((VA) (e, gradf ),e;) + g(A(Vegradf ),e;)]
which, together with (3) and (5), gives
div(A(gradf)) = n(gradf )a + na + p|| AP (12)
Using the identity div(fX) = X (f) + fdivX , X € x(M) for any smooth function f: M — R, we get

pdiv(A(gradf)) = div(pA(gradf)) — A(gradf)p
= div(pA(gradf)) + | A(gradf)|f .

Combining the above equation with (11) and (12), we arrive at
np(gradf o + nap + p* | A = div(pA(gradf)) +||A(gradf)|” (13)
Since div(apgradf) = p(gradf)a + adiv(pgradf ), we can use this.in (13) to get
—nadiv( pgradf ) + div(napgradf) + nap + p* | AP = div(pA(gradf)) + | A(gradf)| (14)

Substituting the expression for —nadiv(pgradf) from (14) into (11);-and using Stokes theorem, we arrive
at

S, e (Agradf),gradfydv = [ [|ACgradf )P s nap — p*|AF +n’pa (1 +ap)fiv — (15)
Together with (15) and (10) gives
fM Ric(gradf, gradf ) du = fM[—nap — PP IAIP + nap (1 + ap)ldv (16)
From the Bochner-Lichnerowicz formula [3;4]
fM[(Af)2 ~ | Hessf|? — Ric(gradf, gradf)]dv = 0 (17)
and (16), we have
(AR | HessfIP + nap + o [ AP — nap(1+ ap)]dv = 0. (18)
Newton’s inequality (Af)* < n| Hessf|* yields and using the Minkowski formula (7), we have
[ IAR o > [ %,

Corollary 3. 1. Let M be a compact and connected immersed hypersurface of "™ . The mean curvature
a of M and the scalar curvature S of M satisfy the following inequality:

f o’ pdv > f Sptdv (19)
Proof: From the Gauss equation, we have the following expression for the scalar curvature of M [2].
§ = n*a® — | A (20)

From (20) and (8) we obtain (19).
Without loss of generality we can assume that the center of the mass of M is at the origin of R"™! (for
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otherwise an isometry ® : R"*! — R™*! can be chosen which maps the center of mass of M to the origin
of R"™, and then ¥/ = ® o ¥ will be the desired immersion). Thus the immersion ¥ : M — R"!
satisfies f u Wdv = 0. Hence we can apply the minimum principle to get

N < n.vol(M)/fM||\I/||2 dv

Where, )\ is the nonzero eigenvalue of the Laplacian operator on M. Consequently we have

2 n.wol (M)
[ 1wl do < S 1)

Corollary 3. 2. Let M be a compact and connected immersed hypersurface of R"*'. If the scalar
curvature S and the first nonzero eigenvalue )\, of the Laplacian operator=Aron M, with respect to the
induced metric, satisfy S = )\ (n — 1), then

[ A 2 >0, (22)
M n

Thus M is isometric to a sphere S" cc>.
Proof: By the hypothesis of the theorem and (19), hence

f [ aQ—ﬁJdevzo.
M n

3. THE RICCI CURVATURE IS BOUNDED

Theorem 4. 1. Let M be a compact and connected immersed hypersurface of R"*! with positive Ricci
curvature. Suppose that the Ricci curvature.of M is bounded below by a positive constant k. Thus

2
f a’pd 1)f | gradf||* dv 4+ vol (M) (23)
Proof: From (17), Newton’s.inequality, (6) and by the hypothesis of theorem
2 2
n(n— 1)fM(1 + ap) dv > ka"gmdf" dv .
Or
2
_ _ _ 2 2
n(n—1vol(M)+ n(n l)fMozpdvzkallgmdfll dv (24)

where we have used the Minkowski formula (7). Thus, we get (23).

Theorem 4. 2. Let M be a compact and connected immersed hypersurface of R"*! with positive Ricci
curvature. Suppose that the Ricci curvature of M is bounded below by a positive constant k. If the scalar
curvature S and the first nonzero eigenvalue ) of the Laplacian operator A on M, with respect to the
induced metric satisfy S = A (n — 1), and L=k-2S>0 is a constant, then

vol(M) > -1/, ||1,[)|| apdv — TfM a’pdo. (25)

Proof: For the immersion ¢ : M — IR"™! we know that the function f = %ll\llll2 satisfies (7). We can
compute div (fgradf) to obtain
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div(fgradd) = lgradf|” + 1wl (1 + ap). (26)

Integrating this equation, we obtain
[, NgradfPdv+ 2 [ I 0+ ap)d. @7)

From (27), (24) and (21), we obtain (25).

Example: We can take ellipsoid

22 2

M=« (z,y,2) IR : —+ =4 22 =11

4 4
which is a compact hypersurface of IR’ , and locally express the immersion ¢ as
¥ (t,0 ) = (2costcos § , 2costsin § , sint)
Further, we can show that, on this coordinate patch of ellipsoid the shape operator A, the mean curvature
o and the support function p are respectively given by

2

S 0
A Veos® t + 4sin’t
0 e |
2+ cos® t + 4sin’t
5 2
o = and p=—
4~Jcos® t + 4sin’t Jeos® t + 4sin’t

and consequently we arrive at

Liap p2y= & > =’
2 141" » 2 (cos®t + 4sin®t)* = 4 (cos®t + 4sin® 1) g

that 1s

1 2 9 2 9
—_ > .
[ AF oo = [ o
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