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Abstract – In this study, the stability problem of a circular orthotropic cylindrical shell under the effect of an 
axial compression varying with a power function of time is considered. At first, the modified Donnell type 
dynamic stability and compatibility equations are obtained using Love’s shell theory. Applying the Galerkin 
method and Rayleigh-Ritz variational techniques to these equations and taking the large values of loading 
parameters into consideration, analytics are obtained for critical parameter values. The results show that 
critical parameters are affected by loading parameters variations, ratio of the Young’s moduli variations, 
radius to thickness variations and the power of time in the axial compression expression variations. 
Comparing results with those in the literature validates the present analysis. 
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1. INTRODUCTION 
 
The thin cylinder under axial compression is a fundamental problem in shell theory mainly due to its wide 
use as a structural element in several engineering areas: mechanical, aeronautical, and nuclear. The study 
of the stability of cylindrical shells under dynamic load is an important aspect in the successful 
applications of the shell. It is known that the researchers use two concepts in the solution of dynamic 
stability problems.  

The first concept is applied when the stability problem of construction under sudden loadings are 
affected in a very short time (impact). By using this concept, dynamic buckling problems of cylindrical 
shells under dynamic axial loads are solved experimentally, numerically and by using the finite element 
method [1, 2].  

The second concept is based on the assumption that, stress and deformation occurring in different 
points of the deformable body under the effect of dynamic load, propagates suddenly to the whole volume 
of the body. When the equation of the motion of the system (shell) element is constituted, an inertia force 
corresponding to the normal displacement is taken into consideration. Consequently, in this state, 
propagation of elastic waves in the middle surface is not taken into consideration. By using this concept, 
many dynamics problems of cylindrical shells under sudden loads are solved experimentally, analytically 
and by numerical integration [3-5]. The fundamental work concurring this concept is Agamirov [6].  
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In recent years, the buckling problems of shells under external pressure and torsion dependent on 
time are studied in [6, 7]. The analytical solutions of the stability of the shells under the axial compression, 
varying with a power function of time, have not been considered to date. 
In this paper, by applying the second concept and Rayleigh-Ritz variational techniques, the stability 
analysis of a circular orthotropic cylindrical shell under the effect of an axial compression varying with a 
power function of time is studied.  
 

2. FORMULATION OF THE PROBLEM 
 
Assume that a circular cylindrical shell with radius R, length L and thickness h is subjected to uniformly 
distributed axial loads, 
 
                                                                      1 0( )qxoN T T t= − +                                                                (1) 
 
along both edges (Fig. 1). Where 0xN  is the membrane force for the condition with zero initial moments, 

1T  is the static axial compression, 0T  is the axial loading parameter, t is time and 1q ≥  is the power 
expressing the time dependence of the load.  

The orthogonal co-ordinate system is fixed on the middle surface of the shell. The x-axis is taken 
along a generator and y- axis is taken as tangential directions, with the z  axis normal to them. The axes of 
orthotropy are parallel to the x and y-axes (Fig. 1). 

According to the shell theory, after lengthy computations, the stability and compatibility equations of 
orthotropic cylindrical shells under axial load, which is a power function of time, are obtained as follows 
[6, 8]: 
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Fig 1. Geometry and the coordinate system of a cylindrical thin shell 
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3. SOLUTIONS OF THE DIFFERENTIAL EQUATIONS 
 
Assuming the cylindrical shell to have hinged supports at the ends, the solution of the equation set (2)-(3) 
is sought in the following form [6]: 
 
                                        ( ) ( )1 1m ny m nyw=  sin  cos , sin   cos 

R R
x xt t
R R

ξ ζΦ =                                       (4) 
 
where 1 /m m R Lπ= , m  is the half wave number in the direction of the x axis, n  is the wave number in 
the direction of the y axis and ( )tξ  and ( )tζ  are the amplitudes.  

Substituting expressions (4) in the equation set (2)-(3), then applying Galerkin’s method in the ranges 
0 x L≤ ≤  and 0 2y Rπ≤ ≤  and eliminating ( )tζ , the following differential equation is obtained: 
 

                                                           
( )

( ) ( )
2

1 02 0qd
d
ξ τ λ λ τ ξ τ
τ

+ − =                                                         (5) 
 
where  crt tτ= , in which crt  is the critical time and the dimensionless time parameter τ satisfies 
0 1τ≤ ≤ ; ( 1,2)i iλ =  are parameters depending on the properties of the orthotroic material and the 
characteristics of the cylindrical shell. 

An approximating function will be chosen as ( ) ( ) ( )[ ]2 3 / 2Aeατξ τ τ α α τ= + + − , satisfying the 
initial conditions ( ) ( )0 , 0 0τξ ξ= = . Here A  is constant. The values of α  will be determined after the 
formula of the dynamic critical axial load is found. 

Let us consider the axisymmetric stability loss (n=0). Applying Rayleigh-Ritz variational techniques 
to Eq. (5), after some mathematical operations, when the axial compression varies linearly and 
parabolically dependent on time, the following expressions are found for the static critical axial load, 
dynamic critical axial load and dynamic factor (Df), respectively:  
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                                                         (1) (1)/cr cr

f d stD T T= ; (2) (2)/cr cr
f d stD T T=                                        (9-10) 

 
where ( )iB q , i=0,1 given in [7], and ( 1 4)i iγ = ÷  are parameters depending on the properties of the 
orthotropic material and the characteristics of the cylindrical shell. 
Expressions (7) and (8) can be written in dimensionless form as in the following: 
 
                                          ( )1/2ˆ (1) (1) /cr cr

d d x yT T R h E E= , ( ) 4
ˆ (2) (2) /cr cr
d d x yT T R h E E γ=              (11-12)  

 
4. NUMERICAL COMPUTATIONS AND RESULTS 

 
To verify the numerical results obtained in this study, the values of the dynamic critical axial load values 
found by the present method, when the axial compression varies linearly dependent on time are compared 
in Table 1 with the dynamic critical axial load values obtained by numerical integration (Runge-Kutta 
method), given in [3]. The computations presented in Table 1 have been carried out for the following 
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material properties and shell parameters given in Shumik [3], Ex=104 MPa, Ey=2×104 MPa, µxy=µyx=0.15, 
ρ=1.83×103 kg/m3, q=1, L/R=2, R/h=100, 0 0.001ξ = . There is a good agreement between the present and 
the numerical results. 

In Table 2 the variations of the dynamic critical axial loads, the corresponding values of the wave 
number (md), and the dynamic factor with the ratios of Young’s module and R/h are seen. In parenthesis 
are the values of α corresponding to the minimum values of the dynamic critical axial load. 

When Ex (=1.724×105 MPa) is kept constant and the ratio Ex/ Ey is increased, the values of the 
dynamic critical axial load and corresponding wave numbers decrease, whereas the values of the dynamic 
factor increases.  

When Ex (=7.79×103 MPa) is kept constant and the ratio Ey / Ex is increased, the values of the 
dynamic critical axial load and corresponding wave numbers increases, whereas the values of the dynamic 
factor decrease. Hence, materials with high degrees of anisotropy can cause the loss of stability of 
cylindrical shells.  

When the ratio R/h increases, the values of the dynamic critical axial load decreases significantly, 
whereas the values of the dynamic factor increases significantly. When the ratio R/h increases, the values 
of the wave number corresponding to dynamic critical axial load increase, while those values of α 
decrease. 
 

Table 1. Comparisons of the dynamic critical axial load with numerical results for q=1 
 

Shumik [3] 
(Runge-Kutta method) Present study 

(T0/h)×10-5 
(MPa/sec) 

(1)cr
dT  

(MPa) 
(1)cr

dT  

(MPa) 
α 

0.2 85.0 86.6 57 
0.4 91.7 89.0 37 
5.0 160.6 160.8 1.66 

 
Table 2. Variation of the critical parameters with the ratio of Young’s 

 moduli and R/h(T0/h=105 MPa/s, L/R=2) 
 

 R/h=100 R/h=200 R/h=300 
Ex/ Ey (1)cr

dT  
(MPa) 

(1)fD  md (1)cr
dT  

(MPa) 

(1)fD  md (1)cr
dT  

(MPa) 

(1)fD  md 

10 335.0 (α=49) 1.058 6 181.3(α=19) 1.145 9 131.6(α=1) 1.25 12 
20 243.7 (α=31) 1.092 5 137.2(α=14) 1.229 8 103.4(α=9) 1.39 10 
30 203.9(α=24) 1.12 4 118.3(α=11) 1.299 7 91.4 (α=7) 1.51 9 

Ey/ Ex (1)cr
dT  

(MPa) 

(1)fD  md (1)cr
dT  

(MPa) 
(1)fD  md (1)cr

dT  
(MPa) 

(1)fD  md 

10 150.9 (α=47) 1.06 21 81.83(α=20) 1.149 30 59.5(α=12) 1.25 37 
20 209.2 (α=74) 1.037 25 110.3(α=31) 1.094 35 78.0(α=19) 1.16 44 
30 254.4 (α=97) 1.029 27 132.5(α=39) 1.072 39 92.6(α=24) 1.12 48 

 
5. CONCLUSIONS 

 
In the present research, the stability of orthotropic cylindrical thin shells under axial compression, a power 
function of time, was studied. At first, the fundamental relations and modified Donnell type dynamic 
stability equations have been written. Then, applying Galerkin’s method, a time dependent differential 
equation with a variable coefficient has been obtained. Finally, the critical parameters are found 
analytically for an axially symmetry case by applying the Rayleigh-Ritz variational techniques. The 
effects of the variations of the loading parameter, the ratio of radius to thickness, the ratio of Young’s 
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moduli and the power of time in the axial compressive load expression on critical parameters, have been 
studied numerically. 
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