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Abstract – T. Ikawa obtained an ordinary differential equation for the circular helix. Recently, the helix have 
been investigated by many differential geometers such as T. Ikawa, H. Balgetir, M. Bektas, M. Ergut, N. 
Ekmekci and H. H. Hacısalihoglu. In this paper, making use of this author’s methods, we obtained 
characterizations of helix for a curve with respect to the Frenet frame in 3-dimensional Galilean space G3. 
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1. PRELIMINARIES 
 
The Galilean space is a three dimensional complex projective space, P3, in which the absolute figure {w, f, 
I1, I2} consists of a real plane w (the absolute plane), a real line wf ⊂  (the absolute line) and two 
complex conjugate points, fII ∈21 ,  (the absolute points) [1]. 

We shall take, as a real model of the space G3, a real projective space P3, with the absolute {w, f} 
consisting of a real plane 3Gw ⊂ , and a real line wf ⊂ , on which an elliptic involution ε  has been 
defined. 

Let ε  be in homogeneous coordinates 
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In the nonhomogeneous coordinates, the similarity group H8 has the form 
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where ija  and ϕ  are real numbers. 

For 12312 == aa , we have the subgroup, 6B , the group of Galilean motions: 
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In G3 there are four classes of lines: 
a) (proper) nonisotropic lines - they do not meet the absolute line f. 
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b) (proper) isotropic lines - lines that do not belong to the plane w but meet the absolute line f. 
c) unproper nonisotropic lines - all lines of w but f. 
d) the absolute line f. 
Planes x =const. are Euclidean and so is the plane w. Other planes are isotropic. 
In what follows, the coefficients 12a  and 23a  will play a special role. 
In particular, for 12312 == aa , (1) defines the group 86 HB ⊂  of isometries of the Galilean space G3 . 
 

2. FRENET FORMULAS 
 
For a curve RIGIc ⊆→ ,: 3  parametrized by the invariant parameter xs = , is given in the 
coordinate form 
 
                                                                   )),(),(,()( xzxyxxc =                                                              (2) 

  
the curvature )(xκ and the torsion )(xτ  are defined by 
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The associated moving trihedron is given by  
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The vectors T, N, and B are called the vectors of the tangent, principal normal and the binormal line, 

respectively. For their derivatives the following Frenet's formulas hold [2] 
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3. THE CHARACTERIZATIONS IN THE GALILEAN SPACE G3 

 
We used the same terminologies as in [3-5], and the following Definitions, Theorems and Corollaries were 
obtained. 
 
Definition 3. 1. Let α  be a curve in 3-dimensional Galilean space G3, and {T, N, B} be the Frenet frame 
in 3-dimensional Galilean space G3 along α . If κ and τ  are positive constants along α , then α  is called 
a circular helix with respect to the Frenet frame. 
 
Definition 3. 2. Let α  be a curve in 3-dimensional Galilean space G3, and {T, N, B} be the Frenet frame 
in 3-dimensional Galilean space G3  along α . A curve α  such that 
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is called a general helix with respect to Frenet frame. 
 
Theorem 3. 1. Let α  be a curve in 3-dimensional Galilean space G3. α  is a general helix with respect to 
the Frenet frame {T, N, B}, if and only if 
 
                                                                 NTKT TTTTT ∇′=∇−∇∇∇ κ3                                                          (6) 

 

where 2τ
κ
κ

−
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Proof: Suppose that α  is general helix with respect to the Frenet frame {T, N, B}. Then from (5), we 
have 
 
                                                       BNTTTT )2()( 2 τκτκκτκ ′+′+−′′=∇∇∇ .                                             (7) 

 
Now, since α  is general helix with respect to the Frenet frame 
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and this upon the derivation gives rise to 
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If we substitute the equations (8), 
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and  
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in (7), we obtain (6). 

Conversely, let us assume that the equation (6) holds. We show that the curve α  is a general helix. 
Covariant differentiating (9), we obtain 
 

                                                           TTN TTTT ∇∇+∇
′

−=∇
κκ

κ 1
2                                                     (11) 

 
and so 
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If we use (6) in (12) and make some calculations, we have 
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Also we obtain 
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                                                                   BNNTT ττ ′+−=∇∇ 2                                                          (14) 
 

Since (13) and (14) are equal, routine calculations show that α  is a general helix. 
 
Corollary 3. 1. Let α  be a curve in 3-dimensional Galilean space G3. α  is a circular helix with respect to 
the Frenet frame {T, N, B}, if and only if 

 
                                                                   TT TTTT ∇−=∇∇∇ 2τ .                                                         (15) 

 
Proof: From the hypothesis of corollary 3.1 and since α  is a circular helix, we can easily show (15). 
 
Theorem 3. 2. Let α  be a curve in 3-dimensional Galilean space G3. α  is a general helix with respect to 
the Frenet frame {T, N, B}, if and only if 

 
                                                          NTKT TTTTT ∇′=∇−∇∇∇ τλ3                                                 (16) 
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Proof: It is similar to the proof of Theorem 3. 1. 
 
Theorem 3. 3. If α  be a curve in 3-dimensional Galilean space G3. α  is a general helix with respect to 
the Frenet frame {T, N, B}, then 
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                                                  (17) 
 

where κτ
τ
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+
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Proof: Suppose that α  is a general helix with respect to the Frenet frame {T, N, B}. Then from (7) and 
(8), we have 
 
                                                        BNTTTT τκκτκ ′+−′′=∇∇∇ 3)( 2 .                                             (18) 

 
If we substitute the equations 
 

                                                                          BN T∇−=
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and (10) in (18), we obtain (17). 
 
Theorem 3. 4. If α  be a curve in 3-dimensional Galilean space G3. α  is a general helix with respect to 
the Frenet frame {T, N, B}, then 
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Proof: It is similar to the proof of Theorem 3.3. 
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Corollary 3. 2. Let α  be a curve in 3-dimensional Galilean space G3. α  is a circular helix with respect to 
the Frenet frame {T, N, B} if and only if 
 
                                                                   BT TTTT ∇=∇∇∇ κτ .                                                           (21) 

 
Proof: From the hypothesis of corollary 3.2 and since α  is a circular helix, we can easily show (21). 
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