
Arc
hi

ve
 o

f S
ID

Iranian Journal of Science & Technology, Transaction A, Vol. 30, No. A3  
Printed in The Islamic Republic of Iran, 2006 
© Shiraz University 

 
 
 
 

“Research Note” 
 

TOPOLOGICAL RING-GROUPOIDS AND LIFTINGS* 
 
 

A. FATIH OZCAN, I. ICEN** AND M. HABIL GURSOY 
 

Inonu University, Science and Art Faculty 
Department of Mathematics, Malatya, Turkey 

iicen@inonu.edu.tr 
 

Abstract – We prove that the set of homotopy classes of the paths in a topological ring is a topological ring 
object (called topological ring-groupoid). Let :p X X→ be a covering map and let X be a topological ring. 
We define a category UTRCov(X) of coverings of X in which both X and X  have universal coverings, and a 
category UTRGdCov( 1Xπ ) of coverings of topological ring-groupoid 1Xπ , in which X and 0R X=  have 
universal coverings, and then prove the equivalence of these categories. We also prove that the topological 
ring structure of a topological ring-groupoid lifts to a universal topological covering groupoid. 
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1. INTRODUCTION 
 

Let X be a connected topological group with zero element 0, and let :p X X→  be the universal covering 
map of the underlying space of X. It follows easily from classical properties of lifting maps to covering 
spaces that for any point 0  in X  with (0) 0p = , there is a structure of topological group on X  such that 
0  is the zero element and :p X X→  is a morphism of topological groups. We say that the structure of 
the topological group on X lifts to X  [1]. It is less generally appreciated that this result fails for the non-
connected case. R. L. Taylor [2] showed that the topological group X determines an obstruction class Xk in 
H³(π0X,π1(X,0)), and that the vanishing of Xk  is a necessary and sufficient condition for the lifting of the 
topological group structure on X to the universal covering so that the projection is a morphism. This result 
was generalized in terms of group-groupoids and crossed modules [3], and then written in a revised 
version in [4]. A topological version of that was also given in [5]. 

The ring version of the above results was proved in [6]. Let X and X  be connected topological spaces 
and let :p X X→  be a universal covering. If X is a topological ring with a zero element 0, and 
0 X∈ such that (0) 0p = , then the ring structure of X lifts to X  [6]. That is, X  becomes a topological 
ring with zero element 0 X∈  such that :p X X→  is a morphism of topological rings. 

In [6] Mucuk defined the notion of a ring-groupoid. He also proved that if X is a topological ring, 
then the fundamental groupoid π1X, which is the set of all relative to end points homotopy classes of paths 
in the topological space X, becomes a ring-groupoid. In addition to this, he proved that if X is a topological 
ring whose underlying space has a universal covering, then the category TRCov(X) of topological ring 
coverings of X is equivalent to the category RGdCov(π1X) of ring-groupoid coverings of π1X. 

In this paper we present a similar result for a topological ring-groupoid. The topological ring-
groupoid is a topological ring object in the category of topological groupoids. Let R be a topological ring-

                                                            
∗Received by the editor June 25, 2004 and in final revised form October 31, 2006 
∗∗Corresponding author 
 
 

www.SID.ir



Arc
hi

ve
 o

f S
ID

I. Icen / et al. 
 

Iranian Journal of Science & Technology, Trans. A, Volume 30, Number A3                                                           Autumn 2006 

356 

groupoid and let :p R R→ be a universal covering on underlying groupoids such that both topological 
groupoids R and R  are transitive. Let 0 be the zero element of R0 and 00 R∈  such that (0) 0p = . We 
prove that the topological ring-groupoid structure of R lifts to R  with zero element 0 . 

Here we also prove that if X is a topological ring, whose underlying space has a universal covering, 
then the category UTRCov(X) of topological ring coverings in which X  has a universal covering, is 
equivalent to the category UTRGdCov(π1X) of topological ring-groupoid coverings of π1X, in which 
0R X= has a universal covering. 

 
2. TOPOLOGICAL RING-GROUPOIDS 

 
We call a subset U of X liftable if it is open, path connected and the inclusion U→X maps each 
fundamental group π1(U, x), x X∈ , to the trivial subgroup of π1(X, x). Remark that if X has a universal 
covering, then each point x X∈  has a liftable neighborhood [3]. 

A groupoid consists of two sets R and R0 called respectively the set of morphisms or elements and the 
set objects of the groupoid together with two maps α, β: R→R0, called source and target maps 
respectively, a map () 01 : , 1xR R x→  called the object map and a partial multiplication or composition 

, ( , )R R R b a b aα β× → is defined on the pullback 
 

R Rα β× ={ }( , ): ( ) ( )b a b aα β= [7]. 
 

These maps are subject to the following conditions: 
1. ( ) ( )b a aα α= and ( ) ( )b a bβ β= , for each (b,a)∈R Rα β× , 
2. c (b a)=(c b) a for all c,b,a∈R such that α (b)= β (a) and α (c)= β (b), 
3. α (1x)= β ( 1x)=x for each x∈R0, where 1x is the identity at x, 
4. ( )1 aa aα = and ( )1 a a aβ = for all a∈R, and 
5. each element a has an inverse a-1 such that α (a-1)= β (a), β (a-1)=α (a) and a-1◦a= ( )1 aα , a◦ a-1= ( )1 aβ . 

Let R be a groupoid. For each x,y∈R0 we write R(x, y) as a set of all morphisms a∈R such that 
α (a)=x and β (a)=y. We will write StRx for the set 1( )xα− , and CoStRx for the set 1( )xβ−  for x∈R0. The 
object or vertex group at x is R(x)=R(x, x)= StRx ∩ CoStRx. We say R is transitive (resp. 1-transitive, 
simply transitive) if for each x, y∈R0, R(x, y) is non-empty (resp. a singleton, has no more than one 
element). 

Let R and H be two groupoids. A morphism from H to R is a pair of maps f:H→R and f0:H0→R0 such 
that α R f=f0 α H, β R f=f0 β H and f(b a)=f(b) f(a) for all ( , )b a H Hα β∈ × . 

We refer to [8] and [9] for more details concerning the basic concepts. 
Covering morphisms of groupoids are defined in [8] as follows: 

A morphism f:H→R of groupoids is called a covering morphism if for each x∈H0, the restriction of f 
mapping fx: StRx → StRf(x) is bijective. Also, the following definition of pullback is given in [10]. 

Let 
0 0fR Hα ×  be the pullback 

 
0 0fR Hα × ={(a,x)∈R×H0 : α (a)=f0(x)}. 

 
If f:H→R is a covering morphism, then we have a lifting function 

0 0:f fs R H Hα × →  assigning to 
the pair (a,x) in 

0 0fR Hα ×  the unique element b of StHx such that f(b)=a. Clearly fs  is inverse to 
(f,α ):H→

0 0fR Hα × . So it is stated that f:H→R is a covering morphism if and only if (f,α ):H→
0 0fR Hα ×  

is bijective. 
Let f:H→R be a morphism of groupoids. Then for an object x∈H0 the subgroup f[H(x)] of R(f(x)) is 

called the characteristic group of f at x. So if f is the covering morphism then f maps H(x) isomorphically 
to f[H(x)]. We say that a covering morphism f:H→R is a universal covering morphism if H is 1-transitive. 
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A topological groupoid is a groupoid R such that the sets R and R0 are topological spaces, and source, 
target, object, inverse and composition maps are continuous. Let R and H be two topological groupoids. A 
morphism of topological groupoids is a pair of maps f:H→R and f0:H0→R0 such that f and f0 are 
continuous. A morphism f:H→R of topological groupoids is called a topological covering morphism if and 
only if (f,α ):H→

0 0fR Hα ×  is a homeomorphism. 
A topological ring is a ring R with a topology on the underlying set such that the ring structure maps 

(i.e., group multiplication, group inverse and ring multiplication) are continuous. A topological ring 
morphism (topological homomorphism) of a topological ring into another is an abstract ring 
homomorphism which is also a continuous map. 
 
Definition 1. A topological ring-groupoid R is a topological groupoid endowed with a topological ring 
structure such that the following ring structure maps are morphisms of topological groupoids: 
1. m:R×R→R, (a,b)↦a+b, group multiplication, 
2. u:R→R, a↦-a, group inverse map, 
3. 0:( ∗ )→R, where (∗ ) is a singleton. 
4. n:R×R→R, (a,b)↦ab, ring multiplication, 
We write a+b for the group multiplication, ab for the ring multiplication of a and b, and b a for the 
composition in the topological groupoid R. Also, by 3 if 0 is the zero element of R0 then 10 is that of R. 
 
Proposition 2. In a topological ring-groupoid R, we have the interchange laws 
1. (c a)+(d b)=(c+d) (a+b) and 
2. (c a)(d b)=(cd) (ab) 
whenever both (c a) and (d b) are defined. 
 
Proof: Since m is a morphism of groupoids, 
 

(c a)+(d b)=m[c a,d b]=m[(c,d) (a,b)]=m(c,d) m(a,b)=(c+d) (a+b). 
 

Similarly, since n is a morphism of groupoids we have 
 

(c a)(d b)=n[c a,d b]=n[(c,d) (a,b)]=n(c,d) n(a,b)=(cd) (ab). 
 
Example 3. Let R be a topological ring. Then a topological ring-groupoid R×R with object set R is defined 
as follows: The morphisms are the pairs (y,x), the source and target maps are defined by α (y,x)=x and 
β (y,x)=y, the groupoid composition is defined by (z,y) (y,x)=(z,x), the group multiplication is defined by 
(z,t)+(y,x)=(z+y,t+x) and ring multiplication is defined by (z,t)(y,x)=(zy,tx). R×R has product topology. So 
all structure maps of ring-groupoid R×R becomes continuous. Then R×R is a topological ring-groupoid. 

We know from [6] that if X is a topological ring, then the fundamental groupoid π1X becomes a ring-
groupoid. We will now give a similar result. 

 
Proposition 4. Let X be a topological ring whose underlying space X has a universal covering. Then the 
fundamental groupoid π1X becomes a topological ring-groupoid. 
 
Proof: Let X be a topological ring with the structure maps 
 

m:X×X→X, (a,b)↦a+b 
n:X×X→X, (a,b)↦ab 

0:(∗ )→R 
 

and the inverse map 
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u:X→X, a↦-a. 

 
Then these maps give the following induced maps: 
 

π1m: π1X×π1X →π1X, ([a],[b])↦[a+b] 
π1n: π1X×π1X →π1X, ([a],[b])↦[ab] 

π1u: π1X→π1X, [a]↦[-a] 
π10: π1(∗ )→π1R. 

 
It is known from [6] that π1X is a ring-groupoid. In addition, from [11], π1X is a topological group-
groupoid. Further, we will prove that the ring multiplication 
 

π1n:π1X×π1X→π1X, ([a],[b])↦[a][b]=[ab] 
 

is continuous. 
By assuming that X has a universal covering [12], each x∈X has a liftable neighbourhood. Let U consist of 
such sets. Then π1X has a lifted topology [8]. So the set U , consisting of all liftings of the sets in U, forms 
a basis for the topology on π1X. Let U  be an open neighbourhood of e  and a lifting of U in U. Since the 
multiplication 
 

n:X×X→X, (a,b)↦ab 
 

is continuous, there is a neighborhood V of 0 in X such that n(V×V)⊆U. Using the condition on X and 
choosing V small enough we can assume that V has a liftable neighbourhood. Let V be the lifting of V. 
Then we have π1n(V ×V ) ⊆U . Hence 
 

π1n: π1X× π1X→ π1X, ([a],[b])↦[a][b]=[ab] 
 

becomes continuous. So π1X is a topological ring-groupoid. 
 
Proposition 5. Let R be a topological ring-groupoid and let 0∈R0 be the zero element in the ring R0. Then 
the transitive component CR(0) of 0 is a topological ring-groupoid. 
 
Proof: In [6] it was proved that CR(0) is a ring-groupoid. Further, since CR(0) is a subset of R, CR(0) is a 
topological ring-groupoid with induced topology. 
 
Proposition 6. Let R be a topological ring-groupoid and let 0∈R0 be the zero element in the ring R0. Then 
the star StR0={a∈R: α (a)=0} of 0 becomes a topological ring. 
The proof is straightforward. 
Let R and H be two topological ring-groupoids. A morphism f:H→R from H to R is a morphism of 
underlying topological groupoids preserving the topological ring structure, i.e., f(a+b)=f(a)+f(b) and 
f(ab)=f(a)f(b) for a,b∈H. A morphism f:H→R of topological ring-groupoids is called a topological 
covering morphism if it is a covering morphism on the underlying topological groupoids. 
 
Definition 7. Let R be a topological ring-groupoid and let X be a topological ring. A topological action of 
the topological ring-groupoid R on X consists of a topological ring morphism w:X→R0 and a continuous 
action of the underlying topological groupoid of R on the underlying space of X via w:X→R0 such that the 
following interchange laws hold 
1.( by)+(ax)= b+a (y+x)  
2.(by)(ax)=ba(yx) 
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whenever both sides are defined. 
 
Example 8. Let R be a topological ring-groupoid which acts on a topological ring X via w:X→R0. In [13] 
it is proved that R⋈X is a topological groupoid with object set (R⋈X)0=X and morphism set 
R⋈X={(a,x)∈R×X : ax=y}. Furthermore, the projection p:R⋈X→R, (a,x)↦a becomes a covering 
morphism of topological groupoids. Also, in [14] it is shown that if a ring-groupoid R acts on a ring X via 
w:X→R0, then R⋈X becomes a ring-groupoid and the projection p:R⋈X→R, (a,x)↦a is a covering 
morphism of ring-groupoids. Clearly, the ring operations 
 

(a,x)+(b,y)=(a+b,x+y) and 
(a,x)(b,y)=(ab,xy) 

 
are also continuous since they are defined by the operations of the topological rings R and X. Thus R⋈X 
becomes a topological ring-groupoid and the projection p:R⋈X→R, (a,x)↦a is a covering morphism of 
topological ring-groupoids. 
 

3. TOPOLOGICAL COVERINGS 
 
Let X be a topological space. Then we have a category denoted by TCov(X) whose objects are covering 
maps :p X X→ and a morphism from :p X X→  to :q Y X→  is a map :f X Y→ (hence f is a 
covering map) such that p=qf. Further, we have a groupoid π1X called a fundamental groupoid [8] and 
have a category denoted by GdCov(π1X) whose objects are the groupoid coverings p:R→π1X of π1X and a 
morphism from p:R→π1X to q:H→ π1X is a morphism f:R→H  of groupoids (hence f is a covering 
morphism) such that p=qf. 
We recall the following result from Brown [8]. 
 
Proposition 9. Let X be a topological space which has a universal covering. Then the category TCov(X) of 
topological coverings of X and the category GdCov(π1X) of covering groupoids of fundamental groupoid 
π1X are equivalent. 

Let X and X  be topological rings. A map p:X→X is called a covering morphism of topological rings 
if p is a morphism of rings and p is a covering map on the underlying spaces. For a topological ring X, we 
have a category denoted by TRCov(X) whose objects are covering morphisms of topological rings 
p:X→X and a morphism from p:X→X to q:Y →X is a map f:X→Y  (hence f is a covering map) such 
that p=qf. For a topological ring X, the fundamental groupoid π1X is a ring-groupoid and so we have a 
category denoted by RGdCov(π1X) whose objects are the ring-groupoid coverings p:R→π1X of π1X and a 
morphism from p:R→π1X to q:H→π1X is a morphism f:R→H  of ring-groupoids (hence f is a covering 
morphism) such that p=qf. 
Then the following result is given in [6]. 
 
Proposition 10. Let X be a topological ring whose underlying space has a universal covering. Then the 
category TRCov(X) of the topological ring coverings of X is equivalent to the category RGdCov(π1X) of 
ring-groupoid coverings of the ring-groupoid π1X. 
In addition to these results, here we prove Theorem 11. 

Let UTRCov(X) be the full subcategory of TRCov(X) on those objects p:X→X in which both X  and 
X have universal coverings. Let UTRGdCov(π1X) be the full subcategory of TRGdCov(π1X) on those 
objects p:R→π1X in which X and 0R =X  have universal coverings. Then we prove the following result. 
 
Theorem 11. The categories UTRCov(X) and UTRGdCov(π1X) are equivalent. 
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Proof: Define a functor 
 

π1:UTRCov(X)→UTRGdCov(π1X) 
 

as follows: Let p:X→X be a covering morphism of topological rings in which both underlying spaces X  
and X have universal coverings. Then the induced morphism π1p:π1X→π1X is a covering morphism of 
ring-groupoids [6]. Further, π1p is a morphism of topological group-groupoids [11]. So π1p becomes a 
morphism of topological ring-groupoids. Since π1p is a covering morphism of ring-groupoids, 
(π1p,α ):π1X→

1 01 ( ) 1 0( )pX Xα ππ π×  is bijective. On the other hand, π1p is a morphism of topological ring-
groupoids and α  is source map of topological ring-groupoid π1X, so (π1p,α ) becomes continuous. We 
prove that (π1p,α ) is an open mapping. 

Let [a ] be a morphism of π1X ( ,x y ). Since X and X  have universal coverings, π1X and 1Xπ  have 
lifting topology. So we can choose liftable neighbourhoods V ,V ′  of x ,y , respectively such that U=p(V ), 
U′=p(V ′ ) are liftable neighbourhoods of x=p( x ), y=p(y ), respectively. If 1[ ]( )x yW V a V −′= , then π1p(W) is 
a basic neighbourhood of π1p([a ]), while (π1p,α )(W)=

1 01 ( )( ) ppW Vα ππ × , which is open in 

1 01 ( )pX Xα ππ × . So (π1p,α ) is a homeomorphism. Hence π1p: π1X→π1X becomes a covering morphism of 
topological ring-groupoids. 
We now define a functor 
 

Γ:UTRGdCov(π1X) →UTRCov(X) 
 

as follows: Let q:R→π1X be a covering morphism of topological ring-groupoids in which both 0R X=  
and X have universal coverings. Since X has a universal covering, X  has lifting topology. Hence we have 
a covering map p:X→X of topological spaces, where p=q0 and 0R X=  [8]. Further, since q is a covering 
morphism of topological ring-groupoids, q and p=q0 are morphisms of topological rings. So p becomes a 
covering morphism of topological rings. 
Since the category of topological ring coverings is equivalent to the category of ring-groupoid coverings, 
by Proposition 10 the proof is completed by the following diagram: 
 

1

1

1

1

( ) ( )

( ) ( )

UTRCov X UTRGdCov X

TRCov X RGdCov X

π

π

π

π

→

↓ ↓

→

 

 
Before giving the main theorem we adopt the following definition: 
 
Definition 12. Let p:R→R be a covering morphism of groupoids and q:H→R a morphism of groupoids. 
If there exists a unique morphism :q H R→  such that q=pq  then we say that q lifts to q  by p. 

We recall the following theorem from [8] which is an important result to have the lifting maps on 
covering groupoids. 
 
Theorem 13. Let p:R→R be a covering morphism of groupoids, x∈R0 and 0x R∈ such that p0( x )=x. Let 
q:H→R be a morphism of groupoids such that H is transitive and 0y H∈ such that q0(y )=x. Then the 
morphism q:H→R uniquely lifts to a morphism :q H R→ such that 0q (y )= x  if and only if 
q[H(y )]⊆p[R ( x )], where H(y ) and R ( x ) are the object groups. 

Let R be a topological ring-groupoid and let 0∈R0 be the zero element in the ring R0. Let R  be just a 
topological groupoid and let p:R→R be a covering morphism of topological groupoids 00 R∈ ,such that 
p( 0 )=0. We say the topological ring structure of R lifts to R  if there exists a topological ring structure on 
R  with the zero element 00 R∈ , such that R  is a topological ring-groupoid and p:R→R is a morphism 
of topological ring-groupoids. 
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Theorem 14. Let R  be a topological groupoid and let R be a topological ring-groupoid. Let p:R→R be a 
universal covering on the underlying groupoids such that both groupoids R and R  are transitive. Let 0 be 
the zero element in the ring R0 and 00 R∈  such that p( 0 )=0. Then the topological ring structure of R lifts 
to R  with zero element 0 . 
 
Proof: Since R is a topological ring-groupoid, it has the following maps: 
 

m:R×R→R, (a,b)↦a+b 
n:R×R→R, (a,b)↦ab 

u:R→R, a↦-a 
0:(∗ )→R. 

 
Since R  is a universal covering, the object group R ( 0 ) has one element at most. So by Theorem 13 these 
maps respectively lift to the maps 
 

m :R ×R→R , (a ,b )↦a +b  
n :R ×R→R , (a ,b )↦a b  
u : R→R , a↦-a  
0 :(∗ )→R  

 
by p:R→R such that 
 

p(a +b )=p(a )+p(b ), 
p(a b )=p(a )p(b ), 
p(u (a ))=-p(a ). 

 
Since the multiplication m:R×R→R, (a,b)↦a+b is associative, we have m(m×1)=m(1×m), where 1 

denotes the identity map. Then again by Theorem 13 these maps m(m×1) and m(1×m) respectively lift to 
 

( 1), (1 )m m m m× × :R ×R ×R→R  
 

which coincide on ( 0 , 0 , 0 ). By the uniqueness of the lifting we have m (m ×1)=m (1×m ), i.e., m  is 
associative. Similarly, n  is associative. In a similar way, we can show that 0  is the zero element and -a  
is the inverse element of a . Further, we will prove that the group multiplication 
 

m :R ×R→R , (a ,b )↦a +b  
 

is continuous. 
By assuming that R has a universal covering, we can choose a cover U of liftable subsets of R. Since 

the topology on R  is the lifted topology, the set consisting of all liftings of the sets in U forms a basis for 
the topology on R . Let U  be an open neighbourhood of 0  and a lifting of U in U. Since the 
multiplication 
 

m:R×R→R, (a,b)↦a+b 
 

is continuous, there is a neighbourhood V of 0 in R such that m(V×V)⊆U. Using the condition on R and 
choosing V small enough, we can assume that V is liftable. Let V  be the lifting of V. Then 
pm (V ×V )=m(V×V)⊆U and so we have m (V ×V )⊆U . Hence 
 

m :R ×R→R , (a ,b )↦a +b  
 

becomes continuous. Similarly, n  is continuous. Further, the distributive law is satisfied as follows: 
Let p1,p2:R×R×R→R be the morphisms defined by 
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p1(a,b,c)=ab, p2(a,b,c)=bc 
 

and 
 

(p1,p2):R×R×R→R×R, (a,b,c)↦(ab,bc) 
 

for a,b,c∈R. Since the distributive law is satisfied in R, we have n(1×m)=m(p1,p2). The maps n(1×m) and 
m(p1,p2) respectively lift to the maps 
 

1 2(1 ), ( , ) :n m m p p R R R R× × × →  
 

coinciding at ( 0 , 0 , 0 ). So by Theorem 13 we have 1 2(1 ) ( , )n m m p p× = . That means the distribution law 
on R  is satisfied. Hence R  becomes a topological ring-groupoid and clearly p is a morphism of the 
topological ring-groupoid. 
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