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1. INTRODUCTION 
 

Let },{ 1≥nX n  be a sequence of random variables defined on the probability space ),,( ΡΩ F . The 

convergence problem with probability one (w.p.1) for the sequence ))}(({ ∑∑
==
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 has been 

studied by many authors for the sequence of independent random variables. The strong laws of large 

numbers and complete convergence for ND random variables were studied by Amini and Bozorgnia [1], 

[2]. In [3] we obtained some maximal inequalities under condition 1[ | ]n nE X F − =0 where 

),.....,,( nn XXXF 21σ=  for all 1≥n . In this paper, we extend some famous maximal inequalities by 

martingale techniques, and then by using these inequalities, we obtain strong laws of large numbers and 

some strong limit theorems for arbitrary random variables. To prove our main results we need the 

following lemma. 
 
Lemma 1. ([4]) Let },,{ 1≥nFX nn  be a submartingale and },{ 1≥nbn  be a sequence of positive 
nondecreasing real numbers, then for every 0>ε , 
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Remark 1. Under the assumption of Lemma 1 for every nm ≤≤1 , we have, 
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2. MAXIMAL INEQUALITIES 
 
Hajek and Renyi [5] proved the following important inequality. Let { }1, ≥nXn  be a sequence of 
independent random variables with }1,{1,)(,0)( 2 ≥≥∞<= nbandnXEXE nnn  is a positive nondecreasing 
sequence of real numbers, then for every 0>< εandnm , 
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where ).(2

kk XVar=σ  
This inequality has been studied by many authors. The latest literature is given by Liu, et.al. [6] for 
negative association random variables and Christofides [7] and [8]. We extend this inequality for arbitrary 
random variables. 
 
Theorem 1. Let { }1, ≥nXn  be a sequence of random variables with 1,,0)( 2 ≥∞<= nEXXE nn , and 

}1,{ ≥nbn  be a sequence of positive nondercreasing real numbers, then for every 0>ε , 
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where )( kk XVar=σ  
 
Proof: Set ∑ =

+=
n

k kn XS
11  and ∑ =

−=
n

k kn XS
12 . Since .1...]|[ )1(111 pwSFSE nnn −− ≥  and 

.1...]|[ )1(212 pwSFSE nnn −− ≥  Hence the sequences }1,,{ 1 ≥nFS nn  and }1,,{ 2 ≥nFS nn  are 
submartingales, where ),...,( 1 nn XXF σ=  for all 1≥n . In addition, if h is any real convex and 
nondecreasing function, then }1,),({ 1 ≥nFSh nn  and }1,),({ 2 ≥nFSh nn  are also submartingales. Thus 
for every 0>ε , Lemma 1 implies that  

 

i)              

),2(1

)))()(()((]
)(

max[]max[

2
2

1

1

1
2

2

2

2

2
)1(1

2
1

22
1

2
1

22
2

2
1

1

1

1

∑ ∑∑

∑

=

−

=

=

=
−

−+−−

≤≤≤≤

+≤

−+≤≥≤≥

n

k k

k

i ik
n

k k

k

n

k
kkk

k

k

nk
k

k

nk

bb

SESEbXEb
b
S

P
b
S

P

σσσ
ε

εεε  

 
 
and similarly we have 
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Now, by nnn SSS 21|| +≤ , we obtain 
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ii) By Remark 1 and part i  for nm <≤1 , 
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Hence, the proof is complete. In the following we assume 00

1
=∑=i iσ  and 1(0) 2(0) 0S S= = . 

 
Corollary 1. Under the assumptions of Theorem 1 we have 
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Remark 2. We have the following inequalities 
 
i)                                  ∑ ∑

−

=

−

=

+++
− +≤+=−

1

1

1

1

222
)1(1

2
1 ;2)(2)(

k

j

k

j
jkkjkkkk XXEXEESES σσσ  

 
the inequality holds by Cauchy- Schwartz' inequality. Similarly 
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The following corollary is an extension of Kolmogorov's inequality for arbitrary random variables. 
 
Corollary 2. Let { }1, ≥nX n  be a sequence of random variables with 

1,,0)( 2 ≥∞<= nEXXE nn and 1,1 ≥= kbk .Then for every 0>ε , 
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3. SOME STRONG LIMIT THEOREMS 

 
In this section, we use the results of section 2 to prove some strong limit theorems for arbitrary random 
variables. 
 

Theorem 2. Let { }1, ≥nX n  be a sequence of random variables and }1,{ ≥nbn be a sequence of positive 

nondecreasing real numbers. If∑ ∑∞
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By Theorem 1, we get 
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where ∞<< C0 . The second inequality holds by Remark 2. 

)ii  For every 0>ε , Theorem 1 implies that 
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Theorem 3. Let { }1, ≥nX n  be a sequence of random variables, if ∞<∑∑ =
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Proof: By Corollary 2 for every 0>ε ,  
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Since by Remark 2 the left hand side of the above inequality tends to zero when ∞→n , Lemma 7.1 in 
[9] implies that ∑∞

=1k kX  converges 1..pw . 
 

Example: If { }1, ≥nX n  is a sequence of i.i.d. random variables with distribution ]1,0[U , taking 
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Hence these and Theorem 3 prove that ∑∏
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The following Corollary, which is an extension of Kolmogorov's Theorem, provides strong law of large 

numbers for arbitrary random variables. 
 

Corollary 4. Let { }1, ≥nX n  be a sequence of random variables with nnXE µ=)(  and 2)( nnXVar σ=  
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