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1. INTRODUCTION

Fuzzy topology, as an important research field in fuzzy set theory, has been developed into quite a mature
discipline [1-6]. In contrast to classical topology, fuzzy topology is endowed with richer structure, to a
certain extent, which is manifested in different ways to generalize certain classical concepts. So far,
according to [2], the kind of topologies defined by Chang [7] and Goguen [8] are called the topologies of
fuzzy subsets, and further, are naturally called L-topological spaces if a lattice L of membership values has
been chosen. Loosely speaking, a topology of fuzzy subsets (resp. an L-topological space) is a family = of
fuzzy subsets (resp. L-fuzzy subsets) of nonempty set X, and 7 satisfies the basic conditions of classical
topologies [9].

On the other hand, the authors of [10, 11] proposed the terminologies /-fuzzy topologies (if the set of
membership values is chosen to be the unit interval [0, 1]) and L-fuzzy topologies (if the corresponding set
of membership values is chosen to be lattice L). In [12], an L-fuzzy topology is an L-valued mapping on
the traditional power.set P(X) of X. In [4-5, 10, 11] an L-fuzzy topology is an L-valued mapping on the L-
valued mapping on the L=power set X of X.

In 1991, Ying [13-16] used the semantic method of continuous valued logic to propose so-called
fuzzifying topology as preliminary research on bifuzzy topology and to give an elementary development
of topology in the theory of fuzzy sets from a completely different direction. Briefly speaking, a fuzzifying
topology on a set X assigns each crisp subset of X to a certain degree of being open, other than being
definitely open or not. In fact fuzzifying topologies are a special case of the L-fuzzy topologies in [10, 11]
since all the t-norms on / are included as a special class of tensor products in these paper. Ying uses one
particular tensor product, namely the Lukasiewicz conjunction. Thus his fuzzifying topologies are a
special class of all /-fuzzy topologies considered in the categorical framework of [10, 11].

Particularly, as the author [13-16] indicated, by investigating fuzzifying topology we may partially
answer an important question proposed by Rosser and Turquette [17] in 1952, which asked whether there
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are many valued theories beyond the level of predicates calculus.

Roughly speaking, the semantically analysis approach transforms formal statements of interest, which
are usually expressed as implication formulas in logical language, into some inequalities in the truth value
set by truth valuation rules, and then these inequalities are demonstrated in an algebraic way and the
semantic validity of conclusions is thus established. So far, there has been significant research on
fuzzifying topologies. For example, Ying [16] introduced the concept of compactness and established a
generalization of Tychonoff's theorem in the framework of fuzzifying topology. In [18] the concepts of
fuzzifying (3 —open sets and (3 — continuity were introduced and studied. Also, Sayed [19] introduced
and studied the concept of fuzzifying 3 — Hausdorff separation axiom.

In classical mathematics, the 3 —irresolute function has been given in [20] and the concept of
B — compact spaces has been defined and some of its properties have been obtained in [21].

In [22] the concept of fuzzy (3 —irresolute function was characterized and investigated. Also, in [23]
the concept of 3 — compactness for fuzzy topological spaces was introduced and discussed.

In this paper we introduce and study the concept of the /3 —irresolute function between fuzzifying
topological spaces. Furthermore, we introduce and study the concept of (3 —compactness in the
framework of fuzzifying topology. We use the finite intersection property to give a characterization of the
fuzzifying (3 — compact spaces.

2. PRELIMINARIES

In this section, we offer some concepts and results in fuzzifying topology which will be used in the sequel.
For the details, we refer to [8, 13-16]. First, we display the Lukasiewicz logic and corresponding set
theoretical notations used in this paper. For any.formula ¢ , the symbol [ ® ] means the truth value of
@ , where the set of truth values is the unit interval [0, 1]. We write |=¢ if [ap} = 1 for any
interpretation. By =" ¢ (¢ is feebly valid) we mean that for any valuation it always holds that [ @ ]>O ,
and =" ¢ we mean that[ ® ]>0 implies [ Y ]:1 . The truth valuation rules for primary fuzzy logical
formulae and corresponding set theoretical notations are:

(D)@ |a]=alac01]);

®) [onw |=min([ o || v ]

© [ ¢y [=min( 11|+ ¥ ).

Q) If AeS(X),| vl [:=A),

(3) If X is the universe of discourse, then [ V() ]:fg( [ () }
In addition, the truth valuation rules for some derived formulae are
() [ ~¢|:=le—=0]=1-] 2]

@ [eve = ~(~en-w ) J=max([ e [ ]):

@A) [eeov]=[(e—v)A(v—e)|;

@) lpnvl=]~( p—-v ) ]=max(0,[¢ ]+[w]-1);

() [pvy]:=| mp—¢ |=min( L, [ o ]+[ ¥ ]);

(6) [Hw(:ﬁ)]:[ﬁww(w)]:=§1€1§[¢(w)];

(7)If A, B €3(X), then
(a)[AQB]::[Vz(zeﬁ—meé)]:}g(min(l,l—fl(x)—i-é(x));

Iranian Journal of Science & Technology, Trans. A, Volume 30, Number A3 Autumn 2006



Fuzzy [3_irresolute functions and... 299

(b) [A=B]:

il
N
N
o3

=
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b

(c) [ A=B ]
where &(X) is the family of all fuzzy sets in X.

Often we do not distinguish the connectives and their truth value functions, but strictly state our
results on formalization as Ying [13-16] did.

Second, we give some definitions and results in fuzzifying topology.

Definition 2. 1. [13]. Let X be a universe of discourse, €S (P(X)), satisfying the following conditions:

(1) 7(X)=17(¢)=1;
(2) forany A,B, 7( ANB)>7(4)Ar(B);

(3) for any { Ay heA },T

A
b

> )\/E\AT(A/\ )

Then 7 is called a fuzzifying topology and (X, ) is a fuzzifying topological space.

Definition 2. 2. [13]. The family of all fuzzifying closed 'sets; denoted by Fe%(P(X) ), is defined
as AeF:= X — Ae 7, where X — A is the complement of A.

Definition 2. 3. [13]. The fuzzifying neighborhood system of a point z€X is denoted
by NIGS(P(X)) and defined as follows: N, (A)= /sup 7(B).

zeBCA

Definition 2. 4. [13, Lemma 5. 2]. The closure 4of 4 is defined as
Alz)= 1-N,(X-A).

In Theorem 5.3 [20], Ying proved that the closure ~:P(X)—S(X) is a fuzzifying closure operator
(see Definition 5.3 [13]) because. its extension ~ : S(X)—S(X ),Z: U aZ, AeS(X), where
A, :{ z:A(z)>a } is the @ —ciit of 4 and a A(z)=a A A(z) satisfies the foﬁce)&%]ng Kuratowski closure
axioms:

(D) Fo=0¢;
(2) forany AcS(X),|=ACA;

(3) for any A/BeS(X).= AUB=AUB;
(4) forany A , B €S(X),|= (Z) -
Definition 2. 5. [14]. For any AC X, the fuzzy set of the interior points of 4 is called the interior of A4, and

given as follows: A°(z):=N,(A). From Lemma 3.1 [13] and the definitions of N,(A4) and A° we have
T(A)= ireli;1 A°(z).

Definition 2. 6. [18]. For any A€S(X),[=(4) =X - (Xffl ), where X — A is the complement of A
and (X -4 )(z)=1-A(z).

i

Definition 2. 7. [14, Lemma 5.1]. If (X,7) is a fuzzifying topological space, Y C X, then | Yeg( P(X) )

which is given as
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Verly:=@U)((Uer)A(V=UNY)), ie, 7|y (V)= sup 7(U)is a fuzzifying topology on ¥ and is
V=UNY

called the relative fuzzifying topology of = with respect to Y. If YCX,o0=7|y, then (Y,0) is called a

subspace of (X,7).

Definition 2. 8. [14, Theorem 5.1]. Let (Y,oc) be a subspace of (X,7). For any ACY,
AeF, :=3F) ( (FEFY)A(A=FNY) ) , where Fy and Fy are fuzzy families of 7,0 — closed sets in X and ¥,
respectively.

Lemma 2. 1. [18]. If [ ACB |=1, then (1) =ACE (2) =(A) (B .

Definition 2. 9. [18]. Let (X, 7) be a fuzzifying topological space.

(1) The family of all fuzzifying G —open sets, denoted by 75 €S (P(X)), is defined as follows:
Aery ::Va;( T€A— z€A T ), ie., 75 (A):Zi‘relgAwf ()

(2) The family of all fuzzifying § —closed sets, denoted by F; e S(.P(X)), is defined as follows:
Acly:=X—-Aery;.

(3) The fuzzifying 3 —neighborhood system of a point z€ X is denoted by N/ €S (P(X)) and defined
as follows: NZ(A)= sup 74(B) .

(4) The fuzzifying I[?B—g Slosure of a set AeP(X), denoted by clye¥(X), is defined as follows:
el (A) (@) =1-N{ (X~ 4).

(5) Let (X,7) and (Y ,0) be two fuzzifying topological spaces and let fcY*. A unary fuzzy predicate
Cy€S(YY), called fuzzifying 8 — continuity, is given‘as follows:

Cs(f) =¥B(Bco—f ' (B)ers ).

Definition 2.10. [19]. Let Q be the class of all fuzzifying topological spaces. The unary fuzzy
predicate T} (fuzzifying 8 — Hausdotff) €3(1) is defined as follows:

T (X, 7):=V 2V g € X¥ye X Aoty ) ~3BIC(BENI ACEN] ABNC=3 )).

Definition 2. 11. [16]. Let X be aet. If A4S (X) such that the support supp A={ z€ X: A(x)>0} of 4 is
finite, then A is said.to be finite and we write F(Zl) A unary fuzzy predicate FF e%( (X )), called
fuzzy finiteness, is givenas rr(A):=(38)( F(B)A(A=B))=1-inf{a €0,1:F(4,) }=1-inf{ ac[01):F(A,,) ]} »
where 4, :{ re X A@)>a } and ZL(U:{ ze X :A(z)>a }

Definition 2. 12. [16]. Let X be a set.

(1) A binary fuzzy predicate K e%(%(P(X ))x P(X )), called fuzzifying covering, is given as follows:
KR, A)=Yz(scA—IB(BERATEDR) ).

(2) Let (X,7) be a fuzzifying topological space. A binary fuzzy predicate K, eS( S(P(X) )xP(X)), called

fuzzifying open covering, is given as follows:

K. (R, A)=K(R, A) A(RCT).

Definition 2. 13. [16]. Let © be the class of all fuzzifying topological spaces. A unary fuzzy
predicate T'e %( Q ) , called fuzzifying compactness, is given as follows:
(X,T)GF::( VR )( K, (éR,X)—>(3p )((pgé}%)AK(p,A) AFF(p) ), where p <® means that for any
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MeP(X),p(M)<R(M).

Definition 2. 14. [16]. Let X be a set. A unary fuzzy predicate fI €S (S(P(X ) ) , called fuzzifying finite
intersection property, is given as follows:

A®R):=( VB8 )((B<R)AFF(B)—(3z)(vB)(BEB)—(z€B))).

Lemma 2. 2. [19]. Let (X, 7) be a fuzzifying topological space. Then

(1) erCry: @ = FCE,. (3) Fﬁ[ n 4

> / .
_/\/E\AF,}(AA)

Corollary 2. 1. [18]. 7, (4) = inf NZ(A).
Theorem 2. 1. [18]. Forany «,4,B,[=ACB—( AN/ —BeN/ ).

3. 6 —IRRESOLUTE FUNCTIONS

Definition 3. 1. Let (X,7) and (Y,0) be two fuzzifying topological spaces and let feY*. A unary
fuzzy  predicate I;€3(YY), called  fuzzifying B4 irresolute, is  given  as
follows: I;(f) =V B(B€os— [ (B)eTs).

Theorem 3.1. Let (X,7) and (Y,0) be two fuzzifying topological spaces and let feY*. Then
=fel;—feCy

Proof: From Lemma 2.2 we have ¢(B)<o;3(B) and the result holds.

Definition 3. 2. Let (X,7) and (¥, 0 )‘betwo fuzzifying topological spaces and let f€Y* . We define the

unary fuzzy predicates wy, €S(Y* ), where k= 1,...5, as follows:

(1) few :vB(BeE/}/ — f7L (B)e B ), where F;' and F) are the fuzzifying (3 — closed subsets of X
and Y, respectively.

() few :VzVu(u ele(;) — f4uyeNF” ), where N7 and N7 are the family of fuzzifying
3 —neighborhood systems of X'and Y, respectively;

3) fews :VmVu(uGNﬁi) —>E|v(f(v)§u —veN ) );

(4) few, =V A(f (e (A))Ccll (f(4)));

(5) fews = B(cf(F7(B) )< (e} (B) ) )-

Theorem 3. 2. |=fcl; < few,,k=1,...,5
Proof: (a) We will prove that |=felz < few,.
[few |=[vB( E (B)-F (17'(B))]

=[VB( o5 (v =B)—75 (X—1(B)))]

=[ VB oy (Y=B)—s (/7' - B))) |
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=[ V(o5 @75 (£ W))]
=[ rely].

(b) First, we prove that [ fely ]g fewg] employing the rules of Lukasiewicz logic and the clear fact
that f(z)€ ACu implies z€ f 1(A)C f1(u) :

[£ets J=| ¥ A( o5 @=ma (1))
<[ VB(f@eaSu—(osd) =7y (F(1)))]
<[34(f@reacunoy ()~ 34(fw)e Acun, (f4a))) |
g[EIA(f(m)eAgu/.\ag(A))a EIA(xGBQf’l(u)/.\Tﬂ(B)H.

From this, the required [ felﬂ] [ few, ] is followed by the rule of generalization (on x and u) in
Lukasiewicz logic.

Second, we prove that { f ewg] { f elﬂ} by the rules of Lukasiewicz logic and employing
Corollary 2.1:

[Few | =[vuve( Vg (7 w) )]
§[Vu(Va:€f Hu)A N (u )HVwef’l(u)/\NfX(f’l(u)))}
=[Vu( oa)=rs (F'W))] =  €15].
(c) We prove that | few, |=[ f€uwy | From Theorem 2.1 we have

[f€w3] mf 1nf min| 1,1— Nd(:)() sup N5 (v)
u€P(Y) veP(X),f(v)Cu

> 8" ;*?X -1 = .
b Bt ()| e

(d) We prove that { fewy ] [ fEws ] First, since for any fuzzy set A we have

[f*l(f(il));ﬁ]z , then [f’l(f(ch( (B ))))Dch(f (B))]:l for any BeP(Y). Also,
since [ f(fH(B))CB }:1, then [ clf (f(f’l(B))) Cel} (B) ]:1 . Therefore, from Lemma 1.2 (2) [22]
we have
[ (F1B)C (el B)) | =] £ (f( e (£71B))) s (et (B) )]
[ (X (@) (e (1 @) )]
>[ f(ef (7' ®)) e (£ B))].
Therefore

[ rews|=[¥B((c (5 B)) s (et} (B)))]
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>[VB(f(af (11 @)l (1(53)))]

>[VA(f(ef ()cely (£))] =] Few].

Second, for each AC X , there exists BCY such that f(A)=B and f '(B)2A. From Lemma 1.2 (1)
[15] we have

| few|=[VA(f (el (D)t} (£(4)))]
2| vA(s (e e s( (e (1))))]
2|V Al (C 1 (e (1)) ]
2| VB=F W)t (B)< £ (et} (B)))]
[V B(f (11B))C 1 (et} B))]=] /s .
(e) We want to prove that |= f €w, < f €ws .

| fews|= it [err (1 @I)C 7 (el (B)]

= inf inf (1,1-(1-N" (X -F'(B)))+1-N],

BeP(Y)zeX (Y -B) )

)

iy i 114V - 2 (10 - ) )

= iy, Inf minfl L7 (0)+ N7 (47 @) ) = [ e |

4. ﬁ — COMPACTNESS IN FUZZIFYING TOPOLOGY
Definition 4.1. A fuzzifying topological space (X,7) is said to be (3 — fuzzifying topological space
if 75 (AN B)>75 (A)A15(B).

Definition 4.2: A binary fuzzy predicate K ES( S(P(X))x P(X) ), called fuzzifying 3 —open covering,
is given as K (éR,A)::K(ER,A)A(S? Cry ) .

Definition 4.3. Let Q2 be the class of all fuzzifying topological spaces. A unary fuzzy
predicate I'; €3 (2), called fuzzifying 3 — compactness, is given as follows:

(1) (X,7)eTy=(VR) [ Ks (R, X) = (39) (0 SRIAK (0, X) A F F(p)) ).

s

(2)If AC X, then T5(A)=Tj (4,7 ).
Lemmad4. 1. =K, (R,4A)— Kz(R, 4).

Proof: Since from Lemma 2.2 =7 C 7y, then we have [% Cr }S[R C7y } . So,
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Theorem 4.1. |=(X,7)e I'; —(X,7)el.
Proof: From Lemma 4.1 the proof is immediate.

Theorem 4. 2. For any fuzzifying topological space (X,7) and AC X,
Py(A) = (VR)( K5(R,4) = Bo)((0<R)IAK (0, A) A FF(p))), Kjyis related to 7.

Proof: For any R e S( S(X)), we set éﬁe%( 3(4) ) defined as ( )=R(B) with ¢ = ANB,BCX. Then

K( R,A ):;reli;l igg%(C) = erelg jEecstzlgmgé)‘ﬁ(B) THEIE 316123? ( ), because 1€ A  and z€B if

and only if z€ AN B. Therefore

[RCrs14 = r&imin(Ll—@(C)—}—mM(C))

= inf min| 1,1— sup R(B)+ sup 75 (B)
ccA C=ANB,BeX C/=ANB,BEX

> sup min(1,1*%(3)+7')3(3))
0CA,C=ANB,BeX

Zfi?réfX min(l,l— R(B) +715.(B) ) = [ RC7y ]

Forany o< , we define '€ 3 (P(X)) as follows:

’(B):{MB) if BCA,

0 otherwise.

Then o' <R, F F(p')= F F(p) and®K (o', A )=K (p,4).
Furthermore, we have

by (DMK ()] < [T () K ( R,4)]
<[ (30)((p<R)nK(0.4))F FE) )|
<[(3e)((o'<)AK (0", A) 0P P(0') )]
< [(38)((B<R )k (B.A)AFF®B) )|

Then T; (A)< [ K5 (R, [(3 ( (B<®)AK(®B A)/\FF(B))]
WhereKé(S_?, ) [Kj(é)% A)@( Cry |A” Therefore

T, (A)< M&g(){))[@ (R, A) —>(E|B)(( B <R )AK(B,A)\F F(B) )]

= [ (am)(Kﬂ (ER,A)—>(3B)(( B<R )AK(B,A)\F F(B) ) )]

Conversely, for any Re S (P(4)),if {%gw l4 ] rclfAmin(l,l—é)‘E(B) + 75 |4 (B))
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=X,then for anyneN and BCA, sup 745(C)=75l4 (B)>)\+8%(B)flfl7 and  there
B=ANC,CCX ‘ n

exists Cz C X such that C;NA=B and 74 (CB)>)\+%(B)—1—1. Now, we
n
define ReS(P(X)) as @(C):Baii( 0,)\+8‘:‘:(B)—1—%). Then | RC 7, |=1 and

c

N — . N — . 2 > . .
K%)= sup RO= foupR(Cy) > fuf, sup

At %(B)—1—l)

n

= inf sup %(B)—i—)\—l—l =K(9%,A)+A—1—l ,
z€A n n

Ky (RoA)= | K(RoA)a(Rery) | =[K (R.4) ] > max| 0, K(#A)+2-1--

A,

2max(O,K(%,A)Jr)\fl)f%:[{é(é}k,A) X

Forany p<R®, we set o' €3 (P(4)) as p'(B)=p(Cp),BCA. Then
O'<R,FF(p')=FF(p) and K(p’,A ): K(p,A). Therefore

[R5 (R, )= @) (o< )AK (0, 4)7 P F )] |2 K502 4)] -

<[ Rk, R, A~ Eo)(( =R )N K () FF@)) |0 ([K5R 4]~ 1]
< { Ky (RA)—30) (o< )AK(@»A>/.\FF(W))}C\[KH (®.4)]

<[ @o( <R )k (o) FEB)] <[ (30)(( <2 )a(o'a) £
<[ (3B){({B<RYn K (B.4)AF F(B))]. Letnmoo . We obtain
[om{ ) 230 (<R )nk (o4 )ar Peon) ) | K3,
<[(33)(( B<RIAKB, 1P E®))] . Then
[ (15 (R,4) = (30 )(( 0B )n K (0.0 F £ o) )
<| KR, 4)~(3B)(( (B<R) AK®B, AP F(B))) |
< ik [ KSR A (3B (B<R) AKB.ANFF®)] =T, (4).

Theorem 4. 3. Let (X ,7) be a fuzzifying topological space.

mi=(YR) (R €S(P0)) JA(RCE A R) —(3z)(VA)(AeR—weA);

m=(vR) (3B) (((%gF;;)A(BGTg))/.\(Vp)

(( p<R)AFF(p)— ﬁ(npr))—m(rm gB)) _Then [=T (X,7) e m,i=1,2.
Autumn 2006 Iranian Journal of Science & Technology, Trans. A, Volume 30, Number A3
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Proof: (a) We prove I'; (X, 7) :[ m] .Forany ReSJ(P(X)), weset R (X — A)=R(A). Then

[RCry]| = AEiII;gX)min(l,lfé}E(A)+7"A«,(A))

= /1121;) X)min(Ll—?)?c(X — A+ F(X - A)) :[ R CFy },

FFR) =1-inf{ a€[0,1]:F(R,) } = 1—inf{ a€[0,1]:F(R;) }=F F(R°) and
B<R® & B(M) < R (M) B (X —M)<R(X — M)« B° <R. Therefore,
£y = [0 60,0030 € )3 P2
= [(¥®)((RCrs ) A KR, X) = (3p)((0<R) A K(6.X)AFF(g)) )]
= [(vR)((Rs) — [ KR, )~ (30)(( 0 <R Ko, ) A FF(0)))) |
(o) (r<m)~((ve)(3a) (acrnzea) ({0 2R)nR (0 x)y PP
= [(v®)((w<h )~ (( v Ya) acrrac )~
(3]36)((136géR)AK(BC,X)@FF(BC))))] =[(vR)(mCFy)—((Vs)(34)(AcRAzEA) -
(3B)((B<R") A FFB)K (Ve ) (38)(B € B naeB )|
:{(V%R)((%CQF[;)H(ﬂ((HB)(BﬁRCAFF(B)/.\
(vx)(3B)(BeB A xeB))>— A)(4eRrxea))]
omecr, )ﬁ(ﬂ(ER")%ﬂ((Vx)(ﬂA)(Aeﬂ%AxeA)))]
=[(¥ (% 2F, )a 1R ) > Bx)(v x) (et > xe ) [ 7]

(b) We prove [z, |=[ 7] . Let X —Be P(X). For any Re I(P(X)),
|(ReF,)n(Ber,)|=|ReF, Alx -BeF,)]
=Ag(fX)min(1,1—m(A)+Fﬂ (A))AF, (X - B)

= inf mm(ll R(A)+F, (A))/\ inf mm(11 [4e{x-B}]+F,(4))

AeP(X

= inf mm(11 [RU{X - B}(4) ]+ F,(4))

=|(RU{x-B})cF,]

Therefore, for any Be 3(P(X)), let p=B\{ X - B }e 3(P(X)).
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B(4) |, A+X-B
0 , A=X-B

Then p<B, oU{ X—B }>B,[ FF) |=| FF®B) |, [p<®|=[B<(RU{x-B)]

and

(¥9)((0=R)0F Fo)—(32)(v4)( ac(pU{ X~ B } )~ (se4)))

= inf min
P<R

LI=[FF(o)]+sup inf ((0ULX =B} )(4)— Aww)) ]

<  inf min[1,1—[ FF(p) sup inf

S e ) +sup inf (B(A)_>A(x))]—f[(@RU{X_B}),

Furthermore, we have
m (B )A(Bem))a(Yo)((o <)) F (r=N(nocB)) |
—n [ (RO -8R oo Fio) -
(35) (v4) [Ac{o Ui By} 2 (4)|
~ru 5] (RU{ X8 J< st (R0 (x5}

< [ (32 ) (va) (Ae(@%U{X ~ B})—xed )]

Sj-(nwep)]
Therefore
m < %ei‘%?}g(x))slclg( (?RQF}, /\BGT‘Q)/.\(VQ) ((pﬁ%)/.\FF(p)ﬂ
(AocB ))~{nRes)) =x.
Conversely,

g (R Yy | = pll(%1 020 Jumy ) | (0 a)ucs))|
= mA[(R'CE )N (X-B)ers A(Vo)(( o< )AFF(p)—
(32)(vA4)( A€(pU{BY)—ze4))]
= A (RCy Jn (X = Bens) a(vo)((0<R) A FF ()= (0o € X = B)]
<[ ~(N# cx - B)|=|(3z)(v 4)((4¢€ (R'U(B})— (zea))
=[(32)(va)(AeR—(zecA))].
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Therefore

”2%6%?1%)[ (RSB )AST(R)—(32)(vA)(AeR— (€ 4)) ]:m.

5. SOME PROPERTIES OF FUZZIFYING ﬁ — COMPACTNESS
Theorem 5. 1. For any fuzzifying topological space (X,7) and AC X,
=L (X,7)ANA€F; =1 (4).

Proof: For any R €3 (P(4)), we define ReI(P(X)) as follows:

_ R(B) if BCA,
R(B) = [

0 otherwise.

Then FF(ﬁ):pinf{ ael0,1]:F(R, )} :171nf{ a€l0,1]: F (R4) }: FE(R) and

sup inf (1-R(B) |=su
zegnggX( ( )) xe?(

—sup[ inf (1—5)"%(3))]A Sup[ﬁzingA(l—%(B))]

reXx \z¢BCA zeX

=sup
zeX

T

i%ch(l—éﬁ(B))]

=oup [, 28, O8] v

Wigng(l—é)‘E(B))

If z¢ A, then for any z'€ A we have

nt (1-%eB) )= '1&5(1—%(3))§x,;%fg (1-%(B))

Therefore, sup inf (1—%(3)):sup inf (1—§R(B)),

zeXT¢BCA zeABCA

= inf min 1,1—FF(§)+§1€1§ wgiggx(l—ﬂ?(B))

1,1-F F(B)+sup inch(l—é)%(B))

zeX ¢BC

=[ ()]

= inf min
B<R

We want to prove that Fj (A)A{ RCFy| 4 ]g{ RCE, }
In fact, from Lemma 2.2 (3) we have

Fy (A)f[ RCF, A]Zmax[ 0, (A)Jréféamin(lal*%(B)JrﬂﬂA (B)) - 1}

inf (1=R(B)+ F; (4) + Fy14 (B)~1)
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inf (1=R(B) )+(F; (A F |1 (B) )

. !/
of, (1-RB) )1\ B ()n w5 (B)

af, (1-9(B) )+ sup (B (4)AF; (B))

(18, o ((a05)

:gngmin( 1,1-R(B)+F; (B))
:gngmin( L1 -R(B)+ F; (B)) [ Ry |

Furthermore, from Theorem 4.3 we have
Ty (X, 7)AF; (AA[RCFy |4 |AfTR) ET5 (X, 7)A[RCE; |AfI(R)

< sup, ([ 1-RE)E smy gt (1-R0))

Then
Py (X,7)0 Fy (4) <[REF [ AT (R)—sup inf (1-R(B) )

S%Re%l(n}f(A)) RCFy |A/.\ff(§R) — Zggté%fg/l( 1—%(3)) =Ty (4).

Theorem 5. 2. Let (X,7) and (V;0) be any two fuzzifying topological spaces and fcY™ is surjection.
Then =T (X,7)ACs (f) =T (f(X))

Proof: For any BeS(P(Y)), we define as follows:
R(A)=f" (B)(A)=B(f(4)). Then

K(S‘E,X): inf supR(A)= inf supB(f(4))

2€X pcA 2€X pcA
=inf sup B(B) = inf supB(B)=K(B,f(X)),
XEXf(x)eB yef(x) yeB
[B < o]AlC, (/)]= inf min(1,1-B(B)+ o (B)A inf min(l,1-o(B)+z, (7 (B)))
—max (0, inf min (1,1~ B(B)+ (B))+  inf min (0, min(1,1-c(B)+7,(7 " (B))))- 1)

<inf max (0, min(1,1-B(B)+ o (B))+min(1,1-o(B)+ 7, (" (B)))-1)

BcY
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SRV N
<inf min(L1-B(B)+7,(f " (®)))

<inf inf min(1,1—B(B)+r,,(f "(B)))

AcX f7(B)=4

<inf inf min(1,1-B(B)+7,(4))

AcX 7' (B)=4

<inf min[l,l— sup B(B)+r/,(A)J

AcX 1 B)=4
= inf min(1,1-R(4)+7,(4))=[ R, |.
Forany <R, we set @ €3(P(Y)) defined as follows:
9 ()= flp)f(D)=pd). 4= X.
Then & ((4) = f(p)(/ ()< £ () £((0)= (7 B)s ())<B(r (),
F F(p)=1-inf{a€[0,1]:F(py, ) | =1-inf {ae[0,1] :F (f (@) )}
= FF(f(p))<FF(p) and

K(@.f(0)= inf sup'@(B)= inf ~ sup ()

yeB T ye=r(a)

> inf  sup p(A) =in£ sup (A4) = K(@,X)
Ye4 xed

yef(X) f*‘ (y)ed
Furthermore,

(oo Al (0 Al (B, 1 (0)]

=|, (o fale, (0 Ja[kB. 1)) [Beo ]
= [Fﬁ (X,r)J/.\[iRgTﬂ J/\[K(SR,X)]

=[r, X0 K, (7, X))
<|Ge)(p<R)rK(p, X)AF F(p))|
<|@e)e<R)nk(@./X))AF F(D))]
<|G @' <R)AK (@', f(X))AF F(p')]|, where K! s related to o
Therefore from Theorem 4.2 we obtain
[r, (.o Jalc, (0]
<K!(B, /(X)) B0 <R)AK(0", £ (X))AF F(e))

< inf KI(B.(0)-> @)@ <R)AK(, f0)n FF ()

Be3(P(X)
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=[r(f(x)]

Theorem 5. 3. Let (X,7) and (Y,0) be any two fuzzifying topological spaces and fcVY™ is surjection.
Then [=Ts (X, 7) Al (f) =T (f(X)).

Proof: From the proof of Theorem 5.2 we have any BeS(P(Y)) we define ReS(P(X)) as follows:

(
R(4) =f ' (B)=B(f(4)). Then K(®,X )= K(B,f(X)) and [Bgaﬁ]/.\[fg(f) <[RC7s]. For any
p<R, we setpe S(P(Y)) defined as follows: g(f(4))=f(p)(f(A))=p(4),ACX and we have
FF(p)<SFF(p),

K (p,f(X))> K, X). Therefore
(Do (5 [a[ 10 (0 [ 5 (8,10
= (15 (X7 [A[15 (1) || K (B, (X)) [ B s |
<0 o me, || sl )
=[rs (X | B (. X ]
<[ (30)((o=7 )k (0 )7 P (o)
<[ (o)l P (7100 F )|
<[ (3¢)((¢' <8 )AK (o' X))A P E (') )], Where K} s related to o

Therefore from Theorem 4. 2 we obtain

[0 (6,7) [A [ 1500)]
< Ky (B X)) = (3¢ )((0/ <B)AK (0 SX)) A F (o) )

< e 0 (5 (3.£00) = 36/ ) (/<D )A€ (07,100 P F(01) )

=[5 (£0x)) |

Theorem 5. 4. Let (X, 1) be any fuzzifying g —topological space and A,BC X. Then

() T(X,7)A(T3(A) AT4(B))AANB=¢ =" T} (X,7)—

(3U)(3V)((Uers )\ (Vers )A(ACU)A(BSV)A(UNV =6 ) );

() T(X,7)AT4(A) =" Ty (X,7)— A€ F;.

Proof: (1) Assume ANB=¢ and T, (X,7)=t. Let z€ A. Then for any yeB and A<t, we have from
Corollary 2.1 that
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sup{ Tg (P)/\Tﬂ(Q):LEEP,yGQ’PﬂQ:qj}
:sup{ T3 (P)/\Tﬂ(Q):xePgU,yng/,Um/:qg}

= sup sup 75 (P)A sup 75(Q):t=
yeQCV

] sup { NP(U)ANJ(V) }
UNV=6 zePCU =¢

unv

>inf sup {N{.’(U)AN;?(V)}:Tf(X,T):t>)\,
TEY UNV =6 ’

ie., there exist P,,Q, such that =z€P,,ycQ,,P,NQ,=¢ and 7p(PF,)>\, Tp(Qy)>)\. Set

B(Q,)=7p(Q,) for ye B. Since [Bgrﬁ]zl, we have

[ 6(5.5) |- [ (B.5)] - g supBi0)> 1 30, Song 0 (0)) 2

On the other hand, since E‘g(X,T)A((FH(A))/\Fﬁ(B) )>O, then'1- ¢ < T3(A)AT3(B)<Ts(A). Therefore,
for any )\e(l—Fﬂ(A),t ), it holds that

1-A<T4(4)<1-[K, (B, B) |+ sip

sip{ K (0.8 )\ FF (o) |

gl—)\+sup{K(p,B)/\FF(p)}, ie., sup{K(p,B)AFF(p)}>O and there exist ©<B such
p<B ° p<B <

that K (¢, B)+FF(p)—1>0, ie, 1-FF(g)<K(pB). Then, inf{0:F(py)}<K(p B). Now,
there exist 6, such that 6, <K(go,B) and F (g, ) . Since p<B, we may write g :{ Qy @y, } We
puty,={ p,n.Np, }. v.={q,ning, Jand have V, 2B ,U,NV,=¢,75 (U, )>75 (P, )A-..AT5(F,, )>X
because (X,7) is fuzzifying g —topolegical space. Also, 74 (V,)>75(Q, )A-..AT5(Q,, )>\ . In fact,

ing sup p(D):K(p7B)>91, and forany yeB, there exists D such that yeD and p(D)>6,,Degp, .
ye€ByeD

Similarly, if Ae( 1-[T5 (AAT4(B)] ¢), then we can find ...z, €4 with U,=U, U..UU, D4. By
putting v, =v, U..Uv,, weobtain V.2 B, U, NV, = ¢ and

(Fu)(av)((vers Ja(Vers)a(AcU)A(BSV)A(UNV =0 ))>

7'3( Uo)/\Tg (Vo) > L:r?ln” Tﬂ( U, )/\ i:{IAIQi’Ill‘q”Tﬁ(Vz! )>)\.

Finally, let A —¢ and complete the proof.

(2) Assume T;’(X,T)/\Fﬁ (A) ] >0 .Forany z€ X —A we have from (1)

sup 75 (U)Zsup(7(U)ATs(V):iwe U, ACV, UNV =6 > T'(X,7) ] .
zeUCX—-A

From Corollary 2. 1. we obtain

i B8 _ _ = ) Ié]
FH(A)_ zel)lggANI (X —4)= zel)I}{A me;gngT“(U)Z [ L (X,7) }
Definition 5. 1. Let (X,7) and (Y,o0) be two fuzzifying topological spaces. A unary fuzzy predicate
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Qs €S(YY), called fuzzifying 3 — closedness, is given as follows:
Qs (f) =V B(Be Ff - fYB)eF) )7 where F; and Fj are fuzzy families of 7,0 —3— closed in X and
Y respectively.

Theorem 5. 5. Let (X, 7) be a fuzzifying topological space and (Y ,0) be an 3 — fuzzifying topological
space and f€Y* . Then

=T (XA (Y,0) ALy ()= Qs (F).

Proof: For any AC X, we have the following:
(i) From Theorem 5.1 we have [FH(X, T)AF5* (A)} <T5(A)
* 1

T ;
(if) 15 (F [1)=, infmin(1,1-050)+75 s (/1) @) ))

:Uei%fy)mm(l,l—aﬁw)wﬁ L (ANgEL©)) )

= inf min|1,1-03(U)+ su T3(B
ver(y) [ #(0) Aﬂf’l(UFZBﬂA b4

=, inf min(L1=05)+ 75 (£ W) )) )= 15,

(iii) From Theorem 5.3, we have [FE(A)/\IH (f| A )}SFQ (f(4)).
(iv) From Theorem 5.4 (2) we have T (1./,0) AT (f(A))=" T/ (Y,0)—
f(A) e F), which implies|=Ty" (Y ,0) AT 5 (f(A))— f(A) € F) .

By combining (i)-(iv) we have

Ls(X, T) AT (Y, 0) Al () ] < [(EaX(A)HFﬂ(A) )/_\fﬂ (AT (Y,0)
U D= (DAL (L) | AT (V0 |
<[BF )=y (AT (Y.0) |

Therefore
[PaX ) AT (XA () | < [BF ()= B (£(4)]

< nf ([FF ()~ FY (f(4)] )=Qs ().
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