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ON THE HELICESIN THE GALILEAN SPACE G3'
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Abstract — T. Ikawa obtained an ordinary differential equation for the circular-helix. Recently, the helix have
been investigated by many differential geometers such as T. Ikawa, H. Balgetir, M. Bektas, M. Ergut, N.
Ekmekci and H. H. Hacisalihoglu. In this paper, making use of this author's methods, we obtained
characterizations of helix for a curve with respect to the Frenet frame in 3-dimensional'Galilean space Gs.

K eywor ds— Galilean Space, Helix

1. PRELIMINARIES

The Galilean space is a three dimensional complex projective space, Ps, in which the absolute figure {w, f,
I3, 15} consists of a rea plane w (the absolute plane);a real line f — w (the absolute line) and two
complex conjugate points, |,,1, € f (the absolute points) [1].

We shall take, as a real modd of the space Gs, area projective space P;, with the absolute {w, f}
consisting of a real plane wc G;, and ared line f — w, on which an elliptic involution & has been
defined.

Let ¢ bein homogeneous coordinates

WinX, =0, f..x;=%x=0
e90:0:X,: %) > (0:0: %5 :=X,).
In the nonhomogeneous coordinates, the similarity group Hg has the form
X'=ay,; +a,X
Yy =a, +8,X+8,C0SpYy+a,sngz D
Z' =8, +a,X—a,SNey+a,Ccospz

where a; and ¢ arereal numbers.
For a,, = a,, =1, we have the subgroup, B, the group of Galilean motions:

X'=a+Xx
Bg... Y =b+cx+ycoseg+zsing
Z =d+ex—ysing+ zcose

In G5 there are four classes of lines:
a) (proper) nonisotropic lines - they do not meet the absolute linef.
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b) (proper) isotropic lines - lines that do not belong to the plane w but meet the absolute linef.

) unproper nonisotropic lines - al lines of w but f.

d) the absolute linef.

Planes x =const. are Euclidean and so is the plane w. Other planes are isotropic.

Inwhat follows, the coefficients a,, and a,; will play aspecial role.

In particular, for a,, = a,; =1, (1) definesthe group By = H, of isometries of the Galilean space G; .

2. FRENET FORMULAS

For a curve c:l - G;, | € R parametrized by the invariant parameter S= X, is given in the
coordinate form

c(x) = (%, (), z(x)), 2
the curvature x(X) and thetorsion 7(X) are defined by

det(c'(x),c"(x),c" (X))

"n2

k(X)) =y () +2"%(¥), 7(x)= T ©)
The associated moving trihedron is given by
T=c'(x) =1L y'(x),Z(x),
1 " _ i " "
N :EC (x) = o (0,y"(x), 2'(x)), (4)
B = —— (02, y'()).
x(X)

The vectors T, N, and B are called the vectors of the tangent, principal normal and the binormal line,
respectively. For their derivatives the following Frenet's formulas hold [2]

V.:T =N,
V:N =178, %)
V:B=-N

3. THE CHARACTERIZATIONSIN THE GALILEAN SPACE G3

We used the same terminologies asin [3-5], and the following Definitions, Theorems and Corollaries were
obtained.

Definition 3. 1. Let o be acurve in 3-dimensional Galilean space Gs, and {T, N, B} be the Frenet frame
in 3-dimensional Galilean space Gz dong « . If xand r are positive constants along « , then « iscaled
acircular helix with respect to the Frenet frame.

Definition 3. 2. Let o be acurve in 3-dimensional Galilean space G; and {T, N, B} be the Frenet frame
in 3-dimensional Galilean space Gz along « . A curve a such that

K
— = const.
T
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is called ageneral helix with respect to Frenet frame.

Theorem 3. 1. Let a beacurvein 3-dimensiona Galilean space Gz. « isagenera helix with respect to
the Frenet frame {T, N, B}, if and only if
V.V V.T-KV.T=3¢"V,N (6)
where K = L 72,
K

Proof: Suppose that « is general helix with respect to the Frenet frame {T, N, B}. Then from (5), we
have

V. V. V.T=(x"-x1*)N+ (2t + x7')B. (7

Now, since « isgeneral helix with respect to the Frenet frame

£ ~ const.
T
and this upon the derivation givesrise to
k't =xr. (8)
If we substitute the equations (8),
N = 1 V.T, 9)
K
and
B=1v.N (10)
T

in (7), we obtain (6).
Conversely, let us assume that the equation (6) holds. We show that the curve o is agenera helix.
Covariant differentiating (9), weobtain

VN=—SvTilv T (12)
K K
and so
V.V.N= (— %j VT2 vvTilvvvT, (12)
K K K
If we use (6) in (12) and make some calculations, we have
i 12 lJ
V.V.N = (—%j AL VA P L VLA (13)
K K K K

Also we obtain
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V.V.N=-r*N+7B (14)

Since (13) and (14) are equal, routine calculations show that o isageneral helix.

Corollary 3. 1. Let  beacurvein 3-dimensional Galilean space G;. « isacircular helix with respect to
the Frenet frame {T, N, B}, if and only if

V.V, V.T=-?V.T. (15)

Proof: From the hypothesis of corollary 3.1 and since « isacircular helix, we can easily show (15).

Theorem 3. 2. Let « beacurvein 3-dimensiona Galilean space Gz. « isagenera helix with respect to
the Frenet frame {T, N, B}, if and only if

V.V, V.T-KV.T=317'V.N (16)
where K :K——TZ and A:E:const.
K T

Proof: It issimilar to the proof of Theorem 3. 1.

Theorem 3. 3. If o be acurvein 3-dimensional Galilean space G;. « is ageneral helix with respect to
the Frenet frame {T, N, B}, then
V,V.V,T-KV;B=3«'V N (17)

14

~ K
whee K = ——+ k7.
T

Proof: Suppose that ¢ is a general helix with respect to the Frenet frame {T, N, B}. Then from (7) and
(8), we have

V.V, V.T=(x"-xc’)N+3x"rB. (18)
If we substitute the equations

N=-1v,B (19)
T

and (10) in (18), we obtain (17).

Theorem 3. 4. If o beacurvein 3-dimensiona Galilean space Gz. « is a general helix with respect to
the Frenet frame {T, N, B}, then

V,V,V,T-KV,B=317'V,N (20)

"

~ K K
where K = ——+ k7 and 4 = — = const.
T T

Proof: Itissimilar to the proof of Theorem 3.3.
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Corollary 3. 2. Let o beacurvein 3-dimensional Galilean space G;. « isacircular helix with respect to
the Frenet frame {T, N, B} if and only if

V,V,V,T =xrV,B. (21)

Proof: From the hypothesis of corollary 3.2 and since « isacircular helix, we can easily show (21).
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